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Abstract. The role of (canonical) conjunctive and disjunctive normal
forms ((C)CNF, (C)DNF) is very important both in classical and many-
valued logic. Normal forms have been proved as fundamental tools in
automated theorem proving, in electrical engineering and, in the investiga-
tion of the complexity of logical mappings {true, false}m → {true, false}
as well. The iterative canonical form (ICF) graph introduced in [10] is a
successful approach for that. Later, this idea was applied for biological
problems in [8, 9]. One extension of this idea to many-valued case was de-
veloped for logical design in [4]. There exist some other interesting works
at laboratory level also.1 In this paper, we give a possible method based
on the lattice diagram of an n-valued logical mapping Em

n → En to find
the ICF graph. Using ICF graphs we construct describing formulae as well.
In order to prepare this description we give a short (fitting to our aims)
summary of the many-valued logic.

1. Introduction

The classical propositional logic can be considered as a lattice for any ordering
of the two truth values. The lattice operations are the operations min(x, y) and
max(x, y). These operations together with the negation operation (as operation
generating the complement) are functionally complete. Normal forms ((C)CNF,
(C)DNF) containing only these three operations are the most important means
in the description of logical mappings {true, false}m → {true, false}. A con-
junction of j variables (j < m) represents the minimum of all the points in
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{true, false}m having true values at the position of fixed j variables - i.e. it
is an (m − j) dimensional Boolean cube. Basing on the ICF graph of a given
mapping it is possible to construct a formula over {¬,∧,∨} which describes this
mapping [10]. There exist canonical normal forms in the many-valued logic. Let
En (n > 2) be the set {0, 1, 2, . . . , n − 1}. The elements of the set En are our
truth values in the n-valued logic. A conjunction of j variables (j < m) repre-
sents the minimum of all the points from Em

n having truth values e1, e2, ..., ej at
the position of the j variables - that is an (m− j) dimensional E-cube. However,
the set of all points having positive truth values at every position can not be the
result of any simplification. Consequently, these E-cubes are represented by their
least points and not by conjunctions. Then the construction of the ICF graph
is possible using the m-dimensional lattice diagram. But to obtain a describing
formula is an other question. We show a possible way to construct the ICF graph
and its using to compute the complexity of the original mapping. Moreover, we
show an attempt to construct the describing formula.

2. The many-valued logics

The classical propositional logic is defined by its syntax and semantics. The
syntax is given by a pair ⟨Prop,Con⟩, where Prop is the set of propositional
variables (letters), Con is the set of connectives (for example Con = {¬,∧,∨}).
Well-formed formulas can built by structural induction on Con in the usual way.
Meaning is assigned to well-formed formulas by a semantics ⟨{0, 1}, I, A(Con)⟩,
where {0, 1} is the set of truth values (true is signed by 1 and false by 0),
I : Prop → {0, 1} is called interpretation and A(Con) are operations on {0, 1}
of suitable arity signed by members of Con. (The set {A(¬), A(∧), A(∨)} is
functionally complete.)

Like the classical logic, many-valued propositional logics is also defined by its
description language, the set of truth values and the operations on it. In accor-
dance with classical logic, the description language is given by a pair ⟨Prop,Con⟩,
where Prop is the set of variables, Con = {C1, C2, . . . , Ck} is the set of connec-
tives. At the same time, a many-valued logic manages a truth value set E with
the cardinality larger than the usual two. The semantics of a many-valued logic
even now is a triple ⟨E, I,A(Con)⟩, where I : Prop → E is an interpretation,
A(Con) = {A(C1), A(C2), . . . , A(Ck)} are operations on E of suitable arity.

In the description language, Con contains logical connectives, A(Con) con-
tains operations on E associated to that connectives. In principle the extensions
of the classical operations are the members of A(Con).

By way of example, we present the operations conjunction and disjunction in
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Lukasiewicz

∧ t f i

t t f i
f f f f
i i f i

Bochvar

∧ t f m

t t f m
f f f m
m mm m

Kleene

∧ t f u

t t f u
f f f f
u u f u

Lukasiewicz

∨ t f i

t t t t
f t f i
i t i i

Bochvar

∨ t f m

t t t m
f t f m
m m m m

Kleene

∨ t f u

t t t t
f t f u
u t u u

Table 1. Operations in some Three-Valued Logics

the most famous three-valued logics (from [1]) in the Table 1. Here we use the
conventional notation for the truth values: true is signed by t, false by f and the
third truth value stands for

• poss-i -ble, not yet determined for Lukasiewicz,

• m-eaningless (paradoxical) for Bochvar,

• u-ndefined for Kleene.

Henceforth by standard simplification of notation, we use the same symbol to
refer both to a connective and to the operation on the truth values associated to
that connective.

3. Designation of truth values

In this paper we deal with so called n-valued logic. Let En (n > 2) be the
set {0, 1, 2, . . . , n − 1}. The members of the set En represent our truth values.
To define the notion of semantical consequence the designated values (from [15])
are important. Let 0 6 S < n− 1. {0, 1, . . . , S} are non-designated truth values,
and {S + 1, . . . , n− 1} the designated ones.

Definition 3.1. In an interpretation I, a formula F is said to be:

• S-assertable, if its truth value in I is designated;

• S-unassertable, if its truth value in I is non-designated.

Definition 3.2. A formula F is said to be:
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• S-tautology, if it is S-assertable in all interpretations,

• S-satisfiable, if there is an interpretation, where F is S-assertable.

Definition 3.3. A formula G is a semantical S-consequence of formulae
F1, . . . ,Fm (denoted as F1, . . . ,Fm |=S G) if for any interpretation in which
every formula Fi (1 6 i 6 m) is S-assertable, G is also S-assertable with at least
the same truth value as the maximum of the truth values of formulae F1, . . . ,Fm

in the underlying interpretation.

In classical logic F1, . . . ,Fm |= G iff {F1, . . . ,Fm,¬G} is unsatisfiable. This
decision problem necessitates a negation operation having the suitable result in
many-valued logic: a negation of an S-assertable formula is S-unassertable and
vice versa. For example Rosser in [15] defined such a negation.

4. Operations in the n-valued logic

We have already seen, the operations in the n-valued logic must be the exten-
sions of the operations of the classical two-valued logic. Some possible extension
of classical logical operations:

• n-valued conjunction x1 ∧ x2 
 min (x1, x2),

• n-valued disjunction x1 ∨ x2 
 max (x1, x2),

• Lukasiewicz negation ¬̃x 
 n− 1− x,

• Post negation ¬̄x 
 (x+ 1) mod n,

• Lukasiewicz implication x1⊃̃x2 

{

n− 1 if x1 6 x2

(n− 1)− x1 + x2 if x1 > x2

• Post implication x1⊃̄x2 


 n− 1 if x1 6 x2

x2 if x1 > x2, S 6 x1

(n− 1)− x1 + x2 if x1 > x2, S > x1

There are some problems with some of these n-valued operators.

• The Lukasiewicz and Post negations of a designated truth value is not non-
designated in every case.

If n = 3, S = 1, then the truth value 1 is non-designated. In the same case,
Lukasiewicz negation of the truth value 1 has

¬̃1 = 3− 1− 1 = 1

truth value, so it is non-designated too.
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• In order to be able to formulate the decision problem in the many-valued
logics it would be necessary such a negation (¬) and implication (⊃) that
x1 ⊃ x2 is the same as ¬x1 ∨ x2. (The modus ponens requires such an
implication.)

There are cases, when x1 and the Lukasiewicz implication x1⊃̃x2 are des-
ignated, but x2 is not. For example if n = 3, S = 0, x1 = 1, x2 = 0, then

x1⊃̃x2 = (n− 1)− x1 + x2 = 1.

5. Functionally completeness

Any function f : Em
n → En can be considered as an n-valued operation. A set

X of n-valued operation is said to be functionally complete iff every operation is
definable by means of operations in the set X.

Theorem 5.1. The operation set {¬,∧,∨} over E2 is functionally complete.

Now we introduce two unary operations in E2, one of them is instead of ¬

j0x 

{

1 if x = 0,
0 if x = 1,

and the other is the identity

j1x 

{

1 if x = 1,
0 if x = 0.

Obviously, {j0, j1,∧,∨} is functionally complete over E2.

Theorem 5.2. Let f : Em
2 → E2 be an m-ary operation. Then it has a

canonical disjunctive normal form:

f(x1, x2, . . . , xm) =
∨

(i1,i2,...,im)∈Em
2

(

m∧
k=1

jikxk ∧ f(i1, i2, . . . , im)).

Example 5.1. For example if f : E2
2 → E2 is a binary operation, we get

so that

f(x1, x2) = (j0x1 ∧ j0x2 ∧ f(0, 0)) ∨ (j0x1 ∧ j1x2 ∧ f(0, 1))∨
∨ (j1x1 ∧ j0x2 ∧ f(1, 0)) ∨ (j1x1 ∧ j1x2 ∧ f(1, 1)).
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i1 i2 f(i1, i2) ji1x1 ∧ ji2x2 ∧ f(i1, i2)

0 0 f(0, 0) j0x1 ∧ j0x2 ∧ f(0, 0)
0 1 f(0, 1) j0x1 ∧ j1x2 ∧ f(0, 1)
1 0 f(1, 0) j1x1 ∧ j0x2 ∧ f(1, 0)
1 1 f(1, 1) j1x1 ∧ j1x2 ∧ f(1, 1)

Let us now f(0, 0) = 0, f(0, 1) = 1, f(1, 0) = 0, f(1, 1) = 1, that is with usual
point-denotation {(00)0, (01)1, (10)0, (11)1}. For the sake of simplicity, in two-
valued case, the complete elementary conjunctions belonging to the value 0 of
function f do not appear in the normal forms, so the DNF of this operation is

f(x1, x2) = (j0x1 ∧ j1x2) ∨ (j1x1 ∧ j1x2).

Resubstituting the usual signs (¬ and ,,identity”) and carrying out possible sim-
plification we get

f(x1, x2) = (¬x1 ∧ x2) ∨ (x1 ∧ x2) = x2.

Similarly, in the n-valued case for i = 0, 1, . . . , n− 1 let be

jix 

{

n− 1 if x = i,
0 if x ̸= i.

Theorem 5.3. The operation set

{j0, j1, . . . , jn−1,∧,∨}

over En is functionally complete.

Theorem 5.4. Let f : Em
n → En be an m-ary operation. Then it has a

CDNF:

f(x1, x2, . . . , xm) =
∨

(i1,i2,...,im)∈Em
n

(
m∧

k=1

jikxk ∧ f(i1, i2, . . . , im)

)
.

Example 5.2. For example if f : E2
3 → E3 is a binary operation, we get so

that

f(x1, x2) =

= (j0x1 ∧ j0x2 ∧ f(0, 0)) ∨ (j0x1 ∧ j1x2 ∧ f(0, 1)) ∨ (j0x1 ∧ j2x2 ∧ f(0, 2)) ∨
∨(j1x1 ∧ j0x2 ∧ f(1, 0)) ∨ (j1x1 ∧ j1x2 ∧ f(1, 1)) ∨ (j1x1 ∧ j2x2 ∧ f(1, 2)) ∨
∨(j2x1 ∧ j0x2 ∧ f(2, 0)) ∨ (j2x1 ∧ j1x2 ∧ f(2, 1)) ∨ (j2x1 ∧ j2x2 ∧ f(2, 2)).
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i1 i2 f(i1, i2) ji1x1 ∧ ji2x2 ∧ f(i1, i2)

0 0 f(0, 0) j0x1 ∧ j0x2 ∧ f(0, 0)
0 1 f(0, 1) j0x1 ∧ j1x2 ∧ f(0, 1)
0 2 f(0, 2) j0x1 ∧ j2x2 ∧ f(0, 2)
1 0 f(1, 0) j1x1 ∧ j0x2 ∧ f(1, 0)
1 1 f(1, 1) j1x1 ∧ j1x2 ∧ f(1, 1)
1 2 f(1, 2) j1x1 ∧ j2x2 ∧ f(1, 2)
2 0 f(2, 0) j2x1 ∧ j0x2 ∧ f(2, 0)
2 1 f(2, 1) j2x1 ∧ j1x2 ∧ f(2, 1)
2 2 f(2, 2) j2x1 ∧ j2x2 ∧ f(2, 2)

Let be given an operation by point-denotation:

{(00)0, (01)2, (02)1, (10)0, (11)2, (12)0, (20)0, (21)2, (22)0} .

The complete elementary conjunctions belonging to value 0 of the operation f
do not appear in the normal forms either:

f(x1, x2) =

= (j0x1 ∧ j1x2 ∧ 2) ∨ (j0x1 ∧ j2x2 ∧ 1) ∨ (j1x1 ∧ j1x2 ∧ 2) ∨ (j2x1 ∧ j1x2 ∧ 2).

After simplification we get

f(x1, x2) = (j1x2 ∧ 2) ∨ (j0x1 ∧ j2x2 ∧ 1).

Some pairs of syntax and semantics of the n-valued logics form special math-
ematical structures. Well known fact, that classical two-valued logic with con-
nectives Con = {¬,∧,∨} as a mathematical structure (the set {0, 1} with the
operations {¬,∧,∨}) is a Boolean algebra. Now we will see that some n-valued
logic as a mathematical structure is a Post algebra with the domain En (=
{0, 1, 2, . . . , n− 1} ) and some set of n-valued operations.

Definition 5.1. By an n-valued Post algebra over En (n > 2) we mean an
algebra

⟨En, {k0, . . . , kn−1, j0, . . . , jn−1,∧,∨}⟩

where ⟨En, {∧,∨}⟩ is a bounded distributive lattice with a zero 0 and a unit n−1,
moreover, for each i, l = 0, . . . , n− 1 and x, y ∈ En,

(P1) x ∨ y = y, x ∧ y = x for x < y,

(P2) if i ̸= l, then jix ∧ jlx = 0, kix ∨ klx = n− 1,
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(P3) x = ∧n−1
i=0 (kix ∨ i), x = ∨n−1

i=0 (jix ∧ i),

(P4) 0 = ∧n−1
i=0 kix, n− 1 = ∨n−1

i=0 jix,

(P5) if i ̸= 0, then
x ∨ (i− 1) = i implies x = i, and x ∧ i = i− 1 implies x = i− 1.

Theorem 5.5.
P2 
 ⟨E2, {¬,∧,∨}⟩

is a Boole algebra with the natural ordering of the set E2.

Let be defined the operations ki(i = 0, 1, . . . , n− 1) as follows:

kix 

{

0 if x = i,
n− 1 if x ̸= i.

The following theorem has been proved in [2].

Theorem 5.6.

Pn 
 ⟨En, {k0, . . . , kn−1, j0, j1, . . . , jn−1,∧,∨}⟩

is a Post algebra of order n with the natural ordering of the set En.

Now let be defined the ,,threshold” operation xi according to [4]

xi 

{

0 if x < i,
n− 1 if x > i.

By this operation it is possible to give a conjunction formula describing a set of
points, the minimal point of which is the point given by the exponents.

Example 5.3. If a point in the 5-valued logic is (1232)2, then

min(2, x1, y2, z3, v2) or (2 ∧ x1 ∧ y2 ∧ z3 ∧ v2)

assigns the value 2 to (1232) and to all greater points.

Now let we define a negation-like operation which implements the set differ-
ence. Let G be a formula and let k be the assigned value in certain IkG interpre-
tation. Further let F be another formula, where l is the value of F in the IkG
interpretations. Let I lF ⊆ IkG . Then the formula, which has the value k in the
interpretation IkG \ I lF is exactly G ∧ ¬kF , where

¬kF 

{

0 if k ̸= l,
n− 1 if k = l.

Example 5.4. Let G = (2∧x1∧ y2∧ z3∧ v2) and F = (1∧x2∧ y3∧ z4∧ v3),
then G ∧ ¬kF = (2 ∧ j1x ∧ j2y ∧ j3z ∧ j2v).
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6. Characterization of operations with lattice diagrams

Let be given the two-valued operation

{(000)0, (001)1, (010)1, (100)0, (011)1, (101)0, (110)1, (111)0}

by the lattice diagram of the space {0, 1}3 (Figure 1).

(101)0(110)1

(111)0

(100)0 (001)1

(000)0

(011)1

(010)1

Figure 1. Lattice diagram of a two-valued operation

The ICF graph method for the two-valued case is an idea of Jakó [10]. As
a result of some iterative transformations carried out on this graph (lattice dia-
gram) we get some DNF pairs (D1

i , D
2
i ) containing only non negated variables,

and the operation can be expressed by the formula∨
i=1,2,...,l

(D1
i ∧ ¬D2

i ).

The key idea to obtain the mentioned formula is the replacement of 2 (or
2k) neighbour points by the least point in the ICF graph and by the elementary
conjunction in which the variables correspond to the position where the 1 value
appears in the least point. For example in the case of the points (010)1, (110)1
we get x2 ∧ ¬x3 from ¬x1 ∧ x2 ∧ ¬x3 and x1 ∧ x2 ∧ ¬x3. If the point-value is 0,
then we can proceed in the same way, however the resulted formula should be
negated.

An iteration step includes an α-expansion and a β-reduction. During an α-
expansion we start with lowest 1-value points ((010)1 and (001)1) and we create
the disjunction of conjunction(s) of non negated variables (x2 ∨ x3). We mark
(cf. boldface) in the lattice diagram all points being greater than the starting
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(101)0(110)1

(111)0

(100)0 (001)1

(000)0

(011)1

(010)1

Figure 2. α-expansion of lattice diagram

ones ((m-1)-dimensional cubes in the case of m variables with one non negated
variable). We call the set of all marked points a covering.

Then we select the lowest 0-value points of the covering ((101)0) and we
create (the disjunction of) the conjunction(s) of non negated variables (x1 ∧ x3)
and negate it (¬(x1∧x3)). We mark all points that are greater than the selected
((111)0, cf. italics). Moreover, the marked points but the starting will be removed
from the diagram. This is the β-reduction. Finally we build a conjunction from
the obtained formulae ((x2 ∨ x3) ∧ ¬(x1 ∧ x3)) that corresponds to the actual
iteration step.

(110)1

(111)0

(100)0 (001)1

(000)0

(011)1

(010)1

(101)0

Figure 3. β-reduction of lattice diagram

We try to continue the iteration by starting with lowest 1-value points of the
obtained diagram till no more changes can be carried out. (In our example there
is no more iteration step.) Every formula resulted in an iteration step should
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be connected by the previous one with disjunction. Finally we keep only the
starting points of the last α-expansion and β-reduction.

(101)0

(010)1 (001)1

Figure 4. Result of the iteration process

Our operation can be fully reconstructed (characterized) by the remaining
points of the diagram (see in [8]). The number of steps of the algorithm of
reconstruction could serve as complexity.

Let be given an n-valued (n > 2) m-ary operation. It can be given by the
lattice diagram of Em, where E is the set of values. In this lattice diagram we
take into account the natural ordering of the values together with the ordering
according to the Hamming distance. The extension of the ICF algorithm to
n-valued case is applied first to the lattice diagram, without constructing the
formula describing the mapping. This is reasoned by the fact that the set of points
greater than a given one cannot be described always by elementary conjunction.
Moreover, the negation of a formula should have to mean the exclusion of all
points covered by the concerned formula from the full space. (This is the problem
in [FJ] respectively.) The simplification here can be carried out between n m-
dimensional points where m−1 coordinates coincide and the remaining one takes
all possible values (m is the number of variables).

In the n-valued case the iteration step means the following: First we select
all the least points with value q (q ̸= 0) from the diagram.

• If one of the selected points has at least one zero coordinate, in the lattice
diagram we mark all points being greater than the starting ones regarding
the m− j zero coordinates ((m− j)-dimensional cubes in case of j nonzero
coordinates). We call the set of all marked points a covering.

• If there is not any zero coordinate in the selected points, then we mark each
point greater than the selected ones. This is also a covering.

These coverings are added to the ICF graph. A covering is characterized by the
value of its initial point. If the value is q, the covering is called q-covering. This
step is referred as an α-expansion.

In a q-covering we select the least points with value different from q. Then
we mark in these coverings the points of the (m− j) dimensional cube (if there
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are m − j zero coordinates in the selected points and all point greater than the
selected otherwise. The sets of marked points (coverings) except for its initial
points will be removed from the graph. This is the β-reduction.

We continue the iteration by starting with the covering prepared for the β-
reduction. We make the α-expansion. The selected points will be now the least
points with value different to the value of the initial point of the removed covering.
Then the β-reduction is executed till no more change can be carried out.

In the example shown by Figure 5 we have one point (01)2 in the first step.
The α-expansion consists of 3 points (boldface). Since the covering contains only
2-valued points, the β-reduction makes no changes.

(12)0

(02)1

(01)2

(22)0

(00)0

(11)2

(21)2

(20)0

(10)0

Figure 5. Lattice diagram of a three-valued operation

In the second step the selected point is (02)1. The α-expansion consists of 3
points (italics in Figure 6). The point (12)0 is the least among the covered non
1-valued points. However, its expansion can not assigned to a conjunction. It is
only the set of all greater points including itself. These point will be removed
from the diagram.

Since the removed points are 0-valued points and the iteration makes no
more changes, the result diagram is in Figure 7. The operation can be fully
reconstructed by the result diagram either. The number of steps of reconstruction
of a formula from the diagram could serve as a measure for its complexity.

If the least nonzero-valued points in the original lattice diagram or in some
part covered by an α-expansion have only nonzero coordinates (which can not
occur in two-valued case) then these can not be the result of a simplification.
However, it can happen that all the points greater than the selected belong to
the same value. In this case, we keep the least point in the diagram (α-expansion).
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(12)0

(02)1

(01)2

(22)0

(00)0

(11)2

(21)2

(20)0

(10)0

Figure 6. Second iteration step

(12)0

(02)1

(01)2

Figure 7. Result diagram

Performing the β-reduction we select the least nonzero-valued point and continue
until a new iteration step impossible. The next example in Figures 8 and 9 shows
such a case.

In the last example shown by Figure 10 we have two points (02)1, (11)2 in
the first step.

The point (02)1 has a zero coordinate, so we mark the greater points (12)0
and (22)0. The point (11)2 has not any zero coordinate, so we mark the greater
points ((21)2, (12)0 and (22)0. The α-expansion consists of 5 points. We select
the least point ((12)0) with value different to 1 in the 1-covering and mark the
greater one (22)0 (Figure 11).

The sets of marked points except its initial points will be removed from the
graph (Figure 12).
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(12)1

(02)1

(01)2

(22)0

(00)0

(11)2

(21)2

(20)0

(10)0

Figure 8. Iteration step in the second diagram

(02)1

(01)2

(22)0

Figure 9. Second result diagram

(12)0

(02)1

(01)0

(22)0

(00)0

(11)2

(21)2

(20)0

(10)0

Figure 10. α-expansion in the third example
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(12)0

(02)1

(01)0

(22)0

(00)0

(11)2

(21)2

(20)0

(10)0

Figure 11. Before β-reduction

(12)0

(02)1 (11)2

Figure 12. Third result diagram

Remember that the ∧ and the ∨ operations correspond to the minimum and
maximum operations in our n-valued logic. We note that negation has more
extensions, however, there is no suitable negation to the description of the com-
plementer of points covered by a formula with respect to the domain by a formula.

If we describe a phenomenon (a model) by a function of two- or many-valued
logics then it looks reasonable to characterize changes of the phenomenon by
a distance measure of the functions describing them. To the examination of
the distance of two functions (n-valued operations), the comparison of the ICF
diagrams can be more effective than that of the original lattice diagram.

7. Related work

In this paper we recalled the main properties of the ICF graph introduced
originally in [10] and, proposed an ICF graph construction algorithm for many
valued logical operations. Our construction was based on a set theoretic ap-
proach. An algorithm for the two valued case based on similar principles can
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be found in [9], which doesn’t attend by a description formula construction even
in the two valued case. As for the many valued case, an algorithm using list
management method and providing description formula can be seen in [4]. This
looks well from formal point of view, however, the application of the included
(mirror) negation operation for formulae is dubious.

In the present paper we showed that using elementary conjunction the point
set obtained by the simplification of certain variables can be interpreted as an
n − j dimensional cube, while the complete conjunction expressed in terms of
the threshold operation is an n-dimensional vector describing the set of points
containing all points greater than the concerned one. Accordingly, the description
formula for certain ICF graph can be simply determined during the construction
of the graph. On the other hand, the description formula can be constructed
similarly to 2-valued logic, the minimum, threshold, ji and ¬k operations. For
example the describing formula corresponding to Figure 4 is (y ∨ z) ∧ ¬(x ∧ z),
while the formula to Figure 12 is ((1∧j2y)∨(2∧x1∧y1))∧¬1(0∧x1∧y2). Both the
recently given and the previously known algorithms for the construction of the
ICF graph together with the concerning theoretical background are of principal
significance. Their efficiency and performance have not been investigated yet.

8. Summary

The obtained results mean a progress in the use of network diagrams at the
creation of an ICF graph. This is important because the classical normal forms
play a considerable role in the automated theorem proving. In the case of classical
logics, booth the classification of the formulae into types α and β by Smullyan
[16] and the generalized normal forms initiated by Fitting [3] meant a noteworthy
progression. As it may be known from our papers [13, 14], so called point-plus
and recursive rewriting systems can be introduced for the explicit construction of
normal forms (c.f. Table 2). Nevertheless, there are some results for the synthesis
of the tableaux method and the resolution calculus [5] as well.

These rewriting rules can be given even in many-valued logics if we apply the
implication and the negation defined by Rossel in [15]. The main problem here
arises at the definition of a complement pair. Namely, the conjunction of the
complement pairs is some of the non-designated truth values instead of 0. Simi-
larly, the resolution rule requires that the resolvent should be the consequence of
the ancestors. This is the reason that the Gentzen sequent method is recently the
highest developed one in the many-valued logic. The generalization of recursive
rewriting rules for many valued logics could make it possible to treat the tableau
and resolution calculi as dual calculi. In particular, [7] deals with the extension of
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¬¬A 7−→ A ¬⊤ 7−→ ⊥ ¬⊥ 7−→ ⊤

gC-rules: ⟨[α]⟩ 7−→ ⟨[α1], [α2]⟩ ⟨[β]⟩ 7−→ ⟨[β1, β2]⟩

gD-rules: [⟨α⟩] 7−→ [⟨α1, α2⟩] [⟨β⟩] 7−→ [⟨β1⟩, ⟨β2⟩]

Table 2. Recursive rewriting rules

tableaux, sequent and resolution calculi, however, there are still a lot of problems
in this field as well.
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