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Abstract. In this paper we describe the development of an image re-
trieval system which is able to browse, cluster and classify large digital
image databases. This work was motivated by the projects of the Visuali-
sation Centre of the Eötvös Loránd University, where several such datasets
are readily available for processing. The system’s functions are based on
a Gaussian Mixture Model (GMM) representation of the images. Image
matching is done by matching the representations with a distance mea-
sure based on the approximation of the Kullback-Leibler divergence. The
GMMs are estimated with an improved Expectation Maximization (EM)
algorithm that avoids convergence to the boundary of the parameter space.
Without this improvement the method is inefficient in our case because it
converges to singular solutions in most of the cases.

1. Introduction

In our days very large collections of images need to be processed, such as photo
collections on the Internet or geospatial image databases. Image retrieval sys-
tems may be used for searching and indexing these large digital image databases.
Content-based Image Retrieval (CIR) aims at indexing images by automatic de-
scription which only depends on their objective visual content (color, shapes,
texture, etc.). Our aim was to find a content-based image matching method that
we can use in image searching and clustering tasks.

The main issue of image matching is the high dimensionality of the feature
space. So the goal is to find a low dimensional representation of images that
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is low enough for fast processing but still contains the substantive information
about the image. There are two main phases in image representation as you can
see on Figure 1. The first phase is to choose the representation space and the
second is to define an appropriate distance measure in that space.

Figure 1. The image retrieval process: GMM representation of the images com-
puted via a mid-level representation. The image matching is based on the match-
ing of the GMMs, the retrieval tasks (browsing, clustering, etc.) are based on
the distance matrix.

In our work images are represented by Gaussian Mixture Models (GMMs)
after the blobworld method introduced by Carson et al. [1]. Each component
of the mixture represents one region with similar color and texture (blob) of the
image. Despite of using some global features this method allows to represent
images with the objects found on them. We do not recognize what type of an
object it is, but the representation contains the information that - for example -
there is a shiny, white, longish object on the left. In the above mentioned paper
Carson et al. [1] used the well known Expectation Maximization (EM) algorithm
for fitting Gaussian Mixtures for determining a representation of the images.
This is a powerful method even in its original form, but it has problems with
the determination of the number of components and its convergence properties
are not always satisfactory. To handle these problems we used a modified EM
algorithm proposed by Figueiredo and Jain [3] and also made some improvements
ourselves that is introduced in Section 3.2.

After choosing the image representation the second phase is the definition of
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the distance measure in the representation space. The Kullback-Leibler (KL)
divergence is a well-known dissimilarity measure of densities, thus it can be used
as a distance measure of GMMs. Since there is no closed form expression for
the KL-divergence between two GMMs, computing this distance can be done by
using Monte-Carlo simulations, but they are very time-consuming. Goldberger
et al. [4] introduced a new Matching Based Approximation of the KL distance
which we also use.

The rest of the paper is organized as follows. Section 2 reviews the theoretical
background of GMMs and the EM algorithm. Section 3 describes image repre-
sentations with GMMs and the modified EM algorithm. The proposed image
matching method is presented in Section 4. In Section 5 we present our results
with a software we developed and Section 6 gives some conclusions.

2. Background

2.1. Gaussian Mixture Models

Formally we say that a d dimensional random variable Y = [Y1, . . . , Yd]
T

follows a k component mixture distribution if its probability function can be
written in the following form:

p(y | Θ) =

k∑
m=1

αmp(y | Θm),

where

• y = [y1, . . . , yd]
T is one particular sample of Y ,

• p is a parametric family of d dimensional distributions,

• α = α1, . . . , αk is a discrete distribution,

• Θm is the set of the parameters of the mth component,

• Θ = {Θ1, . . . ,Θk, α1, . . . , αk}
is the complete set of parameters fully characterizing the mixture.

GMMs are mixtures where components are d dimensional Gaussians.

Having n independent samples of the mixture distibution Y = {y(1), . . . , y(n)}
the log-likelihood funcion has the following form:

l(Θ) = log p(Y | Θ) = log

n∏
i=1

p(y(i) | Θ) =

n∑
i=1

log

k∑
m=1

αmp(y
(i) | Θm).
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So the maximum likelihood (ML) estimation is

Θ̂ML = arg max
Θ

{
log p(Y | Θ)

}
.

2.2. The EM algorithm

Maximization of the log-likelihood l(Θ) can be efficiently carried out by the
Expectation Maximization (EM) algorithm. EM is a widely used method for
estimating the parameter set of models using incomplete data. (Markov chain
Monte-Carlo method can also be used for this task [7], but it is computationally
demanding.) The missing part of the data is a set of labels Z = (z(1), . . . , z(n))
associated with the elements of the samples. These missing variables are k di-

mensional z(i) = (z
(i)
1 , . . . , z

(i)
k ) where z

(i)
m indicates whether the ith sample is

generated by th mth component, in this case z
(i)
l = 0 for l 6= m and z

(i)
m = 1.

In the presence of Y and Z the (complete-data) log-likelihood function can be
written as

log p(Y,Z | Θ) =

n∑
i=1

k∑
m=1

z(i)m log
[
αmp(y

(i) | Θm)
]
.

The EM algorithm produces a sequence of estimates Θ̂(t), k = 1, 2, . . . by
alternatively applying the following two steps:

• E-step: This step finds the expected value (EV) of the complete-data
log-likelihood log p(Y,Z | Θ) with respect to the unknown data Z given
the observed data Y and the current parameter estimates Θ(k). Since
the log-likelihood is linear in Z we only have to compute the conditional

expectation of the missing variables: W = E
[
Z | Y, Θ̂(t)

]
.

Plugging this into the log-likelihood, the result - also called the Q-function
- is the following:

Q(Θ, Θ̂(t)) = E
[

log p(Y,Z | Θ̂(t)) | Y, Θ̂(t)
]

or more simply

Q(Θ, Θ̂(t)) = log p(Y,W | Θ).

• M-step: This step of the EM algorithm is to maximize the expectation we
computed in the first step. That is, we find

Θ̂(t+1) = arg max
Θ

Q(Θ, Θ̂(t)).
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The convergence properties of the EM algorithm have been discussed in [11].
It is well known that each iteration increases the log-likelihood function. One
can find an elegant proof of this theorem in the paper of Chretien et al. [2].
Theoretically, the EM is guaranteed to converge to a (unfortunately) local max-
ima of the likelihood function at a relatively fast convergence rate. However, in
practice, the algorithm frequently fails due to numerical difficulties, because it
converges to the boundary of the parameter space. In the case of GMMs this
means that a component’s diameter is shirnking towards zero or its covariance
matrix becomes computationally singular.

2.3. The Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence (also known as information divergence
or relative entropy) is a well-known measure of the difference between two dis-
tributions. If P and Q are continuous random variables and p and q are their
density functions, the KL-divergence is defined to be

D(P || Q) =

∞∫
−∞

p(x) log
p(x)

q(x)
dx.

Although the KL-divergence is not a metric because it is not symmetric and
moreover, it does not satisfy the triangle inequality it still has some good prop-
erties for being used as a dissimilarity measure. Firstly, it is non-negative (called
Gibbs inequality)

D(P || Q) ≥ 0

and it is zero if and only if P ≡ Q. Secondly, one of its many motivations from
information theory is that KL divergence can be interpreted as the needed extra
message-length per datum for sending messages distributed as Q, if the messages
are encoded using a code that is optimal for distribution P .

3. Image representation with Gaussian Mixture Models

The representation of the pictures has two phases as one can see on Figure
1. The first is the transformation from pixel representation of the image to a set
of low dimensional data points (called mid-level representation). The second is
fitting GMMs to these data points with the EM algorithm. In this section we
focus on these phases.
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3.1. Feature space

Firstly, we represented the images as a set of pixels with attributes. In our
work we chose the color features and the position of the pixels, but other features
(for example texture) can be adopted, too. Like the earlier works ([1], [4]) we
extracted the color features into the (L, a, b) color space, which was shown to be
approximately perceptually uniform, thus distances in this space are meaningful
[10]. So the images were represented with a set of data points in a five dimensional
(three for color and two for position) feature space.

Figure 2. Average distance of GMMs based on different resolutions from the
GMMs based on 256× 256 resolution.

Another issue is choosing the resolution, respectively choosing the number of
data points in the feature space. It is an important question since the running
time of the EM algorithm is linear in the data points, so it is quadratic in the
sideresolutions if squared images are used. In our experiments we got that the
GMMs found with a relatively small resolution (32× 32 pixels) are very similar
to the GMMs found with a high resolution (256× 256 pixels). On Figure 2 one
can see the average distance of the GMMs based on different resolutions from
the GMMs based on a high resolution (256× 256 pixels). The line represents the
minimum distance (2.647) between GMMs of different images in our database.
These results give that in this case for clustering purposes a grid of 32× 32 was
fine enough.
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3.2. Improved EM algorithm

As we mentioned in Section 2.2 the EM algorithm frequently fails due to
numerical difficulties. The problems can be originated in two reasons. The
first is the shrinking of the components. This can be easily handled by adding
component annihilation to the EM algorithm based on the work of Figueiredo
et al. [3]. This method also resolves the model selection problem (choosing
the number of components). The second reason is the convergence to singular
covariance matrices, which we resolved by some modifications of the algorithm.

EM with component annihilation. Different information criterions have been
used for choosing the number of components of a GMM. Without entering into
the details, applying the MML (Minimum Message Length) criterion [9] led to
the objective function

(3.1) L(Θ,Y) =
N

2

∑
m:αm>0

log(nαm) +
knz
2

(
1 + log

n

12

)
− log p(Y | Θ),

where

• n is the number of data points,

• knz =
∑

m:αm>0

1,

• N is the number of parameters specifying each component.

The Θ with the lowest L is chosen. If an αm becomes smaller than N
2n , the

corresponding component can be annihilated by setting αm to zero because it
decreases the L function. (αm = 0 means the mth component is not supported
by any data points, and the mixture is equivalent to a mixture with k − 1 com-
ponents.)

Now EM can be applied starting with a large k and using a modified M step
(we annihilate components with low support in every iteration). In this way the
problems about component shrinking can be resolved.

M-step with constraints. Using the EM algorithm with component annihila-
tion in our experiments using 32 × 32 resolution and 8 components more than
91% of the cases led to a singular covariance matrix (Table 1). This problem
occurs in many other applications of GMMs such as speaker recognition [6] or
signature verification [8], where the problem is usually neglected by using di-
agonal covariance matrices. We found that this is too strong to assume and it
decreases the algorithm capabilities. So we modified the algorithm to handle it.
The main clue is putting a constraint to the eigenvalues of the covariance matrix
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in the M step. Putting these constraints to the maximization we achieved that
we got non-singular solution in all of the cases.

Resolution Number of Frequency of
components singular solutions

32× 32 4 72.7%
8 91.3%

64× 64 4 43.8%
8 61.2%

Table 1. The frequency of cases where EM led to singular solution.

3.3. Visualization of the GMMs

One can see the visualization of the GMM representation on Figure 3. Firstly
the components are represented by a unicolored region (blob). We projected
the five dimensional components into two dimensional space (including the po-
sitional dimensions: x,y) and assigned each pixel of the original image to the
most probable - the component in which it has the largest likelihood - two di-
mensional Gaussian. The color of the region is computed from the mean of the
corresponding data points. Thats why the blobs are not ellipsoids, because the
component borders are not isolines but pixels having equal likelihood in two - or
more - components. Note that this visualization method hides the fact that the
components are in five dimensional space and they are containing more particular
information about the image.

Figure 3. The vizualization of the GMM representation: original picture (left),
blob vizualization (center), probabilistic image segmentation (right).

Secondly, using the suggested model each pixel of the original image can be
assigned to the most probable five dimensional Gaussian, too, providing for a
probabilistic image segmentation (right).
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4. Image matching

The GMM representation of the images provides a good low dimensional
representation, so the next phase is to define a dissimilarity measure between the
mixtures. In this section we present the distance measure we used, based on the
KL-divergence introduced in Section 2.3.

4.1. Gaussian Mixture Matching

Although there is no closed form expression for the KL-divergence between
two GMMs, there is an analytical way to compute the KL-divergence between
each pair of components. The matching-based approximation introduced by
Goldberger et.al [4] utilizes a matching of the components of the mixes and
aggregates the divergence of the matched components.

Let f(x) =
k∑
i=1

αifi(x) and g(x) =
k∑
i=1

βigi(x) be two mixtures, where fi and

gi are continuous densities, and α = α1, . . . , αk and β = β1, . . . , βk are discrete
distributions. Without entering into the details a natural approximation of the
KL-divergence of the mixes is

D(f ||g) =

k∑
i=1

αi

∫
fi log f −

k∑
i=1

αi

∫
fi log g ≈

≈
k∑
i=1

αi

∫
fi logαifi −

k∑
i=1

αi max
j

∫
fi log βjgj =

=

k∑
i=1

αi min
j

(
D(fi||gj) + log

αi
βj

)
.

One can read more about this approximation in the publication of Goldberger
et al. [4].

4.2. Symmetrization

The proposed image matching method provides a dissimilarity measure for
the last phase of the image retrieval and clustering tasks as one can see on
Figure 1. Since the most clustering algorithms require symmetric distances, we
symmetrized the approximated KL-divergence with the resistor average [5]

R(f, g) =
1

1
D(f ||g) + 1

D(g||f)
,
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but other methods (arithmetical average, geometrical average) can be used, too.

5. Results

Our aim was to develop an image retrieval tool that is able to search, cluster
and classify images. We chose GMM representation after some previous works
[1], [4], but we noticed that this method does not perform well because of the
convergence properties of the EM. Our main result is that we adopted the com-
ponent annihilation algorithm of Figueiredo et al. [3] and improved it by putting
constraints to the M step, so the blobworld method became stable and adaptable.

The developed tool is able to manage the GMM building with different param-
eters, and visualize the GMMs as one can see on Figure 4. The GMM building
is very fast, 1000 images can be processed in about 3 minutes. It has functions
for finding similar images, clustering (Figure 5 and Figure 6) and classify images
- if some of them is labeled.

Figure 4. The visualization functions of the software
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Figure 5. Hierarchical clustering with the software

Figure 6. A dendrogram with the corresponding images
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6. Conclusion

We have created a software, which is able to search, cluster and classify large
data sets of different images. This work was motivated by the projects of the
Visualisation Centre of the Eötvös Loránd University, where several such datasets
are readily available and the use of our software would allow a more effective
testing and exact evaluation of the different transfer technologies.

Future research is needed in order to find the properties of the constrained
EM algorithm we suggested in Section 3.2. Further results will be presented at
the 7th Annual Conference of ENIBIS, where we show the same image represen-
tation method for a data set of 10000 images, combined with genetic clustering
algorithms.

7. Acknowledgements

This research was supported by the Hungarian Jedlik Ányos project NKFP2-
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Pázmány Péter sétány 1/C.
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