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A TOOL FOR FORMALLY SPECIFYING THE C++
STANDARD TEMPLATE LIBRARY1

G. Dévai and N. Pataki
(Budapest, Hungary)

Abstract. In this paper we present ongoing research on formal speci�-
cation of the C++ Standard Template Library. Our goal is to embed the
STL datatypes and their operations into a system that is used to produce
formally veri�ed code.
From the point of view of the C++ programmers such a tool is a great
help when one writes safety critical applications. On the other hand, in-
tegration of well-known libraries makes formal methods more useful and
more attractive.
We use the vector datatype in the examples and present two models to
describe the properties of its instructions. The �rst one is on higher ab-
straction level and provides a simpler interface, but it is too restrictive.
The second one is based on pointer semantics and avoids the limitations
of the �rst model.

1. Introduction

1.1. The C++ Standard Template Library

The C++ Standard Template Library (STL) [24, 15, 4] is the most popular
library based on the generic programming paradigm. STL is widely-used, because
the library is part of the C++ Standard. It consists of many useful generic data

1This work is supported by �Stiftung Aktion Österreich-Ungarn (OMAA-ÖAU 66öu2)� and
�ELTE IKKK (GVOP-3.2.2-2004-07-0005/3.0)�.
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structures and generic algorithms that work together with containers. STL is
based on generalization and this causes a simpli�ed interface.

C++ STL consists of three main parts: containers, iterators and algorithms.
Containers (e.g. vector, list, map, set, etc.) hold elements. Containers are the
generalization of arrays. Iterators guarantee access for the elements in containers
and they are nested types of them. Iterators are generalization of pointers, their
standard interface originates from pointer arithmetic. Algorithms are fairly irre-
spective of the used container, because they work with iterators. For instance, we
can use the for_each() algorithm with all containers. As a result of this layout
the complexity of the library is greatly reduced and we can extend the library
with new containers and algorithms simultaneously. This is a very important
feature because object-oriented libraries do not support this kind of extension.
The C++ standard gives complexity guarantees for each operation.

1.2. Formal speci�cation of STL

STL helps programmers to produce safer and more readable code because it
provides a more abstract level of programming compared to lower level datatypes
and algorithms. However, the library does not exclude all kinds of programming
errors. For example it can not prevent indexing out of a vector, it only makes it
a little bit safer: when using lower level datatypes like an array, we have the []
operator only, which usually leads to a segmentation fault (or junk data) if we use
an out of bound index. In contrast, STL has introduced the at() function which
throws an exception in case of an invalid index. (On the other hand, STL also
provides [] to have the possibility avoiding the overhead of the runtime check.)

It is also a problem that the library is de�ned by informal speci�cation. It
may lead to misunderstood in some special cases and it does not help when one
needs to formally prove the correctness of a safety-critical application.

Our goal is to integrate the C++ STL into a formal system to produce C++
programs that use the STL and are proved correct. This way we can avoid the
errors that the usage of the library alone cannot prevent. We can also ensure that
the produced code conforms to the formal speci�cation given in the beginning of
the development process.

Integration of useful libraries such as the STL is also quite important from
the point of view of formal methods. In industrial software development only
those systems and languages are able to gather ground, which support the work
of the programmer by a wide scale of useful libraries arriving with the system.
By our integration the user of the formal system is not forced any more to work
out common datatypes and algorithms from scratch, but has the possibility to
use those of the STL.

In order to achieve our goals, we had to de�ne new types, functions and
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predicates in the selected formal system. These types and functions were then
used to state temporal axioms of certain operations of the STL, like adding an
element to a vector or positioning an iterator. During this work we made use of
the higher level of abstraction provided by the STL, because the more abstract
the entity to specify, the easier its formal speci�cation.

But these formal speci�cations of the operations are not enough. It often hap-
pens that the postcondition of one operation establishes a statement describing
a container, but the precondition of the next statement requires it in a di�erent
form. To make the life of user easier, we have written tactics that perform these
conversions automatically.

1.3. The LaCert system

LaCert [8, 1] is a formal system to produce program code that is proved cor-
rect. While testing may not �nd all the errors in a program, formal methods only
accept programs that behaves exactly as the (formal) speci�cation prescribes.

There are lots of formal methods with this same goal. In veri�cation we
have tools to prove the soundness of a program when it has been written. The
usual setup consists of a semi-automatic theorem prover [6, 12, 7, 19, 25] and
a tool to transform the program into its representation in the prover. There
are also some projects that try to make the veri�cation fully automatic [27, 3, 5].
However, these approaches have some drawbacks. Most of the time, programs are
wrong and the errors are discovered too late in the development process, namely
when we �nd them during the construction of the proof. Another problem is,
that programming languages nowadays are quite complex. Supporting all the
language elements would make the tools enormously complex, that is why only
subsets of the languages are usually supported by these projects.

The other approach (that we claim to have more potential) is re�nement
[2, 14, 16]. In this case the development starts by writing the formal speci�cation
and then re�ning it until we reach the implementation. This way, design and
programming errors are discovered earlier and the resulting implementation is
correct by construction.

In some re�nement based systems (like in the B-method [2], for example) one
writes program code (commands, loops, etc.) in the last steps of the re�nement.
In our system the re�nements always result in (more detailed) speci�cations, and
when these are detailed enough, the program code is generated automatically
from them. In this way the system never has to deal with unsupported language
constructs.

LaCert helps the construction of re�nements by metaprogramming techniques.
When we reason about programs, there are often used proof fragments, like the
proof of a while loop, conditional branch or procedure call, etc. In LaCert we
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can include these common fragments in meta-proofs (called templates). These
templates can be called with arguments to produce the proof for a concrete pro-
gram fragment. Metaprogramming facilities of this system also helped us to
deal with the speci�cation of STL components, as these are based on template
metaprogramming capabilities of C++.

1.4. Results presented in this paper

In this paper we examine possibilities to specify the instructions of STL con-
tainers and their iterators in a formal way. We use the LaCert system in our
research, but the questions to be solved and our answers given to them are gen-
eral and can be applied independently of the selected environment.

The main problem that we had to solve is the correct representation of the
knowledge that an iterator points to an element in a certain container. In some
cases, this knowledge must hold also after the modi�cation of the container (for
example if we alter an other element), while other instructions may completely
invalidate iterators pointing into that container.

Our solution uses two models: one to describe the contents of a container only
and an other one to represent iterators. The 'dangerous' instructions (that may
invalidate iterators) should be speci�ed in the �rst model while other instructions
in the second one. We also give the necessary axioms to connect the two models.

By this integration of pieces of C++ STL into a formal system we are able to
generate STL-based code with formally proved properties. We believe that in the
long run it will be possible to develop small pieces of large C++ projects (safety-
critical core methods for example) using our method. The results presented in
this paper are the �rst steps towards this goal. At the end of the paper we
evaluate our experience with the implementation of the models and point out
the next steps to be done.

1.5. Layout of the paper

In Section 2 we present a functional style framework used to describe states
of the containers. In Section 3 we present our �rst approach to specify vector
(3.1, 3.2) and iterator (3.3) operations. After pointing out the limitations of this
solution, we present an improvement in Section 4. We examine related work in
Section 6.
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2. Framework

In order to represent the contents of di�erent containers (like vectors, lists,
etc.) in the speci�cations and proofs, we introduce a polymorphic sequence type.
We use a functional programming style, as it often happens in the meta- and
generative programming paradigms.

We declare the nil() function to produce an empty sequence, the .+ and the
+. operators to add a new element to the beginning or to the end of the sequence.
We show the LaCert style declarations of these elements:

type( Seq, 1 );
function( ''nil'', Seq(#T) );
function( ''.+'', Seq(#T), #T, Seq(#T) );
function( ''+.'', Seq(#T), Seq(#T), #T );

The type declaration introduces the type Seq with one type parameter (the
type of the elements in the sequence). This type parameter is #T in the function
declarations. In a function declaration, the name of the function is followed by
the return type and after that the types of the parameters follow.

The expression representing the sequence of characters a, b and c is then the
following:

'a' .+ ( 'b' .+ ( 'c' .+ nil() ) )

As the operator .+ is de�ned to be right associative, we can omit the parenthesis:

'a' .+ 'b' .+ 'c' .+ nil()

When we specify operations of STL containers, the following predicate will
help us a lot:

function( ''split'', Boolean, Seq(#T), Seq(#T), Seq(#T) );

That is, this predicate takes three sequences as arguments and returns a boolean
value. Informally speaking, the expression split(a, b, c) states that a is the con-
catenation of b and c. We express this property by the following two axioms in
LaCert.

axiom split1( Seq(#T) #seq, Seq(#T) #seqVal )
{
#seq = #seqVal => split( #seq, nil(), #seqVal );
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}

axiom split2( Seq(#T) #seq, Seq(#T) #front, Seq(#T) #tail )
{
split( #seq, #front, #elem .+ #tail )
=> split( #seq, #front +. #elem, #tail );

}

The axiom split1 has two formal parameters: #seq and #seqV al, each of type
Seq(#T ). We can call these axioms for example to prove the following:

s = 'a' .+ 'b' .+ 'c' .+ nil()
=> split( s, nil() +. 'a', 'b' .+ 'c' .+ nil() )
{
split1( s, 'a' .+ 'b' .+ 'c' .+ nil() );
split2( s, nil(), 'a' .+ 'b' .+ 'c' .+ nil() );

}

In the �rst two lines of this code you can �nd the statement to prove, and between
the curly braces there is the proof. It is instructive to replace the arguments in
the calls of split1 and split2 in the de�nition of the axioms above, and see how
does the proof work out.

This kind of reasoning will be quite necessary when we prove properties of
programs using STL datatypes, so we have created tactics to complete proofs of
this kind automatically. That is, we can simply write

s = 'a' .+ 'b' .+ 'c' .+ nil()
=> split( s, nil() +. 'a', 'b' .+ 'c' .+ nil() );

to make the system produce the proof.

3. Sequence-based model

3.1. Clearing the vector

We use sequences to describe the contents of di�erent containers, like vectors,
lists, queues, etc. For this reason we introduce the values function, that gives
the sequence of the elements of the container. If v is of type V ector(Character),
the statement
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values( v ) = nil()

states that v is empty. In LaCert we can include explicit information on the
current location of the program execution using the prede�ned variable ip (in-
struction pointer). For example, if we want to state that the program execution
is at the label L and the vector v is empty, we can write:

ip = L & values( v ) = nil()

By connecting two such statements by the G operator, we gain a temporal
progress property :

ip = K >> ip = L & values( v ) = nil()

This progress property states that whenever the program execution reaches
label K the program has to reach label L and then the vector must be empty.
To state that during this progress an other vector w preserves its only element
(the number 2), we can use a safety property before the progress property:

[ values( w ) = 2 .+ nil() ];
ip = K >> ip = L & values( v ) = nil()

If we want to express that this part of the program changes only the variables
ip and v, but nothing else, we can state that every formula not containing ip and
v is a safety property:

independent( $prop, ip ) & independent( $prop, v )
: [ $prop ];
ip = K >> ip = L & values( v ) = nil()

When the compiler of LaCert needs to decide whether a formula like values(w) =
2. + nil() is a safety property or not, it replaces the expression variable $prop by
a the formula and evaluates the condition. As the formula values(w) = 2.+nil()
is independent of ip and v, it satis�es the condition.

Now we are about to specify the clear() function for vectors. We replace the
labels K, L and the vector v by parameters:

atom clear( Vector(#T) #vect, Label #before, Label #after )
{
independent( $prop, ip ) & independent( $prop, #vect )
: [ $prop ];

ip = #before >> ip = #after & values( #vect ) = nil();
}
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Similarly to the axiom keyword that we used to write axioms in classical
logic, we use the atom keyword here to introduce temporal axioms (safety and
progress properties) of a target language instruction. If we call this atom with
the arguments v, K and L respectively, we get the properties in the example
above.

3.2. Adding and removing elements

In the following we show only the progress properties of the atoms to save
space. For example, we specify vector's push_back() operation. We take advan-
tage of our split predicate here to be able to manipulate the end of the contained
sequence easier. Let us assume that #val is the value to add to the end of the
vector and #vV al is the sequence contained by the vector. The progress property
of the atom is as follows.

ip = #before & split( values(#vect), #vVal, nil() )
>> ip = #after & split( values(#vect), #vVal, #val .+ nil() );

If we interchange the pre- and the postcondition, we get the speci�cation of the
pop_back() operation:

ip = #before & split( values(#vect), #vVal, #val .+ nil() )
>> ip = #after & split( values(#vect), #vVal, nil() );

Note, how this speci�cation prevents performing pop_back() on an empty
vector: the precondition states that there is an element (#val) at the end of the
vector. If values(#vect) = nil() holds, the precondition is unprovable.

Let us suppose that we want to re�ne the following speci�cation:

ip = L & values( v ) = 'a' .+ 'b' .+ nil()
>> ip = M & values( v ) = 'a' .+ 'b' .+ 'c' .+ nil()

It is clear, that the push_back() instruction can solve this task, but calling its
speci�cation is not enough. We also have to prove the appropriate split formula
in the precondition of the operation, and analogously, from the split formula in
the postcondition of the atom we have to prove the postcondition of the progress
property that we want to re�ne. As we have already mentioned, we have imple-
mented tactics that discharge such proof obligations automatically.

3.3. Iterators in the sequence-based model

Iterators are abstractions of indexes and pointers. We use them to access
elements of di�erent containers uniformly. To specify pointer operations, we need
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predicates that tell which element in which container does the iterator point to.
The idea is to extend split by a new parameter: the iterator. We also change

the �rst parameter a little bit: instead of the values of the vector, we write there
the vector itself. This way, we get a predicate like

split(vect, iter, front, tail),

which states, that

• if we concatenate front and tail, we get the values of the vector vect,

• and if tail is not empty, the iterator iter points to its �rst element,

• and if tail is nil(), then iter equals to the vect.end() value.

To make this clearer, let us observe the progress property of the instruction
that increments the iterator:

ip = #before
& split( #vect, #iter, #front, #elem .+ #tail )
>> ip = #after
& split( #vect, #iter, #front +. #elem, #tail );

In the postcondition, #elem is concatenated at the end of #front, so, according
to the meaning of this extended split, #iter now points to the �rst element of
#tail, which is the one following #elem. The progress property for decrementing
an iterator is similarly straightforward.

This speci�cation di�ers from the one in [21], because here we make it explicit
in which container the iterator points to. It is also di�erent from the lower level
pointer arithmetic speci�cation of [18].

Now we change one element of the vector via an iterator. If the parameter
representing the value to write is #val, the progress property of this operation
is the following.

ip = #before & split( #vect, #iter, #front, #elem .+ #tail )
>> ip = #after
& split( #vect, #iter, #front, #val .+ #tail );

Note, how the precondition prevents the programmer indexing out of the vector:
if the precondition holds, then we can be sure that #iter points to the #elem
element of the vector.
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3.4. Limitation of this model

As we will demonstrate in this section, the presented model is too restrictive:
if there are two iterators pointing to the same container and we use one to change
an element, we loose all information about the other iterator.

Let us observe the safety properties of the operation that changes an element.
As this instruction modi�es the variables ip and #vect, its safety property must
be this one:

independent( $prop, ip ) & independent( $prop, #vect )
: [ $prop ];

Now let us assume that before the execution of this instruction we have the
two iterators iter1 and iter2, and we know the following about them:

split( v, iter1, nil(), 'a' .+ 'b' .+ nil() )
split( v, iter2, nil() +. 'a', 'b' .+ nil() )

That is, iter1 points to the �rst element (a), while iter2 points to the second one
(b). If we write the character c in place of a, from the temporal axiom of this
operation we get

split( v, iter1, nil(), 'c' .+ 'b' .+ nil() ).

But what happens to our previous knowledge about iter2? The compiler of
LaCert uses the safety property of the instruction to decide whether that formula
is still valid after the execution of the operation or not. The $prop expression
variable is replaced by the formula split(v, iter2, nil() + .′a′,′ b′. + nil()) in the
condition we gave above, and that is evaluated:

independent( split( v, iter2, nil() +. 'a', 'b' .+ nil() ), ip )
& independent( split( v, iter2, nil() +. 'a', 'b' .+ nil() ), v )

The variable v occurs in the formula, so the second part of the condition fails.
This means that the formula is not a safety property of this instruction and we
lose our previous knowledge about the iterator iter2.

This is all right, because v is really changed, and instead of

split( v, iter2, nil() +. 'a', 'b' .+ nil() )

we would like to have

split( v, iter2, nil() +. 'c', 'b' .+ nil() )
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after the instruction. But, unfortunately, the current speci�cation of this instruc-
tion does not provide this new knowledge.

What can we use this model for, considering the limitation pointed out above?

• If the elements of the container are not modi�ed, multiple iterators may be
used to read the contents.

• If one single iterator is used, it may both read and write the elements of
the container.

These cases cover a wide range of algorithms, but not all: in bubble sort, for
example, we use two iterators and also alter the container interchanging its ele-
ments.

4. Pointer-based model

The limitation that we pointed out at the end of the previous section is
a special case of the problems arising when we try to reason about programs
operating with pointers and dynamic memory management. This is no surprise,
since the implementation of the STL containers and iterators use pointers and
heap memory, and on the other hand it is possible to simulate the heap operations
by containers like a vector or a list.

Local reasoning by separation logic [22, 20] is an elegant solution to prove
properties of programs using heap memory. In a previous work [9], we integrated
separation logic into LaCert. To manage to do that, we had to transform the
special logical connectives of separation logic back into classical logic. This trans-
formation was based on the semantics of separation logic [28] and resulted in a
model where each variable allocated on the heap memory had a label (as an ab-
straction of its address), and in the proofs we kept count of which pointer points
to which label.

A similar solution is applicable now. We introduce a new type called Cell,
and use the ∼ operator to join a label and a value to form a Cell. Similarly to
the values function that we used before, we can declare the cells function that
gives the sequence of cells in a container. For example we can write

cells( v ) = (X ~ 'a') .+ (Y ~ 'b') .+ ...

to express that the �rst two elements of container v are a and b with addresses X
and Y , respectively. In case of vectors, instead of labels we could use indexes, but
this does not make sense for lists for example, where it is easy to insert elements
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in the middle of the container which would modify all indexes after the insertion
point.

If the iterator iter1 points for instance to the �rst element (a) in the example
above, we can think of it as an object containing a pointer which equals to X
(the 'address' of the element). So we declare the function label to get that label
from the iterator:

label( iter1 ) = X
label( iter2 ) = Y

These formulas together with the above description of the cells of the container
v state that the iterators iter1 and iter2 point to the �rst and second elements
of v respectively.

Let us examine whether this solution solves the limitation of the sequence-
based model pointed out in Section 3.4. If we overwrite the value a by c using
the iterator iter1, we get

cells(v) = (X ~ 'c') .+ (Y ~ 'b') .+ ...

This operation modi�es the instruction pointer (ip) and the vector (v) only, so
the formulas describing the iterators remain valid:

label( iter1 ) = X
label( iter2 ) = Y

That is, we can prove that after the instruction iter1 points to c and iter2 points
to b.

4.1. Iterator operations and the vect.end() value

To specify the iterator operations correctly, we have to think about the
vect.end() iterator value of a vector vect. If we increment an iterator pointing to
the last element of vect, then it becomes equal to vect.end().

As we have seen in Section 3.3, the sequence-based model handles this special
value quite naturally: the assertion

split( values(vect), it, seq, nil() )

means that the values stored in vect are in the sequence seq and the iterator it
equals to vect.end().

In the pointer-based model we have assertions of the form label(it) = addr,
where addr is the address of the element the iterator is pointing to. That is,
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we need a 'virtual' element at the end of the vector, and an iterator equal to
vect.end() should hold the address of that element. For example, to state that
vect contains three characters, a, b and c and it = vect.end() we can write:
cells( vect )
= (L1~'a') .+ (L2~'b') .+ (L3~'c') .+ (End~'?') .+ nil()

& label( it ) = End

The value of the 'virtual' element is completely indi�erent as the speci�cations
of operations will avoid accessing it.

Using this solution, the speci�cations of incrementing and decrementing an
iterator are the following:
ip = #before & label( #iter ) = #Cur
& split( cells(#vect), #front,

(#Cur~#cVal) .+ (#Next~#nVal) .+ #tail )
>> ip = #after & label( #iter ) = #Next;

ip = #before & label( #iter ) = #Cur
& split( cells(#vect), #front,

(#Prev~#pVal) .+ (#Cur~#cVal) .+ #tail )
>> ip = #after & label( #iter ) = #Prev;

The precondition of writing an element via an iterator has to ensure that it
is not the 'virtual' element we want to modify. That is why !(#tail = nil()) is
present in the precondition of the following speci�cation.
ip = #before & label( #iter ) = #Addr & !(#tail = nil())
& split( cells(#vect), #front, (#Addr~#val) .+ #tail )
>> ip = #after
& split( cells(#vect), #front, (#Addr~#newVal) .+ #tail );

4.2. Vector operations and iterator invalidation

Operations that change the size of a vector may result in relocation of the
container. For example, if we add a new element at the end of the vector using
the push_back instruction and the capacity (the size of memory reserved for the
vector) is exceeded, all the elements of the vector are copied to a new location
in the memory. This means, that the iterators pointing to this container are not
valid any more, they are invalidated.

After such an operation we do not know anything about the addresses of the
elements, we know their values only. For this reason we do not specify these
instructions in the pointer-based model, but leave the speci�cations presented in
Sections 3.1 and 3.2.
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4.3. Connecting the two models

The previous section states that we have to use the speci�cations of the
sequence-based model to add elements to a vector. Let us assume that we use
the pointer-based model and know that

cells(v) = (X~'a') .+ (Y~'b') .+ (End~'?') .+ nil()

holds for the vector v. If we want to add new elements to the vector now, we
need information on values(v) instead of cells(v).

To connect the two models, we declare the function vals, which extracts the
sequence of values from a sequence of cells, forgets the addresses as well as the
last, 'virtual' cell. This is given by the following axioms:

vals( #end .+ nil() ) = nil();

vals( (#X~#v) .+ #elem .+ #tail ) = #v .+ vals( #elem .+ #tail );

So we can prove the following:

vals( (X~'a') .+ (Y~'b') .+ (End~'?') .+ nil() )
= 'a' .+ 'b' .+ nil()

If we add the axiom

vals( cells(#v) ) = values(#v);

where #v is an arbitrary vector, we can prove:

cells(v) = (X~'a') .+ (Y~'b') .+ (End~'?') .+ nil()
=> values(v) = 'a' .+ 'b' .+ nil()

From now on it is possible to use the speci�cation of push_back described in
Section 3.2.

To switch between the two models in the other way around, we can use the
following axioms, where #cs is a sequence of cells2:

vals( #cs ) = nil()
=> exists( Label @End, exists( Character @c,

#cs = (@End~@c) .+ nil()
) );

2Existential quanti�cation ∃x.P in LaCert has the following syntax:
exists(T @x, P), where T is the type of the existentially quanti�ed variable @x.
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vals( #cs ) = #val .+ #tail
=> exists( Label @Addr, exists( Seq(Cell) @cs,

#cs = (@Addr~#val) .+ @cs & vals(@cs) = #tail
) );

By recursive applications of these rules we can prove the following:

values(v) = 'a' .+ 'b' .+ nil()
=> exists( Label @X, exists( Label @Y, exists( Label @End,

exists( Character @c,
cells(v) = (@X~'a') .+ (@Y~'b') .+ (@End~@c) .+ nil()

) ) ) )

LaCert supports the introduction of parameters for existentially quanti�ed vari-
ables, which is a well known proof technique in �rst order logic. By introducing
parX, parY , parEnd and parC parameters for @X, @Y , @End and @c, we get:

cells(v) = (parX~'a') .+ (parY~'b') .+ (parEnd~parC) .+ nil()

From this point we can use the speci�cations of the pointer-based model.

5. Evaluation of the implementation

Up to now we have implemented the speci�cations of the mentioned operations
for the vector container type. Even when writing quite simple programs in the
system it turned out that establishing the precondition of an operation from the
postcondition of the previous one often requires several logical steps. Consider
the example at the end of Section 3.2.

We have also observed that, most of the time, these formula-transformations
can be automated. Using the template facilities of LaCert we started to create
tactics to ease the construction of proofs. At the end of Section 2 you can �nd
an example. We experienced this as a great help and we plan to implement more
tactics.

One can see that switching between the two models is tedious if done by hand,
but can be done automatically. That is, we will be able to de�ne templates that
generates the necessary proof fragments.

Currently, in our system we can write speci�cations and proofs of small and
simple programs that use vector and its iterators. Our system outputs correct
C++ programs using the mentioned features of the STL.
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6. Related work

Various e�orts have been made towards a safer usage of STL. In the following
we give a short overview of these projects and point out the di�erences of our
work.

David Musser and Changqing Wang designed a Hoare logic style calculus
[18] for speci�c C++ and STL language elements. Because they were interested
mainly in the veri�cation of STL implementations, their machinery for iterators is
similar to pointer arithmetic and it makes proofs rather complicated. In contrast,
we are interested in producing veri�ed programs that use STL, therefore our
speci�cations can take advantage of the higher level of abstraction introduced by
iterators.

Musser also worked out algebraic speci�cations [17] which are more di�cult
to use for veri�cation. Both the Hoare style and the algebraic speci�cations were
integrated into the Tecton Proof System [13]. The MELAS [26] system was also
developed to support the veri�cation process. It works by symbolic execution
of the code and it is integrated into the GDB debugger. In order to use that
system one writes the program, complies it and tries to verify certain properties
by MELAS. In our case this process is reversed: one writes the speci�cation
�rst, then re�nes an implementation from it and the code (which is correct by
construction) is generated automatically.

Matthew H. Austern uses pre- and postconditions to specify the STL data-
types and operations in his book [4]. However his work is not a formal description,
therefore (just as the STL standard) it is not suitable for formal veri�cation
directly. On the other hand it is applicable for educational purposes and can be
used as a basis for formalization e�orts.

When one deals with metaprogramming, it is often di�cult to decipher error
messages originating from erroneous template instantiations. The Boost Con-
cept Check Library (BCCL) [23] checks whether template parameters conform
to certain restrictions (so called concepts) that describe the intended use of the
template in question. This tool is not for veri�cation of the resulting program,
but it makes the usage of STL easier and safer.

The STLlint [11] project aims �nding common programmer errors in C++
code using STL. Such as similar tools (like ESC/Java2 [10]) it does not verify
the code, because it can not �nd all kinds of errors. In our system it is a main
requirement that every program generated by the system must conform to the
speci�cation.

The antecedent of our current work is a Hoare style speci�cation described
in [21]. Now we integrate similar speci�cations into LaCert to obtain computer
assistance for the proofs and get running C++ programs as a result.
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7. Summary

7.1. Applicability

Now we give scenarios on the applicability of our results. We think that
they can already be used by researchers dealing with similar problems and in the
education of formal methods or of the C++ STL. We expect that in the future
it will be applicable also by C++ programmers.

Even though our research is in progress, for researchers of formal methods
our results are already useful. We have presented relevant questions that are
to be solved in order to formally specify containers and iterators. We have also
given possible solutions to these questions. The main ideas of these solutions
are independent of the formal system we use, and � to a certain extent �
independent of C++, too. This means that our ideas are applicable using other
formal systems and maybe using other languages with standard containers and
iterators.

In education one can use our research as a real-life example when teaching
formal methods. Our work demonstrates that even speci�cation of basic instruc-
tions is not a simple task and gives ideas how to solve the di�culties. When
teaching C++ STL, presentation of the instructions' formal speci�cations can
lead to deeper understanding of the library. While natural-language descriptions
may lead to misunderstoods in special cases, the formal ones are unambiguous.
If we can cover a larger part of the STL, our work will be useful as a reference,
too.

In the long run our system will be usable for C++ programmers. In large
software projects there are often safety critical code fragments. If the overhead
of a formal method is not too high, it is worth to produce these code fragments
with proved properties. The main problem is that there are frequent, not-too-
complicated proof fragments that computers fail to produce fully automatically,
and that are tedious to produce by hand. Our approach is to generalize these
fragments and encapsulate them into templates. As we have pointed out in Sec-
tion 5, these templates and tactics help a lot to reduce the overhead of formal
program development. We expect that by implementing more of them (for ex-
ample to help switching between the two models) the e�ort needed to use our
system in practice will be acceptable.
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7.2. Future plans

The next container we plan to formally specify is list. The sequence-based
speci�cations will be quite similar to those of vector, but the pointer-based model
will di�er. This is due to the di�erent iterator invalidation rules for lists. For
example, inserting elements into a list does not invalidate iterators. This means,
that it will be possible to give a speci�cation for insertion in the pointer-based
model, too.

The containers we have mentioned so far are sequences. In the STL there are
also associative containers like set and map. We will examine the possibilities to
specify these containers, too.

Besides containers, the STL contains a wide range of algorithms, like counting
or searching elements, sorting a container, etc. It will be a challenge to correctly
specify these instructions, especially, because they can get other (usually user-
de�ned) functions as parameters. Consider sorting, where the user can de�ne an
own comparison operation and sort the container according to that. This leads
to the topic of composing speci�cations.
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