
Annales Univ. Sci. Budapest., Sect. Comp. 31 (2009) 107-146

A SEMANTIC MODEL
FOR PROVING PROPERTIES

OF CLEAN OBJECT I/O PROGRAMS1

M. Tejfel, T. Kozsik and Z. Horváth

(Budapest, Hungary)

Abstract. The functional programming language Clean has an extensive
library, the Object I/O library, to build interactive, event-driven applica-
tions with graphical user interface. Furthermore, Clean has a dedicated
theorem prover, the Sparkle system, to prepare machine-verified proofs for
Clean programs. Unfortunately, the Object I/O library uses some features
of Clean (uniqueness typing, existential types, non-Clean code) that are
currently not supported properly by Sparkle. Moreover, Sparkle is not
capable to deal with the size and the complexity of Object I/O within
reasonable resource bounds. For these reasons Sparkle cannot handle Ob-
ject I/O programs directly. However, creating machine-verified proofs for
such Clean programs might be accomplished within a model of the Object
I/O library, which is already manageable by Sparkle. This paper presents
such a model. In this model the properties of the Object I/O library are
expressed as axioms. These axioms serve as the building blocks of proofs
about interactive, event-driven Clean programs. The paper illustrates this
technique with proofs on some simple properties of a small event-driven
program.

1Supported by GVOP-3.2.2.-2004-07-0005/3.0 ELTE IKKK and OMAA 66öu2 2007 and
Ferenc Deák Scholarship.

108 M. Tejfel, T. Kozsik and Z. Horváth

1. Introduction

Due to referential transparency, reasoning about functional programs can
be accomplished with fairly simple mathematical machinery, using, for example,
classical logic and induction. This fact is one of the basic advantages of functional
programs over imperative ones. Clean [1] is a lazy, pure functional language. It
has a dedicated theorem prover, Sparkle [2, 3], which is built into the integrated
development environment of Clean. Sparkle supports reasoning about Clean
programs almost directly, so it can be used to create machine-verifiable proofs
for Clean programs.

The graphical user interface (GUI) is an important part of those programs
which have to deal with user interactions. Clean has an extensive library to
build GUI applications: the Clean Object I/O library [4]. Unfortunately Sparkle
is not capable to handle Object I/O programs directly; the uniqueness type
annotations [5] of Clean and existentially quantified types, which are used heavily
by Object I/O, are not properly supported in the proof tool. Moreover, some
parts of Object I/O are implemented in C and ABC-code (the latter is a platform
independent intermediate code in the Clean compilation chain), and contain calls
to the operating system – these are also unsupported in Sparkle. Finally, the
Object I/O library is so large and complex that Sparkle cannot handle it within
reasonable time and memory bounds.

Being able to reason about the properties of interactive programs, however,
would be extremely desirable. The solution proposed in this paper is the use of
a model of the Object I/O library. The model, which is called Sio (Simplified
Object I/O), abstracts away the visualisation aspect of Object I/O. It focuses on
the processes that make up an interactive application and on the communication
between those processes. User interaction is simulated, without having an actual
graphical user interface. Therefore, the implementation of Sio does not contain
operating system calls and is written in pure Clean (no C/ABC-code involved).
Sio uses neither uniqueness annotations nor existential types and it is simple
enough to be efficiently manageable in Sparkle. The public interface of the Sio
library provides only a subset of the Object I/O functionality, but it does so using
practically the same syntax. The semantics of Sio is defined in accordance with
the expected behaviour of Object I/O. These characteristics make it possible to
reason about important properties of many Object I/O applications with Sparkle
and Sio.

The rest of the paper is structured as follows. First some concepts of the
Object I/O library are explained through a GUI application (Section 2). This
application will be used as an example in the forthcoming sections. Next the pub-
lic interface of Sio and its relation to Object I/O are described (Section 3). Then

A semantic model for proving properties 109

the axiomatic semantics of (a subset of) Object I/O is introduced (Section 4). A
proof of a property of the example application is sketched in Section 5. Finally,
the discussion of related work and the conclusions are presented (Section 6).

2. Example: an Object I/O Application

This paper uses an implementation of the well-known “Slide game” for illus-
tration purposes. In this game, the player has to slide tiles displaying numbers
on a board in order to achieve the winning configuration, which is shown on
the screen capture in Figure 1 (representing configurations in row major or-
der, this corresponds to the sequence 〈1, 2, 3, 4, 5, 6, 7, 8, 〉). Initially the tiles
are shuffled (for the sake of simplicity, assume that the starting configuration
is 〈8, 7, 6, 5, 4, 3, 2, 1, 〉). There is also a progress monitor, which is drawing a
chart during the game. The chart describes the progress of the player: vertical
bars on the chart represent distances between the instantaneous and the winning
configurations.

Figure 1. The winning configuration in the slide game application

The Object I/O library enables the implementation of an interactive, event-
driven application as a collection of communicating state machines. In this par-
ticular application there are two state machines (two Object I/O processes), one
being responsible for the game logic and the other one for the progress report.
Each of the two processes has an associated dialog window. These two dialog
windows provide the GUI for the application. The first dialog window is the game
board, on which the tiles, as well as the hole, are represented with buttons; a tile
neighbouring the hole can be moved (i.e. swapped with the hole) by pressing the
corresponding button. The local state of the first process contains a mapping
from board positions (buttons) to tile labels. This local state can be changed

110 M. Tejfel, T. Kozsik and Z. Horváth

when the player slides a tile by pressing a button – hence the callback functions
associated to the buttons implement the state transitions of the process. The two
processes communicate: whenever the local state of the first process is changed,
a message is sent to the second process. The reception of such messages triggers
state transitions in the second process, which keeps track of the player’s progress.
The local state of the second process is the history of the values describing the
distance between instantaneous and winning configurations. Whenever a mes-
sage is received, this local state is updated by appending a value computed from
the message and the chart is also updated accordingly.

The implementation of the above design is presented in Figures 2 and 3. Note
that the program is written using the Object I/O library, as shown by the import
StdIO statement. The entry point to the application is the definition of the Start
function, which takes a world (the representation of the program environment)
as an argument. This is a unique object, which is manipulated by the program,
and which user interaction is performed with.

In the slidegame module three functions are defined on the global level:
slidegame (which is the main part of the application), find (which is a helper
function that returns the first element of a list ls satisfying a given property
pred together with its position in ls), and Start (which starts the application
with the initial configuration 〈8, 7, 6, 5, 4, 3, 2, 1, 〉).

The slidegame function defines the two processes. First identifiers are created
for the components of the GUI, namely for buttons (with openIds), and another
identifier (with openRId) for communication between the two processes. The local
state of the first process is represented with a list consisting of pairs. Each pair is
a button identifier together with a number to be displayed as the content of the
corresponding tile. The hole is represented with the number 0 and displayed as an
empty label (see function toLabel). Initially the local state of the first process is
a list produced from the button identifiers ids and from the problem description
problem with the zip2 function (the standard zip2 function takes two lists and
produces a list of pairs, each pair contaning the elements at the same position
from the input lists). Buttons are created with the button function, which takes
as arguments the identifier of the button, the identifier used for communicating
to the monitor process, the number on the tile and an attribute describing its
relative location in the dialog window. The ZF-expression containing the call to
button draws the relative locations from locs, which is an infinite list of Left
(leftmost in the next row) and RightToPrev (right to the previous) values. Each
Left is followed by cols-1 pieces of RightToPrev, resulting in a rows × cols
grid layout of buttons. The buttons are then passed to the game function.

The game proc and monitor proc variables provide the descriptions of the
two processes. The local state of the processes are initialized using iniState
and [], respectively (given as arguments to the Process data constructor). The
“game buttons” and the “monitor mId” functions are used to complete the

A semantic model for proving properties 111

1 module slidegame

2 import StdEnv

3 import StdIO

4

5 Start world = slidegame (3,3) [8,7..0] world

6

7 find pred ls = hd [(x,y) \\ x <- ls & y <- [0..] | pred x]

8

9 slidegame (rows,cols) problem world

10 # (ids,world) = openIds (rows*cols) world

11 # (mId,world) = openRId world

12 # iniState = zip2 ids problem

13 # locs = flatten (repeat [Left:repeatn (cols-1) RightToPrev])

14 # buttons = [button id mId n loc \\ (id,n) <- iniState & loc <- locs]

15 # game_proc = Process NDI iniState (game buttons) []

16 # monitor_proc = Process NDI [] (monitor mId) []

17 = startProcesses [game_proc, monitor_proc] world

18 where
19

20 toLabel n = if (n==0) "" (toString n)

21

22 button id mId n loc = ButtonControl (toLabel n) attrs

23 with attrs = [ControlId id, ControlFunction (noLS (pressed id mId)),

24 ControlWidth (PixelWidth 50), ControlPos (loc,NoOffset)]

25

26 game buttons pst

27 # attrs =[WindowItemSpace 0 0, WindowHMargin 0 0, WindowVMargin 0 0]

28 = snd (openDialog Void (Dialog "Slide" (ListLS buttons) attrs) pst)

29

30 pressed id mId pst=:{ls=state}

31 # empty_data = find (\(x,y)->y==0) state

32 # my_data = find (\(x,y)->x==id) state

33 | neighbours (snd empty_data) (snd my_data)

34 = refresh empty_data my_data mId pst

35 = pst

36

37 neighbours a b = let diff = abs (a - b) in
38 (diff == 1 && a/cols == b/cols) || (diff == cols)

39

40 refresh ((id1,v1),p1) ((id2,v2),p2) mId pst=:{ls=state}

41 # pst = appPIO (setControlText id1 (toLabel v2)) pst

42 # pst = appPIO (setControlText id2 (toLabel v1)) pst

43 # newState = ((updateAt p1 (id1,v2)) o (updateAt p2 (id2,v1))) state

44 = snd (asyncSend mId (map snd newState) {pst & ls = newState})

Figure 2. The Slide game application, Part 1 of 2

112 M. Tejfel, T. Kozsik and Z. Horváth

1 slidegame (rows,cols) problem world

2 ...

3 where
4 ...

5

6 monitor mId pst

7 # (dId, pst) = openId pst

8 # receiver = Receiver mId (noLS1 (received dId)) []

9 # drawing = CustomControl area look [ControlId dId]

10 # dialog = Dialog "Monitor" (receiver :+: drawing) []

11 = snd (openDialog Void dialog pst)

12 where
13

14 size = rows * cols

15 area = { w = 3*size^2, h = size^2 }

16 pensize = 2

17

18 fitness vals = area.h - (sum (map (\(i,v)->abs (i-v)) ps))

19 with ps = zip2 [1..] [if (val==0) size val \\ val <- vals]

20

21 received dId vals pst=:{ls=fitnessList}

22 = appPIO (setControlLook dId True (True,newLook fs)) {pst & ls=fs}

23 with fs = fitnessList ++ [fitness vals]

24

25 look Able {newFrame} = (setPenSize pensize) o (setPenColour Black)

26 o (fill newFrame) o (setPenColour White)

27

28 newLook fs Able _ pict = foldr draw_line pict coords

29 where coords = zip2 [pensize,2*pensize..] fs

30 draw_line = \(x,y) -> drawLine {x=x,y=area.h} {x=x,y=y}

Figure 3. The Slide game application, Part 2 of 2

initialization of the processes. The processes emerge via the evaluation of the
startProcesses function: this function starts and initialises the two processes in
the world environment received as its second argument, lets them interact with
the environment, and finally returns the environment in which the processes
are terminated. During the evaluation of the “startProcesses [game proc,
monitor proc] world” expression, the two processes go through a sequence of
state transitions. The applied state transition functions are defined as part of the
process descriptions. The state transitions will eventually be triggered by GUI
events.

The game function takes part in the initialization of the first (game) process.
Its first argument, buttons, is a list of ButtonControl values, and its second

A semantic model for proving properties 113

argument, pst is a so-called process state. Process states have two roles: they
contain the local (private) state of a process and they provide access to the global
environment of the process. The state transitions of a process may modify the
local state and (by interaction and communication) modify the global environ-
ment. When startProcesses calls game buttons, it will pass a process state
that already contains iniState as the local state. Note that game buttons is
the initial state transition of the game process. The game function opens the
dialog window representing the game board with certain graphical attributes
(e.g. WindowItemSpace). The dialog will contain the buttons passed in the first
argument of game.

The button function refers to another set of state transition functions. A
“control function” is assigned to each button: (pressed id mId) is executed
whenever the button with identifier id is pressed (there is also a noLS function
involved in the code, which is responsible for adjusting the type of the expression
(pressed id mId); for the sake of brevity, this is not detailed any further here).
The state transition function (pressed id mid) receives the current state of the
containing process (the game process in this case) and returns the new process
state. The third formal argument of the pressed function is an “as-pattern”: it
reveals that a process state pst is a record, which has a field ls. This ls is the
(private) local state of the process, in this case the list containing pairs of button
identifiers and tile values. The function looks up the pair describing the hole and
the pair describing the button pressed. If the hole “neighbours” the selected
tile, the process state is updated by refresh, otherwise the process state is left
unchanged. The refresh function sets the label of the affected buttons, updates
the local state of the process and sends the second elements of the pairs in the
list asynchronously to the monitor.

Figure 3 presents the definition of the monitor function, which is involved
in the initialization of the monitor process. This process contains a dialog with
a drawing and a receiver. The callback function of the receiver is (received
dId). Communication with the progress monitor is possible by sending messages
to the receiver using the identifier mId. Whenever a message arrives, the state
transition function ((received dId) vals) is called. The first argument to
received identifies the drawing, the second argument is filled with the received
message, and the third argument is the state of the monitor process. The local
state component of the process state is a list of numbers, each number being
a fitness value describing a state of the game. When the monitor receives the
current configuration from the game process, it computes the fitness value of the
configuration and appends it to the local state. Moreover, the drawing is also
refreshed by setting its look to newLook fs, where fs is the updated local state.
Initially the drawing is a white rectangle, as specified by the look function. In
this white rectangle a vertical bar is drawn for each of the fitness values in the
local state of the monitor process.

114 M. Tejfel, T. Kozsik and Z. Horváth

In summary, Object I/O programs are made up of processes, which can com-
municate by passing messages synchronously or asynchronously. Messages sent
synchronously block the sender process until the message is processed by the cor-
responding receiver process. Processes manage windows and dialogs, which may
contain graphical components (e.g. buttons) and communication targets (i.e. re-
ceivers). User interaction and communication activate state transition functions
that can manipulate the state of the processes, update graphical components and
initiate further communication.

3. A model of the Object I/O Library

Sparkle – the dedicated proof assistant for Clean – is not capable to deal with
Object I/O applications directly. To enable reasoning about such applications,
a model of the Object I/O library is introduced in this paper. The “Simplified
Object I/O library”, or Sio for short, concentrates on the main logic of Object
I/O applications, namely the local states and the dialogues of the processes and
the local states and the controls of the dialogues. Sio does not handle the graph-
ical aspects of programs. The GUI of an Object I/O application is replaced with
an event-driven state transition system with no graphical representation and no
real-world effect. User interaction is simulated: a sequence of “user events” is
supplied as a parameter to the simulation. The execution model of Object I/O
and Sio programs is therefore quite different. On the one hand, an Object I/O
program is non-deterministic, its execution depends on how the user acts through
the GUI (although this non-determinism is hidden behind the “world” abstrac-
tion, apparent from the argument of the Start function in Figure 2). On the
other hand, the execution of a simulation using the Sio library is determined by
the sequence of user events supplied as the parameter to the simulation. How-
ever, non-determinism will be reintroduced in the Sio model at the level of the
axiomatic semantics, as shown in Section 4.

The idea of this paper is to provide a library with a public interface that is
syntactically similar to Object I/O. Programs written using the latter therefore
can easily be transformed into ones written using the former. Although the
current version of Sio covers only a fragment of the full Object I/O library, it
still supports reasonably many GUI applications.

Before reasoning about an Object I/O application, like the one presented in
the previous section, one has to slightly modify it, so that it can be compiled with
the Sio library. The resulting source code can then be loaded into (a customized
version of) Sparkle. Axioms describing the expected behaviour of Object I/O
expressed in terms of Sio are provided in Sparkle; these axioms serve as the

A semantic model for proving properties 115

building blocks of proofs about the analysed application. Section 3.1 gives an
overview of the interface of the Sio library and Section 4.2 presents the axioms
that capture the semantics.

3.1. The programming interface of Sio

The Sio library offers a subset of the interface of Object I/O. It does so
by preserving the syntax as much as possible. Therefore many of the exported
definitions of Object I/O are simply repeated in Sio. Examples of such definitions
are the algebraic data type Void with its data constructor Void, the algebraic
data type ControlWidth with data constructors PixelWidth, TextWidth and
ContentWidth, the (synonym) type constructor IdFun that is used to construct
function types with identical domain and co-domain, the abstract data type
Picture and the record type Size.

::Void = Void

::ControlWidth = PixelWidth Int | TextWidth String | ContentWidth String

::IdFun st :== st -> st

::Picture

::Size = {w :: !Int, h :: !Int}

In Sparkle all types have to be concrete. However, it is possible to define Picture
as an abstract data type in Sio (and thus make Sio resemble to Object I/O as
much as possible), because during the proving process the implementation of Sio
– containing the full definition of Picture – will also be loaded into Sparkle.
Therefore, Picture may remain abstract for programs using Sio, but it will still
be a concrete type for Sparkle.

Other definitions of Object I/O appear in Sio without uniqueness type an-
notations. Such definitions are, for instance, the IOSt abstract type constructor,
the PSt record type constructor, the noLS function, the Ids type class and the
setPenSize function.

::IOSt a

::PSt a = { ls :: !a, io :: !IOSt a }

noLS :: (a->b) !(c,a) -> (c,b)

class Ids env where
openId :: !env -> (!Id, !env)

openIds :: !Int !env -> (![Id], !env)

openRId :: !env -> (!RId m, !env)

openRIds :: !Int !env -> (![RId m], !env)

setPenSize:: !Int !Picture -> Picture

Some Object I/O definitions are supplied only partially in Sio – like the
algebraic data type WindowAttribute, which has less data constructors in Sio

116 M. Tejfel, T. Kozsik and Z. Horváth

than in Object I/O. The reason is that Windows are not supported in the current
version of Sio, only Dialogs, therefore the Window-specific data constructors
were omitted from Sio. Similarly, since the graphical aspects of Object I/O
are not relevant for Sio, operations manipulating graphical appearance are often
simplified in Sio. For example, fill is a (no-op) function in Sio, while it is a
component of the type class Fillables in Object I/O.

:: WindowAttribute st

= WindowActivate (IdFun st) | WindowClose (IdFun st)

| WindowDeactivate (IdFun st) | WindowHMargin Int Int

| WindowId Id | WindowIndex Int

| WindowInit (IdFun st) | WindowInitActive Id

| WindowItemSpace Int Int | WindowOuterSize Size

| WindowPos ItemPos | WindowViewSize Size

| WindowVMargin Int Int | WindowCancel Id

| WindowOk Id

fill :: a !Picture -> Picture

Inside Sio the state of processes and the messages communicated by the
processes are stored in data structures. Since different processes have states
of different types, and messages sent in a program are usually also of different
types, the data structures require special treatment. One possible solution is
to use existentially quantified types; however, Sparkle does not support these
properly. Hence Sio applies a different approach: types of local process states
and messages are encoded in a universal format. The type UniType provides a
simple encoding scheme, similar to the universal structural representation used
by Clean generic programming. Conversion to and from UniType is possible via
the two components toUni and fromUni of the type class Uni. This type class is
already instantiated in Sio for some basic types (e.g. Int) and type constructors
(e.g. lists) for convenience. Further instances might be necessary to define for
types used as messages or local states of processes.

::UniType = Unit Int | Pair UniType UniType

class Uni a where
toUni :: a -> UniType

fromUni :: UniType -> a

instance Uni Int

instance Uni [a] | Uni a

Some Sio definitions differ from their Object I/O counterpart only in that
some type variables are required to support the conversions fromUni and toUni.
For example, function syncSend, which can be used to send messages of type b
synchronously, is typed in Sio in such a way that b is required to belong to the
type class Uni.

A semantic model for proving properties 117

syncSend :: !(RId b) b !(PSt a) -> (!SendReport, !PSt a) | Uni b

In order to simplify the types appearing in GUI programs, certain definitions
are less polymorphic in Sio than their analogues in Object I/O. This is again
necessary to facilitate the processing of the GUI programs in Sparkle. As a
consequence, compared to Object I/O, some type information (e.g. restrictions on
type parameters) are missing from some definitions of the Sio library. However,
assuming that the program using Object I/O is type-correct, its counterpart
using Sio will be type-safe.

Components of the GUI, such as buttons, labels or edit fields are called con-
trols in Object I/O and are represented with different algebraic types. Every
control type has a single data constructor, the name of which is the same as that
of the type.

:: ButtonControl ls pst

= ButtonControl String [ControlAttribute (ls,pst)]

All these control types are instances of the Controls type constructor class.
Object I/O is open-ended: it is possible to define further control types any time
by introducing further instances to this type constructor class. Sio, on the other
hand, need not be open-ended, therefore a simpler approach is taken. In Sio all
controls have the same type, Controller, which is a parametric abstract type.
The different controls are created with different functions. These functions are
named after the types and their data constructors used in Object I/O.

:: Controller ls a

ButtonControl :: String [ControlAttribute (ls,PSt a)] -> [Controller ls a]

| Uni a & Uni ls

This function creates a list containing a single control, one that represents a
button.

Controls can be composed in Object I/O as well as in Sio. In Object I/O the
type constructors :+: and ListLS – both having data constructors with matching
names – serve for this purpose (i.e. given an instance c of Controls, the type
ListLS c is also an instance of Controls). Obviously, things are much simpler
in Sio: two functions, namely :+: (which is an infix operator) and ListLS create
composite controls.

(:+:) :: [Controller ls a] [Controller ls a] -> [Controller ls a]

ListLS :: [[Controller ls a]] -> [Controller ls a]

The first concatenates two lists, and the second one flattens a list of lists.
The simpler type for controls results in simpler types for dialog windows. The

Dialog type constructor and the Dialog data constructor of Object I/O are re-
placed with a simplified abstract type constructor Dialog and a function Dialog

118 M. Tejfel, T. Kozsik and Z. Horváth

in Sio. Object I/O allows the programmer to provide “window attributes” for
dialogs through the third argument of the Dialog data constructor. Window
attributes are not used in Sio, but for maximizing analogy to Object I/O, the
Dialog function in Sio retains this argument.

:: Dialog_ ls a

Dialog :: String [Controller ls a] [b] -> Dialog_ ls a | Uni ls & Uni a

Processes also became simpler in Sio. In Object I/O an existentially quan-
tified type variable in the definition of type Process makes the state of the
processes private. Since one must be able to access the process states during
correctness proofs, Sio introduces the Process abstract type, which does not
contain existential quantification and encodes process states with UniType. The
encoding is performed by the Process function, which replaces the correspond-
ing data constructor of Object I/O in a syntax-preserving manner. Similarly
to dialogs, the last argument of Process, responsible for supplying “process at-
tributes”, is not used in Sio.

:: Process_

Process :: DocumentInterface a ((PSt a) -> PSt a) [b] -> Process_ | Uni a

openProcesses :: ![Process_] !(PSt a) -> PSt a | Uni a

In Clean the built-in type World serves as the abstraction of the program
environment: user interaction, calls to the operating system and the alike are
defined as transformations of a unique object of this type. Object I/O is also
based on this concept: the slide game is started by giving a world to the Start
function, which returns in turn a modified world. Many Object I/O functions,
e.g. startProcesses, are defined as state transitions on World. In Sio the
environment of GUI applications is represented differently. Since World is a
built-in type of Clean, and not a definition in Object I/O, it had to be replaced
with another abstract type: World .

:: World_

otherworld :: World -> World_

startProcesses :: ![Process_] !World_ -> World_

The complete application programming interface of the Sio library is pre-
sented in Appendix A.

3.2. Transition from Object I/O to Sio

Thanks to the syntactical similarities between Object I/O and Sio, adaptation
of Object I/O programs to Sio is usually simple. If the Object I/O program only
uses features available in Sio, the following modifications are sufficient.

A semantic model for proving properties 119

1. The import statement refering to Object I/O has to be changed to import
Sio.

2. References to World have to be changed to World . Practically this means
that the unique world obtained as an argument of Start, and possibly
modified by non-Object I/O functions, must be turned into World by the
otherworld function before passing it to the Sio library.

3. Types used as messages or local state of processes should belong to the Uni
type class. Many types are already instatiated for this type class in Sio,
but further instantiations might be necessary.

4. The adaptation becomes harder, if the source code of the GUI application
contains explicit type information. As explained in the previous section,
the types of elements of the Sio library is often different from those of the
corresponding elements in Object I/O. In general, it is not necessary to type
expressions and functions explicitly in Clean: type inferencing is used by
programmers regularly, especially when uniqueness annotations are to be
determined. However, Clean fails to infer the type of some functions (con-
taining polymorphic recursion, higher rank polymorphism or tricky uses of
type classes). In such cases types are to be declared by the programmer.
Adapting such programs to Sio might require changes in those declara-
tions, as described in the previous section: removing uniqueness annota-
tions, simplifying polymorphic types, replacing different “control” types
with Controller, etc.

In the case of the slide game application, the first two modifications are sufficient.
Hence only the first few lines of the code are changed, as illustrated in Figure 4.

1 module slidegame

2 import StdEnv

3 import Sio

4

5 Start world = slidegame (3,3) [8,7..0] (otherworld world)

Figure 4. Adapting slide game to Sio

As explained above, Sio applications operate on World , rather than on
World. For example, the type of the Start rule presented in Figure 4 is the
following.

Start :: World -> World_

Thus the evaluation of the Start rule in Sio simply returns a value describing
the initial state of the GUI application and provides no ways of user interaction.

120 M. Tejfel, T. Kozsik and Z. Horváth

In contrast an Object I/O application does not terminate after the computation
of the initial state, but goes on with interacting with the user until all processes
of the application are closed. In the next section it is shown how to simulate such
an execution in Sio.

There is a slight restriction on those Object I/O applications that are in-
tended to be modelled in Sio – a restriction which has not been mentioned so
far, and which is related to the callback functions attached to controls. Call-
back functions are evaluated when the containing control receives an event. The
body of the callback function may change the local state of the enclosing di-
alog and that of the enclosing process. Furthermore, it may modify the global
state by changing properties of other controls (setting the label in an EditControl,
enabling/disabling a ButtonControl, etc.), and by sending messages to other con-
trols, either synchronously or asynchronously. In Object I/O it is possible that a
callback function sends a message to another control (a Receiver) synchronously,
and then applies further transformations on the global state. This possibility
is restricted in Sio: if a callback function sends a message synchronously, the
returned global state can be used to send further messages (both synchronously
and asynchronously), but it should be queried or updated in no other ways. For
example, consider the following imaginary callback function of a Receiver. As-
sume that the received message is a tuple containing two identifiers, the first
identifying a Receiver control and the second an EditControl.

badCallback message=:(rId,eId) (dialogState, pst)

pst1 = snd (syncSend rId "1st" pst)

pst2 = snd (syncSend rId "2nd" pst1) // still ok

pst3 = appPIO (setControlText eId "Done") pst2 // problem

= (dialogState, pst3)

This callback function is completely legal in an Object I/O program, but it is
unsupported in Sio: the problem here is that pst3 was obtained from pst by
first sending two messages synchronously (this is still all right), and then applying
appPIO (setControlText eId "Done"). This last step modifies the global state
of the receiver, since it sets the text of the edit control identifed by eId. The
axioms in Section 4 describing the semantics of GUI applications are devised in
such a way that they cannot be applied on callback functions of such kind – hence
these functions are simply considered meaningless. The reason for this limitation
(which, observing existing Object I/O applications, seems to be relevant really
rarely in practice) will be given in Section 4.1, after having presented more details
on Sio.

Finally, a technical note should be made. The current version of Sparkle
does not support properties and proofs with type class restrictions, although
such support is planned for addition in a future version [6]. Sio, as presented
in Section 3.1, was designed to accord with this (hopefully near) future version.

A semantic model for proving properties 121

But until support for type classes is added to Sparkle, a workaround is required
to enable the construction of machine verifiable proofs. The workaround is to
temporarily get rid of class restrictions (such as Uni). Type parameters with
class restrictions are replaced with concrete types. For example, instead of having
process local states with types belonging to the Uni type class (and let Sio convert
such states into UniType and back automatically as required), one should ensure
that the process local states are of type UniType. The type of process local
states are specified with the parameter of the type constructor PSt. Following
the workaround, this type parameter should be replaced with UniType, so PSt
becomes a type without a parameter.

::IOSt

::PSt = { ls :: !UniType, io :: !IOSt }

The same happens to other type constructors, e.g. Controller and Dialog .
Obviously, this removal of polymorphism heavily influences the transition from
Object I/O to Sio as well. Since the types of the functions offered by the Sio
library are changed by the workaround, the fromUni and toUni conversion func-
tions must be called explicitly in Sio programs. For example, the refresh func-
tion in the slide game application is modified as shown in Figure 5. Firstly, the ls
component of pst, viz. the local state of the executing process is converted from
UniType to the original type [(Id,Int)] before it is used to compute newSt,
which is also of type [(Id,Int)]. Secondly, when updating the ls field of pst,
newSt is converted into UniType. Thirdly, the message sent with asyncSend is
converted from [Int] to UniType.

1 refresh ((id1,v1),p1) ((id2,v2),p2) mId pst=:{ls=state}

2 # state = fromUni state

3 # pst = appPIO (setControlText id1 (toLabel v2)) pst

4 # pst = appPIO (setControlText id2 (toLabel v1)) pst

5 # newSt = ((updateAt p1 (id1,v2)) o (updateAt p2 (id2,v1))) state

6 = snd (asyncSend mId (toUni (map snd newSt)) {pst & ls = toUni newSt})

Figure 5. Applying the workaround on the refresh function

Section 5 investigates some properties of the slide game application. That
section indeed makes use of the presented workaround and the “simplified” Sio
library.

122 M. Tejfel, T. Kozsik and Z. Horváth

3.3. The theorem proving interface of Sio

After the introduction to the syntax, and before the presentation of the se-
mantics of Sio (and that of the modelled Object I/O library), some details about
the inner workings of Sio should be given. These details are necessary for the
formulation of the axioms of Section 4.2.

A Sio program can be considered as a state transition system. Such a program
can be executed with the help of a scheduler, which triggers the state transitions.
A state is made up of processes and events to be processed. State transitions
result from the processing of events: in each state transition the scheduler selects
an event and processes it. There are two kinds of events. “User events” model
user interaction and “system events” implement message passing.

The processing of an event starts by the invocation of a “control function”.
Control functions are callback functions attached to controls (including Receivers).
Controls are embedded in dialog windows, which are supervised by processes.
Both dialogs and processes might have local states. System events (messages)
are dispatched to the control functions of receivers, while user events are dis-
patched to the control functions of other controls (controls that have graphical
appearance in Object I/O), e.g. ButtonControls and EditControls. The control
functions receive the local states of the enclosing dialog and process as arguments,
and return possibly updated local states. Furthermore, control functions have
access to the IOSt, which can be used, for example, to send messages to receivers
or to get information about other components of the GUI model. Thus IOSt
represents the “global state” of the application.

When reasoning about a GUI application with Sio, one can analyse the be-
haviour of the application with respect to a sequence of user events. These user
events model user interactions. Each user event corresponds to an action ini-
tiated by the user, such as pushing a button or typing some text in an editor
field. This mechanism (the scheduler and its parameterization with user events)
is made available by the startUp function.

:: Id = Id Int

startUp :: [(Id,UniType)] World_ -> World_

Simulating the execution of an Object I/O program is achieved by the evaluation
of the startUp function on some arguments. The second argument of this func-
tion is the “world containing the Sio program” (i.e. the state transition system),
and the first argument is the list of user events. Each event is a pair, where the
first component identifies the control that is the target of the user action, and the
second component provides additional information, encoded as a value of type
UniType. For example, in the case of an EditControl this second component is
the text typed in by the user, and in the case of a ButtonControl this second

A semantic model for proving properties 123

component is ignored. Identifiers carry an integer value and are created through
the instances of the Ids type class; in the slide game application buttons receive
their identifiers through a call to openIds on a world.

The startUp function returns the “world after the application processed the
user events”. It is also possible that startUp diverges: this means that if the user
acts as described in the user event list, the GUI application never terminates.
The reasons for non-termination might be, among others, an infinite sequence of
user events and deadlocked communication.

As an example on the simulation of Object I/O programs, consider the slide
game application. Assume that the identifiers returned by openIds carry the
values 1, 2, . . . , 9. Given a world of type World, the following expression will
run the simulation in such a way that tile 1 is moved to the top-left corner.

let buttonsToPress = [6,3,2,1,4,7,8,5,2,1,4,7,8,5,2,1,4] in
let userEvents = [(Id i, Unit 0) \\ i <- buttonsToPress] in
startUp userEvents (slidegame (3,3) [8,7..0] (otherworld world))

Now assume that a property of the final state of an application has to be
proven. It can be formulated in the following way:

∀xs::[(Id,UniType)]. ∀world::World. A(xs) → P
(
startUp xs π(world)

)
,

where A gives the assumptions on user events and the program environment, π
is the Sio representation of the application, and P is the property to be proven.
In the case of the slide game application of Figure 4 this might become

∀xs::[(Id,UniType)]. ∀world::World. A(xs) → P
(
startUp xs (Start world)

)
.

The slide game application is deadlock-free, if it terminates for all finite se-
quences of user actions. This latter is guaranteed if for all well-defined finite lists
of user events the result of startUp is defined.

∀xs::[(Id,UniType)]. ∀world::World. eval xs → (
startUp xs (Start world)

) 6= ⊥

The eval function class is used in Sparkle to formulate the “complete” de-
finedness of nested lazy structures. For example, it is instantiated for Ints and
for lists of eval instances in the standard Clean libraries in the following way.

instance eval Int where eval :: !Int -> Bool

eval n = True

instance eval [a] | eval a where eval [x:xs] = eval x && eval xs

eval [] = True

124 M. Tejfel, T. Kozsik and Z. Horváth

The instance for Int makes use of that the result of a function is only defined if
its strict arguments are defined. Therefore eval ⊥ is ⊥ (i.e. not True), and for
all n of type Int such that n 6= ⊥, eval n = True. The eval instance for lists
is even more elaborated: eval xs = True, if xs 6= ⊥, the spine of xs is defined
and finite, and for every element x of xs, eval x = True.

To get eval working on lists of user events, further instantiations of the eval
class are needed: for Id, for UniType and for pairs of eval instances. These
instantiations are provided within Sio.

4. Semantics

This section presents an axiomatization of Object I/O. The intention is to
capture the expected behaviour of this library by providing the formal semantics
of its model, Sio. Reasoning about Object I/O programs will be accomplished
with respect to the semantics of Sio and not to the real implementation of Object
I/O. The semantics of Sio is described in two parts. The first part describes
the kinds of information that is relevant to the model, together with the basic
operations to query and update data. The second part – provided as a set of
axioms rather than Clean definitions – describes the dynamic characteristics of
Sio, namely how the processing of events takes place. The axioms will be written
as lemmas in the used proof system, Sparkle. This approach results in a concise
and high-level description of the semantics of Sio.

The use of axioms for defining the semantics of Sio rather than the imple-
mentation of the Sio scheduler is essential in expressing non-determinism (Sec-
tion 4.2 explains the reason why non-determinism is required, see the axioms for
selectEv). Indeed, the scheduler is implemented – hence simulations of Object
I/O programs can be executed in Sio –, but this implementation should not be
used in proofs. This means that the Reduce tactic of Sparkle should never be
applied on the functions that make up the implementation of the scheduler. One
means to achieve this is to apply the Opaque tactic of Sparkle on those functions.
Another possibility, not yet implemented, is to automatically enforce this obliga-
tion by modifying (customizing) Sparkle in such a way that it disallows reducing
a given set of functions.

4.1. Information stored in Sio

Proving properties of Sio programs, and even formulating more complex prop-
erties than the one about deadlock-freedom shown in Section 3.3, is impossible

A semantic model for proving properties 125

without understanding how information is stored in Sio. Figure 6 presents the
most important type definitions that occur in the implementation of Sio.

1 :: RId mes :== Id

2

3 :: Controller ls a

4 = ButtonController Id String ((ls,PSt a) -> (ls,PSt a))

5 | ReceiverController Id (UniType (ls,PSt a) -> (ls,PSt a))

6 | CustomController Id

7 | ...

8

9 :: Dialog_ ls a = Dialog_ [Controller ls a]

10 :: Process_ = Process_ UniType ((PSt UniType) -> PSt UniType)

11

12 :: SendType = Sync [Id] | Async Id

13 :: Event = Event Int Id UniType SendType

14

15 :: Dialog_Inner = Dialog_Inner UniType [Controller UniType UniType]

16 :: Process_State = ...

17 :: Process_Inner = Process_Inner Id Process_State [Dialog_Inner]

18 :: State = State [Process_Inner] [Event] [Event] Int Id Bool

19

20 :: IOSt a :== State

21 :: World_ :== PSt Void

Figure 6. Data structures used inside Sio

The inner state of a Sio application is of type State. This state is made
up of the processes, the user event queue, the system event queue, the store for
fresh identifiers, the identifier of the running process (similarly to controls an
identifier is assigned to each process) and a boolean flag (to be explained later).
The separation of the user event queue and the system event queue is useful for
expressing non-determinism – this will be discussed further in Section 4.2.

For all type variables a, the type IOSt a is just a synonym for State. Fur-
thermore, World is a record of two fields: field ls is Void and field io is State
again.

When building up a GUI application through the API of Sio, the programmer
defines Dialog and Process structures. These are turned into Dialog Inner
and Process Inner internally. In the slide game application, for instance, this is
achieved through the call to the startProcesses function. Process Inner serves
as the description of a process, containing the process identifier, the state of the
process (not detailed any further in Figure 6) and the dialogs of the process. The
local state of the process is part of the process state. Dialogs are stored internally

126 M. Tejfel, T. Kozsik and Z. Horváth

as Dialog Inner structures, which contain the local state of the dialog and its
controls.

The different controls are represented by the Controller type. A Controller
only stores the information which is relevant for the Sio model. For example, a
button is represented with a ButtonController tag, an identifier, a label and a
callback function. Id and RId are used to identify GUI controls and receivers,
respectively. No distinction is made internally between these two types.

User and system events are represented with the Event type. Each event has
an identifier (simply an Int value, because it is not accessible through the API
of Sio), the identifier of the control to be activated by the event, the content of
the event (encoded in UniType) and the designation of the SendType. An event
can be sent synchronously (messages sent with syncSend generate synchronous
system events) and asynchronously (system events generated by messages sent
with asyncSend and user events). An asynchronous event stores the identifier
of the sender process, and a synchronous event stores both the identifier of the
sender process and the identifiers of all the processes that are blocked on that
synchronous event. Blocked processes result from chains of syncSend calls. When
a callback function in a process calls syncSend, the process becomes blocked until
the sent message is processed by the target receiver. Becoming blocked means
that the executing callback function is suspended and the process is unable to
consume further events.

As mentioned earlier, there is a restriction in Sio on syncSend operations: in
a callback function of a control, after the application of syncSend the global state
of the application can only be changed by further message send operations. This
restriction is necessary to avoid a synchronization anomaly in the implementation
of Sio. The problem is the following. In Object I/O the execution of a callback
is not always an atomic action: if it contains a syncSend call, the execution is
suspended (the executing process is blocked) until the sent message is processed
by the callback function of the target control. During this time other callback
functions can be executed. Sio simulates this behaviour to a certain extent: if a
callback in a process calls syncSend, the scheduler will not dispatch any events to
the process until the synchronous message is received and processed by its target
callback function. However, internally syncSend is not a blocking operation.
Each callback is executed as an atomic step in Sio, whether or not it contains a
syncSend call. Therefore, if a callback invokes syncSend and afterwards accesses
the global state, the callback will behave differently in Object I/O and in Sio.
In Object I/O the accessed global state will be guaranteed to be a state after
the synchronous message was processed, while in Sio such a guarantee does not
exist. The restriction, however, is fairly relaxed. It is allowed in a callback to
send messages (both synchronously and asynchronously) after a call to syncSend.
This is made possible by a trick – and by the boolean flag in the State type.
When a callback function is executing, a call to syncSend sets the flag, which

A semantic model for proving properties 127

remains set until the end of the callback function. The flag modifies the behaviour
of subsequent message send operations: they will not actually send messages,
but only store messages in a “blocked event queue” within the current process.
When the callback of the target control of the syncSend completes, the messages
in the blocked event queue can be effectuated. The boolean flag in State has
another role as well: the operations modifying State (other than syncSend and
asyncSend) are paralyzed when the flag is set.

The startUp function is responsible to fill the user event queue with events
modelling user interaction from its first argument. When this is done, the sched-
uler is started. The way the scheduler works is further explained now.

4.2. Axioms

The axioms that describe how the processing of events takes place are listed
in Appendix C. To give an overview, some of the axioms are explained in detail
here. To increase readability, universal quantification of variables is omitted and
the premises are separated from the conclusion with a horizontal line.

Let pst be of type State. The functions uevsOf and sevsOf return the user
and the system event lists of pst, respectively.

uevsOf pst = [], sevsOf pst = []
scheduler pst = pst

uevsOf pst 6= [] ∨ sevsOf pst 6= []
scheduler pst = scheduler (step pst)

The first two axioms describe the scheduler function, which takes the program
state as argument, and returns a possibly updated program state. If there are no
events, the scheduler terminates, otherwise it performs step and then goes on.

Function allblocked returns true if and only if for all events in the user and
system event queues, the target process of the event (the process supervising the
dialog that contains the target control of the event) is blocked at a synchronous
communication.

allblocked pst.io

step pst = pst

¬allblocked pst.io

step pst = processEv (selectEv pst) pst

These two axioms specify the step function. If there is an event that can be
processed (the target process of the event is not blocked), the “first” such event
is selected (by selectEv) and processed (by processEv). If no events can be
processed, step simply returns its argument. Compare this with the axioms
of scheduler: if there are unprocessed events, but no event is processable, the
scheduler never returns; this corresponds to deadlock.

Function isMember is from the standard library of Clean: it decides whether
an item is a member of a list. Function blocked returns true when the target

128 M. Tejfel, T. Kozsik and Z. Horváth

process of the given event is blocked. The pos function returns the index of an
item in a list; the result is the length of the list if the given item is not in the
list. Function target returns the identifier of the target control of the event: the
control that should react to the event. Finally, sender returns the identifier of
the process that sent the message which was the origin of the event.

¬allbocked pst.io, selectEv pst = e

isMember e (uevsOf pst) ∨ isMember e (sevsOf pst)

¬allbocked pst.io, selectEv pst = e

¬blocked e pst.io

pos e1 (uevsOf pst) < pos e2 (uevsOf pst), ¬blocked e1 pst.io

selectEv pst 6= e2

pos e1 (sevsOf pst) < pos e2 (sevsOf pst), ¬blocked e1 pst.io
target e1 = target e2, sender e1 = sender e2

selectEv pst 6= e2

The four axioms above describe how the next event to process is selected. The
first axiom says that selectEv returns an event from one of the event queues,
and the second axiom adds that the target process of the event is not blocked.
The third axiom says that in the case of the user events, processable events are
served in the order of their occurrence in the queue. The fourth axiom says that
two events from the same process to the same control will be processed in the
order of generation. No scheduling restriction is postulated in the case of system
events coming from different processes or going to different controls, and in the
case of a race between a system event and a user event. This approach introduces
non-determinism in the axioms. Correctness proofs should not rely on the order
in which unrelated system events are processed. The axioms are devised in such
a way that a property of a program can only be derived if the property holds
for arbitrary scheduling. Moreover, whether a user event or a system event is
processed at a given instance of time may depend on the speed with which the
user interacts with the program. The non-determinism in the axioms provides the
necessary abstraction to discard exact timing issues when constructing proofs.

Given an identifier, controlId decides whether it identifies a control. More-
over, remove removes (the first occurrence of) an item from a list.

pst.io = State ps uevs sevs is cp fl, ¬controlId (target e) ps

processEv e pst = {pst & io = State ps (remove e uevs) (remove e sevs) is cp fl}

A semantic model for proving properties 129

This axiom can be used to get rid of invalid events: if the target of an event
is not an identifier of a control, processEv simply removes the event from the
event queues. Obviously, the event will be in one of the event queues; remove will
remove it from that event queue, and it will leave the other queue unchanged.

The procLS and diaLS functions return the local state of the process and
that of the dialog containing a given control. Function control returns the
Controller structure corresponding to a control identifier in a program state.
The isButton function decides whether a control is a button and callbackb
returns the control function associated to a button control. Finally, updState
updates the program state.

updState :: Event UniType (PSt UniType) -> State

The equality

updState e lsd {ls = lsp, io = State ps uevs sevs is cp flag}
=

State ps’ uevs’ sevs’ is cp False

means that

• in ps’ the local state of the dialog and the process that contains the control
identified by “target e” is lsd and lsp, respectively, otherwise ps’ is the
same as ps, and

• the event is removed from the event queues: “uevs’ = remove e uevs”
and “sevs’ = remove e sevs”.

async e, t = target e, lsp = procLS t pst, lsd = diaLS t pst
ctrl = control t pst, isButton ctrl, fun = callbackb ctrl

(ls′d, pst′) = fun (lsd, {ls = lsp, io = setCurrPr t pst.io})
s = updState e ls′d pst′

processEv e pst = {pst & io = s}
The last presented axiom describes how to process a user event that corresponds
to pushing a button on the GUI. The button is looked up, the local state of the
containing dialog and process is determined, and its control function is called.
The control function takes the local state of the dialog (lsd), the local state of
the process (lsp) and the state of the complete program (pst.io) as arguments.
It returns updated local states, and – e.g. if some messages are sent or other
controls are modified – an updated program state. The final step is to refresh
the local state of the containing process and dialog in the program state and to
remove the processed event from the event queue. This is accomplished with the
updState function.

130 M. Tejfel, T. Kozsik and Z. Horváth

5. Reasoning with Sio and Sparkle

The way to use the Sparkle proof tool and the Sio library together will be
illustrated now with two examples; the first one is more general, while the sec-
ond one is specific to the slide game application. The first example shows that
meaningless user input has no effect. User interaction is simulated in Sio by
calling startUp with a list of user events. Since it is possible to pass malformed
user events (e.g. events with invalid target) to this function, care must be taken
to ignore such events. This approach is analogous to the way syncSend and
asyncSend in Object I/O handle messages with non-existing targets. The rule
that captures this situation is the ninth axiom of Section 4.2. Note that in gen-
eral it is impossible to tell whether an event has a valid target in advance, by
simply looking at the parameters passed to startUp. The reason is that the
process structure need to be static neither in Object I/O, nor in Sio: the GUI
program might create processes (and dialogs with controls) dynamically, e.g. as
a response to a former event. Therefore the validity of the target identifier of an
event depends on when the event is processed. The property that is formulated
here is that if the user of slidegame does not do anything meaningful, then the
program does not do anything either. If all the user events have invalid target
with respect to the initial process structure, then the process structure will not
change, hence all the events will be invalid (and will be ignored) when they are
processed.

The controlId function can be used to decide whether a given identifier
indeed identifies a control in a process structure. The predicate all is from
the standard library; it can be used to universally quantify a predicate over the
elements of a list. The predicate describing that all events in a list of events have
invalid targets is the following.

wrongAll :: ![Event] ![Process_Inner] -> Bool

wrongAll events processes = all wrong events

where wrong event = not (controlId (target event) processes)

Now the desired property is written as follows.

∀processes :: [Process Inner] ∀uevs :: [Event]
∀idStore :: Int ∀currProc :: Id ∀flag :: Bool
wrongAll uevs processes →
scheduler {PSt|ls = toUni Void, io = State processes uevs [] idStore currProc flag}

= {PSt|ls = toUni Void, io = State processes [] [] idStore currProc flag}
This property can be proved by induction – either on uevs or on the length
of uevs. Both approaches have advantages: the former is a bit simpler, and

A semantic model for proving properties 131

the latter is more general. If induction on uevs is used, one has to show that
the scheduler (i.e. selectEv) will always select the first event in the user event
queue (note that events having wrong target are never blocked and never generate
system events). If induction on the length of uevs is used, one has to prove that
removing an element from a finite list reduces the length of the list. The latter
approach is more general in the sense that it can also be used when some events
in the user event queue might be blocked (which is not the case in this example),
and hence the events are processed in an order different from how they show up
in the queue. In this paper a proof using induction on the length of the user
event queue is sketched. For this reason the following lemma is introduced and
proved by induction on n.

∀n :: Int ∀processes :: [Process Inner] ∀uevs :: [Event]
∀idStore :: Int ∀currProc :: Id ∀flag :: Bool
length uevs = n →
wrongAll uevs processes →
scheduler {PSt|ls = toUni Void, io = State processes uevs [] idStore currProc flag}

= {PSt|ls = toUni Void, io = State processes [] [] idStore currProc flag}
Since ∀uevs ∀processes (wrongAll uevs processes → length uevs ≥ 0), the cases
n = ⊥ and n < 0 are easy to prove. The case n = 0 means that uevs = [],
so the first axiom of Section 4.2 applies. The last case of the induction is the
inductive case. The second, the fourth, the fifth and the ninth axioms are needed
to dissolve this case.

The proof of this property consists of about 1000 proof steps. It takes about
eight seconds to verify it in Sparkle using a 1600 MHz Pentium M machine. The
Sparkle sec file containing the machine-verifiable proof is available at [7].

The second example is related to the slide game application. The property
analyzed here is, roughly, that there is always a hole on the board, a button
without a number printed on it (actually, a stronger statement also holds, i.e.
there is always exactly one hole on the board). More precisely, it is shown that
the list that forms the local state of the game process contains a pair with zero
as the second component (remember that the hole is represented with a zero in
the local state). Clearly, this property will hold during the whole game, but here
it is proven merely that the property holds after a single user action. Based on
experience from this proof, one could construct an inductive proof (similarly to
the previous example) for the more general property, but that is not covered in
this paper.

Again, a predicate is defined that queries the data structures exposed by
Sio for theorem proving. Given an argument of type PSt a for some a, the
predicate takes the local state of the first process, converts it from UniType
to [(Id,Int)] (the explicitly typed typedFromUni provides type information
necessary for Sparkle), and searches for the value 0 among the second components

132 M. Tejfel, T. Kozsik and Z. Horváth

of the list elements. For simplicity, the definition of the localState function is
omitted.

containsZero :: (PSt a) -> Bool

containsZero {io=State processes _ _ _ _ _} =

isMember 0 (map snd (typedFromUni (localState (hd processes))))

where typedFromUni :: UniType -> [(Id,Int)]

typedFromUni val = fromUni val

localState (Process_Inner _ proc_state _) = ...

As mentioned in Section 3.2, properties with class restrictions are not yet sup-
ported in Sparkle, therefore a workaround is applied in order to avoid typing
problems during proof construction. According to this workaround, PSt a is
turned into a non-parametric type PSt by replacing the type parameter with
UniType.

The property to prove can be written in the following way.

∀e :: Event ∀world :: World
(
eval e → containsZero

(
startUp [e] (Start world)

))

For proving this property, many of the Sio axioms are required, although those
related to synchronously sent messages and blocked processes are not needed.
Note, however, that processing the user event might trigger an asyncSend (if the
target of e is a button neighbouring the hole), which will add an event to the
system event queue. The scheduler will process this system event as well.

The complete proof of the above property is about 2300 steps (the proof is
available at [7]). At first sight it might be surprising that Sparkle requires 300
MB of heap space to verify the proof, and that this verification takes more than
an hour on a 1600 MHz Pentium M machine. It is very tedious to construct proofs
if some of the proof steps take tens of minutes. For this reason some technical
tricks might be useful to employ. One trick is to introduce an abbreviation
whenever a large expression springs up during the proof, and another trick is
to use many “section files” containing incomplete proofs. The approach Sparkle
follows is to store one or more complete proofs in each section file, and to use them
as lemmas for proving properties in other section files. Assume, for example,
that the section file A proves a property used in another section file B. The
problem with this approach is that when the property is applied as a lemma in
B, Sparkle loads (and verifies the proofs in) A. If the verification of A requires
lots of memory and lots of time, working on B becomes rather cumbersome.
The proving process could be made much more efficient if Sparkle provided more
support for modularizing proofs – similarly to how the compilation of different
compilation units is separated from each other and from the linking of library
units in many programming languages. To alleviate this problem, the following
guidelines were invented while assembling the proof for the property of the second
example.

A semantic model for proving properties 133

• If a large expression springs up during the proof (e.g. a PSt object contain-
ing the Sio model of the Object I/O application with all the Controllers
and callback functions), then copy-and-paste this expression into a Clean
source file, turn it into a function definition, and use this abbreviation in-
stead of the large expression (this can be achieved with the Rewrite tactic).

• If the incomplete proof(s) in a section file requires too much resources (time
and memory) to work with, create new section files, move the unproven
subgoals into them and work with these section files.

• Do not refer from one section file to another. Do not apply properties
proven in one section file as lemmas for proofs in another section files.

• Create copies of section files in which you can check that a property proved
in one section file can be used as a lemma in a proof in another section file.
Do this for pairs, do not combine them transitively.

This second example reveals that the ability to describe the behaviour of an
Object I/O program in temporal logic (rather than the classical logical approach
used in this paper) would highly facilitate reasoning. The property that there
is always a hole on the game board is best to describe as an “always true”
property of the slide game application. Sparkle-T [8, 9], which extends Sparkle
with support for temporal logic, could be used for this purpose – its integration
with Sio is planned as future work.

6. Conclusion

This paper presented a model of the Clean Object I/O library. Based on
this model it is feasible to reason about interactive Clean programs with Sparkle,
the dedicated theorem prover for Clean. The model – Sio – has a programming
interface supporting a part of the Object I/O functionality. Many programs
written using the Object I/O library can be transformed into the model. In
some cases the transformation is almost trivial, but it becomes harder if types
of functions are explicitly declared in the code. Sio models the semantics of (a
part of) Object I/O by exposing information on the modeled GUI application to
the prover and by providing axioms (described as lemmas in the proof tool) that
can be used for the proofs.

Considering related work, a framework for reasoning about file I/O in Clean
and Haskell programs is described in [10, 11, 12]. The semantics of file opera-
tions is defined in an explicit model of external world-state. Proofs are performed
regarding the observable effect of real-world functional I/O. The Sparkle proof-
assistant was used for machine-verifying these proofs. Sparkle does not support

134 M. Tejfel, T. Kozsik and Z. Horváth

Clean programs with I/O, so the proofs are meta-proofs. Paper [13] introduces
a model for interactive programs. That approach is more general than the one
presented here. The model discussed in this paper focuses on Object I/O ap-
plications, hence the transformation of real Clean programs into this model is
expected to be simpler.

In Sparkle classical logic can be used to describe properties of programs. In
the case of interactive applications, however, further useful properties can be
expressed with temporal logic. Sparkle-T [8, 9], an extension to Sparkle supports
some temporal logical operators. This machinery could make reasoning about
communicating Object I/O processes much simpler, therefore in the future it
will be investigated how to combine the power of Sparkle-T with the Sio model.

Acknowledgement

We would like to express our gratitude to the reviewers for the precious feed-
back that helped improve the paper significantly. We are also obliged to the Clean
team at the Radboud University of Nijmegen, especially to Marko van Eekelen,
Maarten de Mol, Peter Achten and Rinus Plasmeijer for their conceptual support
and valuable technical assistance.

References

[1] Plasmeijer R. and van Eekelen M., Concurrent Clean Version 2.0
Language report,
http://clean.cs.ru.nl/download/Clean20/doc/CleanRep2.0.pdf,
2001.

[2] de Mol M., van Eekelen M.C.J.D. and Plasmeijer M.J., Theorem
proving for functional programmers, IFL, eds. T.Arts and M.Mohnen, M.,
LNCS 2312, Springer Verlag, 2001, 55–71.

[3] de Mol M., van Eekelen M. and Plasmeijer R., Proving properties
of lazy functional programs with Sparkle, Central-European Functional Pro-
gramming School: Second Summer School, CEFP 2007, Cluj-Napoca, Ro-
mania, June 23-30, 2007. Revised Selected Lectures, Springer Verlag, 2008,

A semantic model for proving properties 135

41-86.
http:dx.doi.org/10.1007/978-3-540-88059-2 2

[4] Achten P. and Plasmeijer M.J., Interactive functional objects in Clean,
Implementation of functional languages, eds. C.Clack, K.Hammond and
A.J.T.Davie, LNCS 1467, Springer Verlag, 1997, 304–321.

[5] Barendsen E. and Smetsers S., Uniqueness typing for functional lan-
guages with graph rewriting semantics, Mathematical Structures in Com-
puter Science, 6 (1996), 579–612.

[6] van Kesteren R., van Eekelen M.C.J.D. and de Mol M., Proof
support for generic type classes, Trends in Functional Programming, Vol.
5., ed. H.W.Loidl, Intellect, 2004, 1–16.

[7] Kozsik T. and Tejfel M., Correctness of distributed functional programs,
http://aszt.inf.elte.hu/~fun ver/index.html.en#ToC12, 2007.

[8] Tejfel M., Horváth Z. and Kozsik T., Temporal properties of Clean
programs proven in Sparkle-T, CEPF, ed. Z.Horváth, LNCS 4164, Springer
Verlag, 2005, 168–190.

[9] Tejfel M., Horváth Z. and Kozsik T., Extending the Sparkle Core
language with object abstraction, Acta Cybern., 17 (2006), 419-445.

[10] Dowse M., Strong G. and Butterfield A., Proving make correct:
I/O proofs in Haskell and Clean, eds. R.Pena, and T.Arts, Implemen-
tation of Functional Languages, 14th International Workshop, IFL 2002,
Madrid, Spain, September 16-18, 2002. Revised Selected Papers, LNCS
2670, Springer Verlag, 2003, 68–83.

[11] Dowse M., Butterfield A. and van Eekelen M.C.J.D., Reasoning
about deterministic concurrent functional I/O, IFL, eds. C.Grelck, F.Huch,
G.Michaelson and P.W.Trinder, LNCS 3474, Springer Verlag, 2004, 177–
194.

[12] Dowse M. and Butterfield A., Modelling deterministic concurrent
I/O, International Conference on Functional Programming (ICFP), eds.
J.H.Reppy and J.L.Lawall, ACM, 2006, 148–159.

[13] Achten P., van Eekelen M. and Plasmeijer R., Towards a unified
semantic model for interactive applications using arrows and generic edi-
tors, Proceedings of the Seventh Symposium on Trends in Functional Pro-
gramming, TFP 2006, Nottingham, UK, 19-21 April 2006, ed. H.Nillsson,
279–292.

M. Tejfel, T. Kozsik and Z. Horváth
Dept. of Programming Languages and Compilers
Eötvös Loránd University
Pázmány Péter sétány 1/C,
H-1117 Budapest, Hungary
{matej,kto,hz}@inf.elte.hu

136 M. Tejfel, T. Kozsik and Z. Horváth

A. The application programming interface of Sio

1 definition module sio

2 import StdEnv

3 import StdMaybe

4

5 ::UniType = Unit Int | Pair UniType UniType

6

7 class Uni a where
8 fromUni:: UniType -> a

9 toUni:: a -> UniType

10 instance Uni Int

11 instance Uni Char

12 instance Uni String

13 instance Uni Void

14 instance Uni Id

15 instance Uni (a, b) | Uni a & Uni b

16 instance Uni (a,b,c) | Uni a & Uni b & Uni c

17 instance Uni (a,b,c,d) | Uni a & Uni b & Uni c & Uni d

18 instance Uni [a] | Uni a

19 instance Uni (Maybe a) | Uni a

20

21 :: WindowAttribute st = WindowActivate (IdFun st)

22 | WindowClose (IdFun st)

23 | WindowDeactivate (IdFun st)

24 | WindowHMargin Int Int

25 | WindowId Id

26 | WindowIndex Int

27 | WindowInit (IdFun st)

28 | WindowInitActive Id

29 | WindowItemSpace Int Int

30 | WindowOuterSize Size

31 | WindowPos ItemPos

32 | WindowViewSize Size

33 | WindowVMargin Int Int

34 | WindowCancel Id

35 | WindowOk Id

36

37 :: ControlAttribute st

38 = ControlActivate (st -> st)

39 | ControlDeactivate (st -> st)

40 | ControlFunction (st -> st)

41 | ControlHide

42 | ControlId Id

A semantic model for proving properties 137

43 | ControlMinimumSize Size

44 | ControlPos ItemPos

45 | ControlResize (Size -> Size -> Size -> Size)

46 | ControlSelectState SelectState

47 | ControlTip String

48 | ControlWidth ControlWidth

49

50 :: ControlWidth = PixelWidth Int

51 | TextWidth String

52 | ContentWidth String

53

54 :: Colour = RGB RGBColour

55 | Black | White

56 | DarkGrey | Grey | LightGrey

57 | Red | Green | Blue

58 | Cyan | Magenta | Yellow

59

60 :: RGBColour = { r:: !Int, g:: !Int, b :: !Int}

61

62 :: ItemPos :== (ItemLoc, ItemOffset)

63

64 :: ItemLoc = Fix

65 | LeftTop | RightTop

66 | LeftBottom | RightBottom

67 | Left | Center | Right

68 | LeftOf Int | RightTo Int

69 | Above Int | Below Int

70 | LeftOfPrev | RightToPrev

71 | AbovePrev | BelowPrev

72

73 :: ItemOffset = NoOffset

74 | OffsetVector Vector2

75 | OffsetFun Int ((Rectangle,Point2) -> Vector2)

76 instance zero ItemOffset

77

78 :: Controller ls a

79 (:+:) :: [Controller ls a] [Controller ls a] -> [Controller ls a]

80 ListLS :: [[Controller ls a]] -> [Controller ls a]

81

82 EditControl :: String ControlWidth Int

83 [ControlAttribute (ls,PSt a)]

84 -> [Controller ls a] | Uni a & Uni ls

85 TextControl :: String

86 [ControlAttribute (ls,PSt a)]

87 -> [Controller ls a] | Uni a & Uni ls

88 ButtonControl:: String

138 M. Tejfel, T. Kozsik and Z. Horváth

89 [ControlAttribute (ls,PSt a)]

90 -> [Controller ls a] | Uni a & Uni ls

91 Receiver :: (RId m)

92 (b (ls,PSt a) -> (ls,PSt a))

93 [ControlAttribute (ls,PSt a)]

94 -> [Controller ls a] | Uni a & Uni ls

95 CustomControl:: Size look

96 [ControlAttribute (ls,PSt a)]

97 -> [Controller ls a] | Uni a & Uni ls

98

99 getWindow :: !Id !(IOSt l) -> (!Maybe WState, !IOSt l)

100 setControlLook :: !Id !Bool (Bool,look) !(IOSt l) -> IOSt l

101 getControlText :: !Id !WState -> (Bool,Maybe String)

102 setControlText :: !Id !String !(IOSt l) -> IOSt l

103

104 :: Id = Id Int

105 instance == Id

106

107 :: RId m

108

109 :: State

110 :: IOSt l

111 :: PSt l = { ls:: !l, io :: !IOSt l}

112 :: WState

113

114 :: Process_

115 :: Dialog_ ls a

116 :: World_

117

118 my_ :: World -> World_

119

120 class Ids env where
121 openId :: !env -> (!Id, !env)

122 openIds :: !Int !env -> (![Id], !env)

123 openRId :: !env -> (!RId m, !env)

124 openRIds :: !Int !env -> (![RId m], !env)

125

126 instance Ids World_

127 instance Ids (IOSt l)

128 instance Ids (PSt l)

129

130 accPIO :: !((IOSt a) -> (b,IOSt a)) !(PSt a) -> (!b, !PSt a)

131 appPIO :: !((IOSt a) -> (IOSt a)) !(PSt a) -> (PSt a)

132

133 :: Vector2 = { vx :: !Int, vy :: !Int}

134 :: Size = { w :: !Int, h :: !Int}

A semantic model for proving properties 139

135 :: Point2 = { x :: !Int, y :: !Int}

136 :: Rectangle = { corner1 :: !Point2, corner2 :: !Point2}

137 :: ViewDomain :== Rectangle

138 :: ViewFrame :== Rectangle

139 :: UpdateArea :== [ViewFrame]

140 :: UpdateState = { oldFrame :: !ViewFrame

141 , newFrame :: !ViewFrame

142 , updArea :: !UpdateArea

143 }

144

145 :: SelectState = Able | Unable

146

147 hmm :: !Real -> Int

148

149 :: Void = Void

150 :: IdFun st :== st -> st

151

152 noLS :: (.a->.b) !(.c,.a) -> (.c,.b)

153 noLS1 :: (.x->.a->.b) .x !(.c,.a) -> (.c,.b)

154

155 syncSend :: !(RId b) b !(PSt a) -> (!SendReport, !PSt a) | Uni b

156 asyncSend :: !(RId b) b !(PSt a) -> (!SendReport, !PSt a) | Uni b

157

158 :: SendReport = SendOk

159 | SendUnknownReceiver

160 | SendUnableReceiver

161 | SendDeadlock

162 | OtherSendReport !String

163

164 :: Picture

165 setPenColour:: !Colour !Picture -> Picture

166 setPenSize:: !Int !Picture -> Picture

167 drawLine:: !Point2 !Point2 !Picture -> Picture

168 fill:: a !Picture -> Picture

169

170 openProcesses:: ![Process_] !(PSt a) -> PSt a | Uni a

171 startProcesses:: ![Process_] !World_ -> World_

172

173 openDialog :: ls !(Dialog_ ls a) !(PSt a) -> (!ErrorReport, !PSt a)

174 | Uni a & Uni ls

175 openReceiver :: ls ![Controller ls a] !(PSt a) -> (!ErrorReport, !PSt a)

176 | Uni a & Uni ls

177

178 :: ErrorReport = NoError

179 | ErrorViolateDI

180 | ErrorIdsInUse

140 M. Tejfel, T. Kozsik and Z. Horváth

181 | ErrorUnknownObject

182 | ErrorNotifierOpen

183 | OtherError !String

184

185 :: DocumentInterface = NDI | SDI | MDI

186

187 Process :: DocumentInterface a ((PSt a) -> PSt a) [b] -> Process_ | Uni a

188 Dialog :: String [Controller ls a] [b] -> Dialog_ ls a

189

190 startIO :: DocumentInterface a ((PSt a) -> PSt a) [c] World_ -> World_

191 | Uni a

A semantic model for proving properties 141

B. Manipulation of data stored in Sio

message :: !Event → UniType – The message in an event.

target :: !Event → Id – The identifier of the target controller of an event.

sender :: !Event → Id – The identifier of the sender process of an event.

async :: !Event → Bool – Whether the event is asynchronous.

sync :: !Event → Bool – Whether the event is synchronous.

controlId :: !Id ![Process Inner] → Bool – Whether the given identifier identifies a
control.

procLS :: !Id !(PSt a) → UniType – The local state of the process containing the
controller identified by the given identifier.

diaLS :: !Id !(PSt a) → UniType – The local state of the dialog containing the con-
troller identified by the given identifier.

getTxt :: !Id !State → (Bool,Maybe String) – The label of the controller identified
by the given identifier.

setTxt :: !Id !String !State → State – Set the label of a controller identified by the
given identifier.

control :: !Id !(PSt a) → Controller UniType UniType – The controller identified by
the given identifier.

isButton :: !(Controller ls a) → Bool – Whether the controller is a ButtonCon-
troller.

isEditor :: !(Controller ls a) → Bool – Whether the controller is an EditorCon-
troller.

isReceiver :: !(Controller ls a) → Bool – Whether the controller is a ReceiverCon-
troller.

142 M. Tejfel, T. Kozsik and Z. Horváth

callbackb :: !(Controller ls a) → ((ls, PSt a) → (ls, PSt a)) – The callback function
of a ButtonController.

callbackr :: !(Controller ls a) → (UniType (ls, PSt a) → (ls, PSt a)) – The callback
function of a ReceiverController.

currProc :: !(PSt a) → Id – The identifier of the currently running process.

uevsOf :: !(PSt a) → [Event] – The user event queue of pst.io for a given pst.

sevsOf :: !(PSt a) → [Event] – The system event queue of pst.io for a given pst.

blockedpr :: !Id !(PSt a) → Bool – Whether the process identified by the given
identifier is blocked at a synchronous communication.

blocked :: !Event !State → Bool – Whether the target process of the given event
is blocked at a synchronous communication.

allblocked :: !State → Bool – Whether blocked holds for all events in the user and
system event queues.

syncBlocked :: !State → Bool – The “blocked flag” of the current state.

procSt :: !Id !(PSt a) → (Id,Process State) – The identifier and the state of the
process with the given identifier (the first argument is returned).

syncBlock :: !(Id,Process State) !(PSt a) → (PSt a) – Set the state of the process
to blocked (with an empty blocked event queue), and set the “blocked flag” of
the current state to True.

addBlockSync :: !Id !UniType !(Id, Process State) !(PSt a) → (PSt a)
Add a synchronous message event to the blocked event queue of the process.

addBlockAsync :: !Id !UniType !(Id, Process State) !(PSt a) → (PSt a)
Add an asynchronous message event to the blocked event queue of the process.

addSevSync :: !Id !UniType !(Id, Process State) !(PSt a) → (PSt a)
Add a synchronous message event to the system event queue.

addSevAsync :: !Id !UniType !(Id, Process State) !(PSt a) → (PSt a)
Add an asynchronous message event to the system event queue.

A semantic model for proving properties 143

wakeUp :: ![Id] (PSt a) → (PSt a) – Wake up the blocked processes identified by
the given list of identifiers, and create system events from the events in the
blocked event queues of the processes waken up.

updState :: !Event !UniType !(PSt UniType) → State – Update the local state of
the process and that of the dialog containing the target controller of the given
event, and set the “blocked flag” of the state to False.

setCurrPr :: !Id !State → State – Set the “current process” argument of the state
to the process containing the controller identified by the given identifier.

pos :: !a ![a] → Int | Eq a – Return the (zero-based) index of an item in a list, or
the length of the list if the item is not in the list.

remove :: !a ![a] → [a] | Eq a – Remove (the first occurrence of) an item from a
list. Similar to the standard library function removeMember.

144 M. Tejfel, T. Kozsik and Z. Horváth

C. Axioms

uevsOf pst = [], sevsOf pst = []
scheduler pst = pst

uevsOf pst 6= [] ∨ sevsOf pst 6= []
scheduler pst = scheduler (step pst)

allblocked pst.io

step pst = pst

¬allblocked pst.io

step pst = processEv (selectEv pst) pst

¬allbocked pst.io, selectEv pst = e

isMember e (uevsOf pst) ∨ isMember e (sevsOf pst)

¬allbocked pst.io, selectEv pst = e

¬blocked e pst.io

pos e1 (uevsOf pst) < pos e2 (uevsOf pst), ¬blocked e1 pst.io

selectEv pst 6= e2

pos e1 (sevsOf pst) < pos e2 (sevsOf pst), ¬blocked e1 pst.io
target e1 = target e2, sender e1 = sender e2

selectEv pst 6= e2

pst.io = State ps uevs sevs is cp fl, ¬controlId (target e) ps

processEv e pst = {pst & io = State ps (remove e uevs) (remove e sevs) is cp fl}

async e, t = target e, lsp = procLS t pst, lsd = diaLS t pst
ctrl = control t pst, isButton ctrl, fun = callbackb ctrl

(ls′d, pst′) = fun (lsd, {ls = lsp, io = setCurrPr t pst.io})
s = updState e ls′d pst′

processEv e pst = {pst & io = s}

async e, t = target e, lsp = procLS t pst, lsd = diaLS t pst
ctrl = control t pst, isReceiver ctrl, fun = callbackr ctrl

(ls′d, pst′) = fun (message e) (lsd, {ls = lsp, io = setCurrPr t pst.io})
s = updState e ls′d pst′

processEv e pst = {pst & io = s}

A semantic model for proving properties 145

async e, t = target e,
ctrl = control t pst, isEditor ctrl

s = setControlText t (fromUni (message e)) pst.io

processEv e pst = {pst & io = s}

sync e, t = target e, lsp = procLS t pst, lsd = diaLS t pst
ctrl = control t pst, isReceiver ctrl, fun = callbackr ctrl

(ls′d, pst′) = fun (message e) (lsd, {ls = lsp, io = setCurrPr t pst.io})
s = updState e ls′d pst′, blocked e s

processEv e pst = {pst & io = s}

sync e, t = target e, lsp = procLS t pst, lsd = diaLS t pst
ctrl = control t pst, isReceiver ctrl, fun = callbackr ctrl

(ls′d, pst′) = fun (message e) (lsd, {ls = lsp, io = setCurrPr t pst.io})
s = updState e ls′d pst′, ¬blocked e s

processEv e pst = wakeUp (blockedlist e) {pst & io = s}

sync e, t = target e, ctrl = control t pst, isButton ctrl

processEv e pst = ⊥

sync e, t = target e, ctrl = control t pst, isEditor ctrl

processEv e pst = ⊥

proc = currProc pst, ps = procSt proc pst, blockedpr proc pst
pst′ = addBlockSync targetId msg ps pst

snd(syncSend targetId msg pst) = pst′

proc = currProc pst, ps = procSt proc pst, blockedpr proc pst
pst′ = addBlockAsync targetId msg ps pst

snd(asyncSend targetId msg pst) = pst′

proc = currProc pst, parentPR targetId pst 6= proc
ps = procSt proc pst, ¬blockedpr proc pst

pst′ = addSevSync targetId msg ps pst, pst′′ = syncBlock ps pst′

snd(syncSend targetId msg pst) = pst′′

146 M. Tejfel, T. Kozsik and Z. Horváth

proc = currProc pst, ps = procSt proc pst, ¬blockedpr proc pst
pst′ = addSevAsync targetId msg ps pst,

snd(asyncSend targetId msg pst) = pst′

proc = currProc pst, parentPR targetId pst = proc, ps = procSt proc pst,
¬blockedpr proc pst, lsp = procLS targetId pst, lsd = diaLS targetId pst

ctrl = control targetId pst, isReceiver ctrl, fun = callbackr ctrl
(ls′d, pst′) = fun msg (lsd, {ls = lsp, io = setCurrPr targetId pst.io})

s = updState proc ls′d pst′

snd(syncSend targetId msg pst) = {pst & io = s}

syncBlocked iost

setControlText targetId str iost = ⊥

¬syncBlocked iost

setControlText targetId str iost = setTxt targetId str iost

syncBlocked iost

getWindow targetId iost = ⊥

¬syncBlocked iost, (Just wst, iost) = getWindow targetId iost

getControlText targetId wst = getTxt targetId iost

