
Annales Univ. Sci. Budapest., Sect. Comp. 31 (2009) 167-184

COMPARING AND EVALUATING DESIGN PATTERN
MINER TOOLS

L. J. Fülöp, Á. Ilia, Á. Z. Végh, P. Hegedűs and R. Ferenc

(Szeged, Hungary)

Abstract. Several tools are published in the literature which are able
to mine design pattern usage from source code. Because a common test
database – a benchmark – is not available, the accuracy of the tools is
difficult to check and measuring any kind of improvements on the tools is
also problematic. As an all-in-one solution we have developed a benchmark
for evaluating and comparing design pattern miner tools and for ensuring
a test database for them.
In this paper we present some experiments performed with the benchmark.
Two design pattern miner tools – Columbus and Maisa – are evaluated and
compared. The tools are evaluated on C++ reference implementations of
design patterns, on a real software system called NotePad++ and on For-
mulaManager, which is a software implemented by us to have a test case
where the usage of design patterns is well defined and documented. De-
sign pattern instances from NotePad++ recovered by professional software
developers are also added to the benchmark.

1. Introduction

The development process of software systems contains several steps. Due
to close deadlines most of the projects skip partly or completely less important
parts of these steps. Making up-to-date documentation is usually the least impor-
tant task for programmers (at least in their opinion), so it is partly or completely
skipped which causes a lot of problems later in maintenance and evolution phases



168 L.J. Fülöp, Á. Ilia, Á.Z. Végh, P. Hegedűs and R. Ferenc

of the software. The problem of missing documentation can be moderated by de-
sign pattern mining, because design patterns [7] play important role in a software,
so knowing about them helps program comprehension. For this reason several
design pattern mining tools are developed and published.

The problem with several approaches to pattern recognition (based on pattern
matching) is that they are inherently too permissive in a sense that they produce
many false results in which some code fragments are identified as pattern in-
stances that share only the structure of the pattern description. The pattern
miner tools usually use different definitions of patterns and algorithms to detect
these patterns. Another major problem is that there is no common measurement
system or a test database to evaluate and compare results produced by design
pattern miner tools. Furthermore, we experienced demand in conferences and
publications for a solution to evaluate patterns effectively and easily [15]. Hence,
we developed a publicly available benchmark for evaluating and comparing design
pattern miner tools. The developed benchmark is general, it is language, soft-
ware, tool and pattern independent. With the benchmark the accuracy (precision
and recall) of the tools can be validated by the public.

In this paper the benchmark will be introduced by experiments on evaluating
and comparing two design pattern miner tools, Maisa and Columbus. The tools
are evaluated on reference implementations of design patterns, on a software
system called FormulaManager, which contains every design pattern in a real
context, and on an open source software system called NotePad++. In addition,
further instances from NotePad++ recovered by professional software developers
are added to the benchmark.

We will proceed as follows. In the next section we will discuss some works sim-
ilar to ours. The benchmark will be described shortly in Section 3. Afterwards,
the two evaluated tools (Columbus and Maisa) will be introduced in Section 4.
We will show the evaluation and comparison results of the tools in Section 5.
Finally, in Section 6 we will present some conclusions and outline directions for
future work.

2. Related work

In our previous work we have presented a method to differentiate true and
false hits in design pattern mining [4]. We employed machine learning methods
to filter out false design pattern hits. First, we ran our design pattern miner
tool that discovers patterns based on structural descriptions. Afterwards, we
classified these hits as being true or false manually, and finally we calculated
predictive information for the hits. We trained a decision tree based on classified



Comparing and evaluating design pattern miner tools 169

values and on the predictive information, from which we were able to mine true
design pattern hits more accurately. With the presented benchmark it will be
faster and easier to classify the results of a pattern miner tool.

Recently, we presented a comparison of three pattern miner tools [6]: Colum-
bus [5], Maisa [14] and CrocoPat [2]. We compared them regarding patterns
hits, speed and memory consumption. We gave the same common input to the
tools created by the source code analyzer front end and the exporter plug-ins of
the Columbus framework. We concluded that CrocoPat was the fastest, Maisa
required the least memory, while Columbus was an all-in-one solution for pattern
detection from C++ source code with comparable performance to the other two
specialized tools. In this work we did not examine the accuracy of the found
design pattern instances. We have continued this work by developing the bench-
mark and performing experiments on it.

Petterson et al. [15] summarized occurring problems during the evaluation of
accuracy in pattern detection. The goal was to make accuracy measurements
more comparable. Six major problems were revealed: design patterns and vari-
ants, pattern instance type, exact and partial match, system size, precision and
recall, and control set. A control set was “the set of correct pattern instances
for a program system and design pattern.” The determination of the control
sets was very difficult, therefore solutions from natural language parsers were
considered. One good solution was the tree banks. Tree banks could be adapted
by establishing a large, manually validated pattern instances database. Another
adaptable solution was the idea of pooling process: “The idea is that every sys-
tem participating in the evaluation contributes a list of n top ranked documents,
and that all documents appearing on one of these lists are submitted to manual
relevance judgement.” The process of constructing control sets had two main
problems. First, they were not complete in most software systems. Second, on a
real scale software system a single group was not able to determine a complete
control set. The authors stated that community effort is highly required to make
control sets for a set of applications.

Guéhéneuc et al. [8] introduced a comparative framework for design recovery
tools. The purpose of the authors’ framework was not to rank the tools (Ptidej
and LiCoR) but to compare them on the basis of their qualitative aspects. This
framework contained eight aspects: context, intent, users, input, technique, out-
put, implementation and tool. There is a major need for this framework since
the comparison between design recovery tools is very difficult due to the fact
that they have very different characteristics in terms of representation, output
format and implementation techniques. This framework provides an opportunity
for comparing not only similar systems, but also systems which are different. Our
work is different from this one because we use a benchmark and tool to evaluate
design pattern instances and to compare design pattern miner tools based on
their results.



170 L.J. Fülöp, Á. Ilia, Á.Z. Végh, P. Hegedűs and R. Ferenc

3. Benchmark

We use the well-known issue and bug tracking system called Trac [17] (version
0.9.6) as the basis of the benchmark. Trac is written in Python and it is an easily
extendible and customizable plug-in oriented system. The aim of Trac is to give
an easy and efficient way for tracking bugs and issues. Issue tracking is based on
tickets, where a ticket stores all information about an issue or a bug. A ticket is
identified by a unique number.

Although the Trac system provides many useful services, we had to do a lot
of customization and extension work to create a benchmark from it. The two
major extensions were the customization of the graphical user interface and the
customization of the system’s tickets. In the case of the tickets we had to ex-
tend them to be able to describe design pattern instances (name of the pattern,
information about its participants, information about its evaluation, etc). In
the case of the graphical user interface we had to inherit and implement some
core classes of the Trac system. For now, we give only a short overview of the
benchmark’s functionalities, the customized graphical interface will be presented
in detail during the evaluation and comparison of Columbus and Maisa in Sec-
tion 5. A detailed description of the usage of the user interface can be found in
the wiki pages of the benchmark (http://www.inf.u-szeged.hu/designpatterns/ ).

The benchmark contains three main menu points: evaluation, upload and
register. From the evaluation menu point three important views can be accessed.
These are the statistics view, comparison view and the instance view. In the
instance view the pattern instances can be categorized by two aspects, correctness
and completeness. Completeness means how complete the evaluated pattern
instance is in a structural sense. More precisely, it means how many pattern
participants can be found in the instance. Correctness means how correct the
evaluated pattern instance is in a behavioural sense. More precisely, it means to
what degree the pattern instance matches the original intent of the design pattern.
Registration is required to evaluate pattern instances. From the upload menu
point the new language functionality, the new software functionality, the new
tool functionality and the new instances functionality can be accessed. Instances
recovered by people can be uploaded as well, in this case the name of the tool is
“Human”.

The benchmark calculates two well-known and important accuracy measure-
ments: precision and recall. Explaining the meaning of precision and recall
requires the following definitions.

• True Positives (TP ): true instances found by the tool (correctly).

• False Positives (FP ): false instances found by the tool (incorrectly).

• False Negatives (FN): true instances not found by the tool (incorrectly).



Comparing and evaluating design pattern miner tools 171

The precision value is defined as TP
TP+FP , which means the ratio of correctly

identified instances with respect to all found instances. The recall value is defined
as TP

TP+FN , which means the ratio of correctly identified instances with respect
to all existing real instances.

The benchmark contains 1,274 design pattern instances from three C++ soft-
ware systems (Mozilla [12], NotePad++ [13] and FormulaManager [16]), three
Java software systems (JHotDraw [9], JRefactory [10] and JUnit [11]) and C++
reference implementations of design patterns. The uploaded design pattern in-
stances are recovered by three design pattern miner tools: Columbus (C++),
Maisa (C++) and Design Pattern Detection Tool (Java) [18], [3]. In this paper
Columbus and Maisa are evaluated and compared by using the benchmark.

Siblings and fundamental participants. Several design patterns are struc-
tured in a way which allows e.g. multiple concrete implementations of an abstract
class. Some tools are able to recognize this situation, but others report multiple
pattern instance hits in these cases (one for each concrete implementation). The
benchmark is able to subsequently assign these instances, which are referred to
as siblings, to each other.

The determination of siblings is based on the fundamental participants of
design patterns. A fundamental participant occurs only once in a design pat-
tern instance. For example, in the case of the State pattern the fundamental
participant is the State class, while Context and ConcreteState classes can be
repeated.

4. Evaluated Tools

4.1. Maisa

Maisa is a software tool [14] for the analysis of software architectures devel-
oped in a research project at the University of Helsinki. The key idea in Maisa
is to analyze design level UML diagrams and compute architectural metrics for
early quality prediction of a software system. In addition to calculating tradi-
tional (object-oriented) software metrics such as the Number of Public Methods,
Maisa looks for instances of design patterns (either generic ones such as the well-
known GoF patterns or user-defined special ones) in UML diagrams representing
the software architecture.

UML diagrams are represented with a description language very similar to
Prolog. The description language is used to represent the source code and design
patterns as well. Thus, Maisa can match design patterns by using the description
language.



172 L.J. Fülöp, Á. Ilia, Á.Z. Végh, P. Hegedűs and R. Ferenc

4.2. Columbus

Columbus is a reverse engineering framework, which has been developed in co-
operation between FrontEndART Ltd., the University of Szeged and the Software
Technology Laboratory of Nokia Research Center. Columbus is able to analyze
large C/C++ projects and to extract facts from them. The main motivation to
develop the Columbus system has been to create a general framework to com-
bine a number of reverse engineering tasks and to provide a common interface
for them. Thus, Columbus is a framework tool which supports project handling,
data extraction, data representation, data storage, filtering and visualization.
All these basic tasks of the reverse engineering process for the specific needs are
accomplished by using the appropriate modules (plug-ins) of the system. Some
of these plug-ins are provided as basic parts of Columbus, while the system can
be extended to meet other reverse engineering requirements as well. This way
we have got a versatile and easily extendible tool for reverse engineering.

In this work Columbus provides the common framework. Figure 1 shows

Figure 1. Framework for design pattern mining



Comparing and evaluating design pattern miner tools 173

the specialization of the framework for design pattern mining. First Columbus
analyzes the source code and builds an ASG. The CAN2Maisa component of
Columbus creates a UML class diagram from the ASG and saves this information
in the required format for Maisa. After that, Maisa discovers pattern instances
from this file. The CAN2Dpm component of Columbus mines pattern instances
directly from the ASG. The design patterns are described in DPML (Design
Pattern Markup Language) files, which store information about the structures
of the design patterns. CAN2Dpm tries to match this graph to the ASG using
our algorithm described in previous work [1]. Finally, the results of the tools are
uploaded into the benchmark after they are converted to the required CSV file
format presented in the following.

Upload file format. The format of the CSV file containing the design pattern
instances must be the following (see Figure 2). Each pattern instance consists of
several lines closed by an empty line. The first line of every instance is always the
name of the pattern, without any white space characters. If the name consists
of several words, then they have to be concatenated and every new word should
start with an upper case letter. The subsequent lines represent the participants
of the instance. These lines contain values separated by commas. The first value
contains the role and the original name of the pattern participant. The role can be
class, operation and attribute. If the participant is fundamental (see Section 3),
then a star has to be given before the role in the first value. The second value
contains the real name of the participant in the source code. Finally, the third
value contains the relative path of the participant in the source code together
with starting and ending line information separated by colons.

TemplateMethod
∗class AbstractClass,MyAbstractClass,TemplateMethod.h:1:6
operation TemplateMethod,MyTemplateMethod,TemplateMethod.cpp:3:15
operation PrimitiveOperation,MyPrimitiveOperation1,TemplateMethod.h:4:4
class ConcreteClass,MyConcreteClass,TemplateMethod.h:8:12
operation PrimitiveOperation,MyPrimitiveOperation1,TemplateMethod.h:9:9

Figure 2. Example CSV file

The uploaded pattern instances are checked if they already exist in the database.
If a known pattern instance is found again by the new tool and the two instances
are exactly the same, then the tool entry of the instance is extended by the name
of the new tool and no new instance will be created in the database. If only the
fundamental participants(see Section 3) are the same, then a new instance will
be created and the instances will be connected as siblings.



174 L.J. Fülöp, Á. Ilia, Á.Z. Végh, P. Hegedűs and R. Ferenc

5. Evaluation of Columbus and Maisa

In this section Columbus and Maisa are evaluated and compared by using
the benchmark. The tools are evaluated on C++ reference implementations
of design patterns, on NotePad++, and on a software called FormulaManager
implemented by us to have a test case where the usage of design patterns is
well defined and documented. The reference implementations test the structural
matching ability of the tools while in case of NotePad++ and FormulaManager
the tools are examined in a real context where other factors are also considered,
e.g. the aim of the pattern.

Reference implementations. To compare different tools, reference implemen-
tations of design patterns based on work of Gamma et al. [7] were created. With
these reference implementations the basic capabilities of C++ pattern miner tools
can be evaluated and compared.

Design pattern mining strongly depends on analyzing the source code. There-
fore, the source files in the reference implementations do not contain any difficult
programming structures like templates and they do not include any standard
headers to avoid parsing problems. Furthermore, a common framework is pro-
vided by Columbus as we presented it in Section 4, so the inputs of the tools are
the same.

Let us take a concrete reference implementation, the Adapter Object. First
we give a short description of this pattern. The aim of the Adapter pattern
is to “convert the interface of a class into another interface that clients expect.
Adapter lets classes work together that could not otherwise because of incom-
patible interfaces” [7]. The Adapter pattern has four participants (see Figure 3).
First, the Target class defines the domain-specific interface that the Client uses.
Client in turn represents the class collaborating with objects that conform to
the Target interface. Next, the Adaptee class describes an existing interface that
needs adapting, and finally Adapter is the class that adapts the interface of

Figure 3. The Adapter Object design pattern



Comparing and evaluating design pattern miner tools 175

Adaptee to the Target interface. To adapt one interface to another the Adapter
Object pattern uses composition. The reference implementation of Adapter Ob-
ject is shown in Figure 4. In reference implementations every participant class
starts with the “Example ” prefix, similarly attributes start with the “example ”
prefix.

class Example_Target {
public:

virtual void function() = 0;
};

class Example_Adaptee {
public:

virtual void other_function();
};

class Example_AdapterObject : public Example_Target {
public:

virtual void function();
private:

Example_Adaptee* m_adaptee;
};

void Example_Adaptee::other_function() { }

void Example_AdapterObject::function() {
m_adaptee->other_function();

}

Figure 4. Reference implementation of Adapter Object

NotePad++ is a free source code editor which supports several programming
languages, running in Microsoft Windows environments. It is based on the Scin-
tilla edit component (a very powerful editor component), written in C++ with
pure win32 API and STL. Calculated by the metric component of Columbus,
NotePad++ contains 95 classes, 1,371 methods, 776 attributes and 27,033 useful
lines of code.

When evaluating design pattern miner tools on real software systems, it is
necessary to consider not only instances mined by the tools but instances rec-
ognized by programmers, too. If instances mined by programmers are skipped
from an evaluation then the recall of the tools cannot be calculated. Therefore
instances from NotePad++ recovered by programmers were also added to the
benchmark and were considered during the evaluation of Columbus and Maisa.

FormulaManager. Since the reference implementations contain disjoint imple-
mentations of the design patterns in an unreal context, we developed a software
called FormulaManager where every design pattern occurs in a real context at
least once. The aim of FormulaManager is to manage formulas. Some func-
tionalities are: executing operations on formulas (evaluation, prefix form, postfix
form), exporting the results to different kinds of representations (HTML, XML,



176 L.J. Fülöp, Á. Ilia, Á.Z. Végh, P. Hegedűs and R. Ferenc

CSV), displaying the results in different views (list, table), handling different
numbering systems, validating a formula, etc.

Table 1 presents the results of the tools, where the upper part shows the
number of instances found. In the lower part of the Table a summary is shown
as well, where precision, recall, correctness mean and completeness mean are
provided by the benchmark’s statistics view (see Figure 5). A dash in Table 1
represents that the tool does not search for the given pattern instance.

Figure 5. Columbus statistics on NotePad++

The statistics view contains two tables, one for correctness and one for com-
pleteness, respectively. Every line in the upper part of the tables means a statis-
tic for one particular pattern instance. A pattern instance can be evaluated by
numerous people, therefore mean, deviation, minimum, maximum and median
values can be calculated for the instance. The lower part of the tables contains
the same kind of basic statistics but they are calculated from the statistics of the
instances (shown in the upper part of the tables).

The benchmark can be customized to consider sibling relations or not when
making statistics. The default option is to handle sibling instances as only one
common instance. For example in the case of Reference Implementations Colum-
bus discovers two Abstract Factory instances, while Human discovers only one.
Difference is caused because Human discovers sibling instances as one pattern
instance, while Columbus discovers them as two instances.



Comparing and evaluating design pattern miner tools 177

S
o
ft
w
a
re

R
e
fe
re
n
c
e
Im

p
le
m
e
n
ta

ti
o
n
s

N
o
te
P
a
d
+
+

F
o
rm

u
la
M

a
n
a
g
e
r

T
o
o
l

C
o
lu
m
b
u
s

M
a
is
a

H
u
m
a
n

C
o
lu
m
b
u
s

M
a
is
a

H
u
m
a
n

C
o
lu
m
b
u
s

M
a
is
a

H
u
m
a
n

A
b
st
ra

c
t
F
a
c
to

ry
2

2
1

0
0

0
4

0
2

A
d
a
p
te
r
C
la
ss

1
1

1
0

4
0

2
1

1
A
d
a
p
te
r
O
b
je
c
t

1
1

1
9

4
0

4
0

1
B
ri
d
g
e

1
-

1
0

-
0

6
-

2
B
u
il
d
e
r

1
1

1
0

1
0

1
0

1
C
h
a
in

O
f
R
e
sp

.
0

-
1

0
-

0
1

-
1

C
o
m
m
a
n
d

-
-

1
-

-
0

-
-

1
C
o
m
p
o
si
te

-
-

1
-

-
1

-
-

1
D
e
c
o
ra

to
r

1
-

1
0

-
0

1
-

1
F
a
c
a
d
e

-
-

1
-

-
0

-
-

1
F
a
c
to

ry
M

e
th

o
d

1
0

1
0

0
0

2
3

4
F
ly
w
e
ig
h
t

-
0

1
-

0
0

-
1

1
In

te
rp

re
te
r

-
-

1
-

-
1

-
-

1
It
e
ra

to
r

1
0

1
0

0
1

1
0

1
M

e
d
ia
to

r
-

0
1

-
0

0
-

0
1

M
e
m
e
n
to

-
1

1
-

0
0

-
0

1
O
b
se
rv

e
r

-
0

1
-

0
1

-
0

1
P
ro

to
ty

p
e

1
1

1
0

6
1

3
2

2
P
ro
x
y

1
1

1
0

1
1

1
2

0
1

S
in
g
le
to

n
0

0
1

0
0

2
3

0
3

S
ta

te
1

-
1

1
-

0
9

-
1

S
tr
a
te
g
y

1
-

1
0

-
0

2
-

2
T
e
m
p
la
te

M
e
th

o
d

1
-

1
3

-
1

1
-

1
V
is
it
o
r

1
4

1
0

0
0

2
3

1
P
r
e
c
is
io

n
1
0
0
%

8
0
.0
0
%

1
0
0
%

6
2
.5
0
%

1
6
.6
7
%

9
0
.9
1
%

5
2
.2
7
%

8
0
%

1
0
0
%

R
e
c
a
ll

5
8
.3
3
%

3
3
.3
3
%

1
0
0
%

2
9
.4
1
%

1
1
.7
6
%

5
8
.8
2
%

7
1
.8
8
%

2
5
%

1
0
0
%

C
o
rr
e
c
tn

e
ss

m
e
a
n

1
0
0
%

8
0
.0
0
%

1
0
0
%

6
9
.4
2
%

2
0
.6
3
%

7
7
.0
5
%

5
5
.2
3
%

8
5
.9
5
%

1
0
0
%

C
o
m
p
le
te
n
e
ss

m
e
a
n

9
6
.4
3
%

8
5
.0
0
%

1
0
0
%

1
0
0
%

9
2
.3
6
%

9
0
.9
1
%

8
5
.9
8
%

4
8
.0
2
%

1
0
0
%

T
a
bl
e
1.

N
u
m
b
er

of
fo
u
n
d
d
es
ig
n
p
at
te
rn

in
st
an

ce
s
w
it
h
co
n
si
d
er
in
g
si
b
li
n
g
re
la
ti
o
n
s



178 L.J. Fülöp, Á. Ilia, Á.Z. Végh, P. Hegedűs and R. Ferenc

5.1. Reference implementations

In this section we summarize our experiments on evaluating the tools on
reference implementations. The number of pattern instances found by the tools
in reference implementations are listed in Table 1. Pattern instances found by
programmers (column called Human) in the reference implementations are real
true pattern instances.

Some design patterns are more difficult to discover than others. This is due
to their unclear structure even if the aim of such a design pattern is obvious. The
purpose of the unclear specification is to allow flexible implementations of the
design pattern. For example, in case of Mediator, only an abstract incomplete
structural specification is given, e.g. no methods are specified in the participant
classes. Most of the tools consider only structural information of the patterns,
therefore they encounter problems in this case. A promising solution is presented
by Wendehals [19] to improve design pattern discovering by using dynamic infor-
mation.

Because the two evaluated tools use only structural information, they do not
discover most of the patterns with unclear specification, e.g. Command, Facade
and Interpreter as it can be seen in Table 1. Although Maisa tries to discover
some patterns that have unclear specification like Mediator, Memento, Observer
and Flyweight, it works only in case of Memento (instance #1152). Because
Maisa misses these patterns its recall value is only 33.33%.

If more than one pattern instance was discovered in the reference implemen-
tations for a given pattern than either false positives were found or the pattern
instance was recognized several times. For example Maisa discovers four Visitor
pattern instances. We examined these instances in the benchmark and realized
that two of them were false positives, while the other two instances were actually
the same instance with common abstract but with different concrete participants.
The two true instances are connected as siblings (see Section 3) to each other
and to the single pattern instance found by Columbus and Human. This way
these instances appear as one common instance in the benchmark.

Figure 6 shows the instance view of one of the two false Visitor instances
mined by Maisa (instance #1169). First, let us see what can be found on the
instance view. The participants of the actual pattern instance are shown in the
top left corner with their concrete name in the source code. When the user clicks
on a participant’s name, the source code is shown with the pattern instance
highlighted in the right hand side of the view. The two categorization queries,
correctness and completeness (see Section 3), are located below the participants.
The categorization can be applied to the siblings of the pattern instance as well
(if there are any) by selecting the corresponding checkboxes. The source of
Example ConcreteElement2 class is loaded into the right hand side of the view
because it was selected previously from the participants. It is a false instance



Comparing and evaluating design pattern miner tools 179

Figure 6. Visitor instance mined by Maisa from reference implementations

because Example ConcreteElement2 acts as a class Element participant as it can
be seen in the area of the participants (see Figure 6). Maisa discovers another
false instance with the same problem (#1171).

In case of Abstract Factory both Maisa and Columbus discover two pattern
instances. These pattern instances are true, the only problem is that neither
tool can group concrete elements of the Abstract Factory pattern, therefore they
discover the same pattern instance twice with different concrete participants. It
causes the mean of Columbus’ completeness to be 96.43%. Maisa encounters a
similar problem in case of the Visitor pattern, therefore its mean of completeness
is 85%.

Comparison. The instances found by Columbus, Maisa and humans are com-
pared by the comparison view functionality of the benchmark (see Figure 7). The
comparison lists pattern instance numbers in different views. By clicking on the
numbers the concrete design pattern instance can be examined in the instance
view.



180 L.J. Fülöp, Á. Ilia, Á.Z. Végh, P. Hegedűs and R. Ferenc

Figure 7. Comparison of instances in reference implementations

Let us see the first table in Figure 7 as an example. This table shows the
comparison of Maisa and Columbus. The difference of Maisa and Columbus
(row A-B) contains three pattern instances. The previously mentioned false
positive Visitor instances (#1169 and #1171) are found by Maisa only, therefore
these appear in the difference. The other difference is a true pattern instance of
Memento (#1152), that is found by Maisa and not found by Columbus. Because
Columbus finds several design patterns that Maisa does not a lot of instances
appear in the difference of Columbus and Maisa (row B-A). But the tools find
some patterns in common with the same results that appear in the intersection
(row A&B).



Comparing and evaluating design pattern miner tools 181

A correctness threshold can be set to determine which is a true and which is
a false pattern instance based on human evaluation. The threshold can be set in
the upper part of the comparison view (see Figure 7). After a threshold is set only
the instances with higher mean of correctness are considered in the comparison.
For example if the threshold is set to 50% in the previous comparison, the two
false positive Visitor pattern instances mined by Maisa will not appear.

The comparison view contains two further tables containing the comparison
of Maisa and Columbus with the results of human inspection of the code, respec-
tively. The instances found by careful human inspection represent the desirable
results of a tool. Therefore, the difference between e.g. Human and Columbus
represents the false negatives for Columbus. This value is used for calculating
the recall values.

5.2. NotePad++

After examining the tools on the reference implementations we performed
another test, but this time on a real project, NotePad++. The results of the
tools can be seen in the middle three columns of Table 1 which will be explained
in the following.

Columbus found only a few types of patterns (Adapter Object, State and
Template Method), however with better precision than the ones (Adapter Class,
Adapter Object, Builder, Prototype and Proxy) found by Maisa. It can also be
noticed that software developers tend to find those pattern instances, which are
difficult to find by pattern miner tools because of their unclear specifications.
Therefore, we assume that instances found by humans are a good amendment of
automatic tools even if software developers will probably not find all the pattern
instances in a particular project. To prove this assumption we want to analyze
further software systems manually in the future.

In Table 1 it can be noticed that the precision of Human on NotePad++ is not
100%. It is due to the fact that the result of Human in the benchmark consists of
several people which may disagree whether a pattern instance fulfills the original
intent of the design pattern. This is one of the great benefits of the benchmark
that it lets people vote whether the uploaded pattern instances are real patterns
or not. Even though human analysis resulted in the highest recall (58.82%) it is
still far from 100% which indicates that the current amount of human analysis
work put into the benchmark is not enough to find all the pattern instances in
larger projects.

In Figure 5 the correctness and completeness tables show that even struc-
turally completely correct pattern instances are sometimes voted to be false in-
stances (their structure is adequate, but it is only a coincidence). Again it is
due to the fact that evaluated tools rely solely on the structure of the pattern.



182 L.J. Fülöp, Á. Ilia, Á.Z. Végh, P. Hegedűs and R. Ferenc

At the bottom of Figure 5 the precision (62.5%) and recall (31.25%) values are
also shown. Although Maisa found more types of pattern than Columbus, its
precision (16.67%) and recall (11.76%) are lower than those of Columbus. It can
also be seen on Figure 5 that the average deviation of correctness is relatively
high (11.18%) which can be explained by the fact that certain pattern types are
described better by their structure while others need behavioral analysis to be
discovered. Similar statistics can be queried for the other tools on NotePad++
and on reference implementations as well. The collected results in Table 1 are
based on these statistics views.

5.3. FormulaManager

In this section, we summarize our experiments on evaluating the tools on For-
mulaManager. We note that FormulaManager differs from the simple reference
implementations because the design patterns are used in a real context and they
are connected to each other. The numbers of the pattern instances found by the
tools in FormulaManager are listed in the last three columns of Table 1.

Let us examine and compare the tools, Columbus and Maisa, on Formula-
Manager. It is clear that Maisa has a good precision (80%) but its recall is poor
(25%). The poor recall is due to the fact that Maisa misses the instances of
several design patterns (e.g. Builder, Mediator, Proxy) and it does not try to
discover every kind of pattern (e.g. Command, Decorator). On the contrary,
Columbus has a fair recall (71.88%) and precision (52.27%). Columbus discovers
several false positives in the case of State, Bridge and Adapter Object, which
results in its lower precision compared to Maisa. In case of the other patterns
Columbus has good precisions.

6. Conclusion

In this paper we presented experiments performed on a newly developed
benchmark for evaluating and comparing design pattern miner tools. The bench-
mark is general considering the mined software systems, programming languages,
uploaded design pattern instances and design pattern miner tools.

With the help of the benchmark the accuracy of two design pattern miner
tools (Columbus and Maisa) were evaluated on reference implementations of de-
sign patterns and on two software systems, NotePad++ and FormulaManager.
In this work design pattern instances used in NotePad++ are discovered also
manually, so both precision and recall values could be calculated by the bench-
mark. Furthermore, we developed a software system called FormulaManager to



Comparing and evaluating design pattern miner tools 183

test the tools on a software where every design pattern is implemented in a real
context.

Sometimes false instances were found by the tools because they are examining
only the structure of the code while programmers also take the code’s behavior
into consideration. That is why instances mined by humans can be used to
provide an important extension to results of the tools. In the future we want to
involve other research groups to discover large software systems by hand, such
as Mozilla and Eclipse.

With the help of the benchmark it is possible to evaluate design pattern miner
tools which will hopefully lead to better quality tools in the future. The bench-
mark can be freely accessed from the home page of the Institute of Informatics
at the University of Szeged:

http://www.inf.u-szeged.hu/designpatterns/

References

[1] Balanyi Zs. and Ferenc R., Mining design patterns from C++ source
code, Proceedings of the 19th International Conference on Software Mainte-
nance (ICSM 2003), IEEE Computer Society, 2003, 305–314.

[2] Beyer D. and Lewerentz C., CrocoPat: Efficient pattern analysis in
object-oriented programs, Proceedings of the 11th IEEE International Work-
shop on Program Comprehension (IWPC 2003), IEEE Computer Society,
2003, 294–295.

[3] The Design Pattern Detection tool Homepage,
http://java.uom.gr/∼nikos/pattern-detection.html.

[4] Ferenc R., Beszédes Á, Fülöp L. and Lele J., Design pattern mining
enhanced by machine learning, Proceedings of the 21th International Con-
ference on Software Maintenance (ICSM 2005), IEEE Computer Society,
2005, 295–304.

[5] Ferenc R., Beszédes Á., Tarkiainen M. and Gyimóthy T., Columbus
– Reverse engineering tool and schema for C++, Proceedings of the 18th In-
ternational Conference on Software Maintenance (ICSM 2002), IEEE Com-
puter Society, 2002, 172–181.

[6] Fülöp L., Gyovai T., and Ferenc R., Evaluating C++ design pattern
miner tools, Proceedings of the 6th International Workshop on Source Code



184 L.J. Fülöp, Á. Ilia, Á.Z. Végh, P. Hegedűs and R. Ferenc

Analysis and Manipulation (SCAM 2006), IEEE Computer Society, 2006,
127–136.

[7] Gamma E., Helm R., Johnson R. and Vlissides J., Design Patterns:
Elements of reusable object-oriented software, Addison-Wesley Publ. Co.,
1995.

[8] Guéhéneuc Y.-G., Mens K. and Wuyts R., A comparative framework
for design recovery tools, Proceedings of the 10th Conference on Software
Maintenance and Reengineering(CSMR’06), IEEE Computer Society, 2006,
123–134.

[9] The JHotDraw Homepage, http:/www.jhotdraw.org.

[10] The JRefactory Homepage, http:/jrefactory.sourceforge.net/.

[11] The JUnit Homepage, http:/www.junit.org.

[12] The Mozilla Homepage, http://www.mozilla.org.

[13] The NotePad++ Homepage, http://notepad-plus.sourceforge.net/.

[14] Paakki J., Karhinen A., Gustafsson J., Nenonen L. and Verkamo
A.I., Software metrics by architectural pattern mining, Proceedings of the
International Conference on Software: Theory and Practice (16th IFIP
World Computer Congress), 2000, 325–332.

[15] Pettersson N., Löwe W. and Nivre J., On evaluation of accuracy in
pattern detection, First International Workshop on Design Pattern Detec-
tion for Reverse Engineering (DPD4RE’06), 2006.

[16] The source code of FormulaManager,
http://www.sed.hu/src/FormulaManager/.

[17] The Trac Homepage, http://trac.edgewall.org/.

[18] Tsantalis N., Chatzigeorgiou A., Stephanides G. and Halkidis S.T.,
Design pattern detection using similarity scoring, IEEE Transactions on
Software Engineering, 32 (2006), 896–909.

[19] Wendehals L., Improving design pattern instance recognition by dynamic
analysis, Proceedings of the ICSE 2003 Workshop on Dynamic Analysis
(WODA), Portland, USA, May 2003, 29-32.

L.J. Fülöp, Á. Ilia, Á.Z. Végh, P. Hegedűs and R. Ferenc

Department of Software Engineering

University of Szeged

Árpad tér 2.

H-6720 Szeged, Hungary

{flajos, ferenc}@inf.u-szeged.hu
ilia.arpad@stud.u-szeged.hu

{vegh.adam.zoltan, hegedus.peter.3}@stud.u-szeged.hu




