Annales Univ. Sci. Budapest., Sect. Comp. 31 (2009) 57-73

CONTEXT AWARENESS IN
DISTRIBUTED COMPUTING SYSTEMS

J. Preden (Tallinn, Estonia)

J. Helander (Redmond, USA)

Abstract. Creating robust systems that deal with and consist of both
the physical world and networked computing nodes is relevant to a large
class of applications, such as consumer electronics, energy efficient homes,
industrial automation, civic infrastructure and mechanical systems, such as
airplanes and automobiles. Due to the importance of such cyber-physical
systems to our everyday lives and economies, it is worthwile to investigate
and develop new methodologies for programming such systems.

While significant advances in programming large numbers of communicat-
ing tiny computers - such as sensor networks - have been made in the past
decade, the progress has not been as fast as it was expected. The slow
advancement of these systems is due to several reasons. Sensor networks
are in close interaction with the physical world, having to react to the stim-
uli received from the physical world, all the while the computers in these
systems are interacting with each other. The systems are highly dynamic:
new nodes join and leave the network and the timing of message transmis-
sion depends on the ever changing environment and the relative location of
nodes. Thus the configuration, topology and timing of interactions cannot
be known before the system is actually operational, rendering traditional
static analysis methods insufficient. The computation in these systems de-
pends on the current and past interactions and is therefore different from
that of classical deterministic computing systems. Distributed computing
systems consisting of a large number of nodes connected to the real world
tend to exhibit emergent behaviour, which the current state of art is not
able to predict, analyze and account for.

This article proposes that using context information in the computation
may be part of the answer to dealing with the emergent behaviour and
dynamicity of cyber-physical systems. The paper then presents some ex-
amples of what can be considered context information and how this context
information can be used in the computation. Finally, the paper presents a
general architecture for collecting and organizing context information.

58 J. Preden and J. Helander

1. Introduction

Distributed computing systems, consisting of small embedded computers have
become increasingly important during the past decade. The conventional term
"sensor networks” is used in a broad sense here, a device in a sensor network
being a computing device equipped with a processor, some memory, a wireless
communication interface, an autonomous power supply and possibly some sen-
sors. So, a sensor network or more broadly a cyber-physical system, is a network
of computing nodes that interact with the physical world, with each other and
possibly some other external computing nodes. Software intensive devices are
an example of devices that can be part of a cyber-physical system. In case of
software intensive devices the functionality of the device can only be achieved
with the combination of appropriate computing hardware and software, so it is
natural that such devices should be able to communicate with each other to pro-
vide a better service. Sensor network nodes are sometimes also called motes or
smart dust. The nodes in a sensor network (or in a cyber-physical system) form
a MANET or a mobile (multihop) ad-hoc network, which is self-configurating
network where each node can also perform the task of a router and where nodes
can join and leave the network as they desire. Such flexibility means that the
configuration of the network is not known at design time but instead the configu-
ration is formed at run-time. A good example of a dynamically formed network is
the deployment of motes from an airplane (which is realistic since motes are used
in military monitoring applications) - the initial configuration of the network is
to a great extent determined by the way the motes fall to the ground, it even
cannot be expected that all the deployed motes will be operational or that the
deployed network is fully connected. As the configuration of the network is also
dynamically changing, the nodes must adapt to the changes in the configuration
dynamically. The fundamental problems that arise in such open, unstructured,
dynamic and heterogeneous networks are not solvable by conventional computer
science methods [1]. Due to the high number of devices and the unpredictable
interactions between the devices themselves and the interactions between the de-
vices and the physical world these networks exhibit emergent behaviour, which
we cannot predict or foresee, but instead we limited to watching the emergent be-
haviour develop as the system operates [1], [14]. The paper presents the authors’
views on how computation in sensor devices might be organized and how context
information as the authors understand it can be utilized in such a computation.
The paper also presents some concrete examples of how context information can
be used in computation and a general architecture that enables collecting and
utilizing context information in a computation.

Context awareness in distributed computing systems 59

2. Computation in a sensor device

The task of a sensor network is to provide an ongoing service, instead of
transforming a single static input into an output. This feature makes the sys-
tems inherently interactive in a computer theoretical sense, as defined by Weg-
ner in [2], which in turn means that these systems cannot be modelled [3] or
implemented using traditional algorithmic models. Rather new unconventional
approaches are required to successfully realize such systems. One approach that
has been suggested is context aware systems or systems that are able to exploit
context histories [4]. Context aware systems can be viewed as being a type of
the interactive computing concept, where the outcome of current computations
(or the behaviour of the system) is influenced by the current inputs and past
operation and interactions of the system. In context aware systems the history
of past interactions with the external world is collected to form a context that
reflects the state of the outside world as perceived by the current computing
node. To achieve context awareness the context information is supplemented
with information on the state of the device itself.

However context information can also be viewed at the computation level. At
this level the context information contains all information that is external to the
current computation, while the context information also contains the information
that is internal to the computation, e.g. the intermediate results of past com-
putations. If a computation must transform a sensory input into an output the
direct input to the computation is the current sensor value, the context informa-
tion is everything external to the computation (e.g. inputs from other sensors)
and the context information also includes the computation related information
(past inputs, past intermediate results and past outputs).

3. Sensor data interpretation

As the name implies, the sensor network nodes must process sensory input.
Whilst sensor data has been interpreted by digital systems for decades already
this paper presents a different abstract view on how the processing of incoming
sensor data can be viewed and how the dependencies in the data processing can
be solved. The examples below attempt to illustrate the authors’ view on con-
text information using simple computations. The interpretation of an individual
sensor input (for example the resistance of a thermistor) can be viewed as the
processing of an input stream of data samples. The stream is characterized by a

60 J. Preden and J. Helander

timeset, which defines the time instances when the samples in the stream arrive
for processing (i.e. when the sensor value is sampled). The individual data sam-
ples of the stream (that arrive at different time instances) may not be processed
the same way since the processing of the stream may depend on previous values of
data samples in the stream. In addition the processing of individual data samples
in the stream may depend on the context (values of context parameters), which
changes over time. For instance, the interpretation of the thermistor input may
depend on the supply voltage when the resistance of the thermistor is measured
with a voltage divider circuit. In this above case the voltage can be viewed as
being part of the computing context for the thermistor signal input.

3.1. Interpreting local input

For thermistor the input stream is the ADC (Analog to Digital Converter)
output from the ADC channel that is connected to the thermistor circuit and
the output is the temperature. We use a notation similar to the Q-model [7] for
denoting the interpretation of the data samples from a specific sensor

(1) temperature; = Py(Ts x ADCOutputiemp_sensor),

where temperature, is the result of the interpretation (the temperature estima-
tion at time instance t), P, is the processing of the stream, 7 is the stream
timeset and ADCOutputiemp_sensor is the value of the data item (the output of
the analog-digital converter) corresponding to a specific time instance.

In addition to the stream processing being context dependent the stream
timeset can also be context dependent. From a real-time system developer’s
viewpoint the approach is quite natural - if the dynamics of the system is known
then sampling can be done at a lower rate when the parameter value is not close
to critical, but a higher rate is required when the parameter value is closer to the
critical value. This approach is especially useful if the available power is limited
and sensing is power intensive. The stream based interactive computation model
seems to better suit such computing tasks than classical algorithm theory.

The time it takes to process each data sample is also context dependent -
due to the fact that the interpreting functions may contain internal memory,
the computation time may depend on the values of current and previous data
samples (in some cases the intermediate results of a previous computation can
be reused).

A quite good, yet trivial example of context dependent stream processing
is evident in the case of a resistive humidity sensor, where the resistance of
the sensor depends (non-linearly) of humidity and temperature. For devices
with low processing power it is common to use a table based approach when a

Context awareness in distributed computing systems 61

non-linear conversion is required. The values in the table closest to the actual
sensor value are looked up and interpolation is performed between these values
(linearity of the function is assumed between the table values, which provides
sufficient accuracy for most applications). Table 1 is a section of the sensor
resistance table of a resistive humidity sensor H25K5A. The table rows contain
the resistance corresponding to a specific humidity and the columns contain the
resistance corresponding to a specific temperature at a specific humidity.

Temperature
Humidity 20 25
30% 3300 | 2500
35% 1800 | 1300
40% 840 630
45% 216 166

Table 1. Humidity sensor resistance

In order to convert the resistance of a humidity sensor into relative humidity
four lookups must be made from the table based on the measured resistance
and the current ambient temperature. When the four values have been acquired
interpolations are performed to compute the relative humidity corresponding to
the temperature and the resistance of the sensor. To obtain the resistance of the
sensor the ADC reading must be interpreted first - if a voltage divider is used
this interpretation depends of the supply voltage.

Thus it can be concluded that the interpretation of the humidity sensor input
stream depends on interpretation results of two other streams - the temperature
sensor input stream and the supply voltage input stream. The interpretation
results of the voltage and temperature stream form the computing context for
the interpretation of the humidity sensor input stream.

(2) voltage; = P,(Ts * ADCOUtpUtsupply_voltage),

3) temperature; = Py(Ts * ADCOUtpUttemp_sensor)a

(4) humidityt = Ph (Th * ADCOutputhumidity_sensor),
P, de;ﬂzds P,

Ph de;ﬁwds P

v

62 J. Preden and J. Helander

It may seem there is a direct functional dependency between the relative
humidity, the resistance of the humidity sensor, the resistance of the thermistor
and the supply voltage at a specific time instance. If we view the inputs as streams
and we want to perform ongoing interpretations of these streams we elect to
abstract that dependency into P, - the output of P, is not a direct input to Py, but
instead P, uses the output of P in its interpretation process. Only Py can decide
which output sample of P, to use. The knowledge of which context parameters are
relevant in processing of one stream is only present within the given processing
task, hence the processing task must acquire this data independently from its
stream input.

The timing dependencies between the streams are also important - if the in-
terpretation of a stream is dependent of another stream (as is the case with the
interpretation of the resistance of the humidity sensor) the time intervals that
are used in one stream must match the intervals used in the other stream (inter-
preting the resistance of the humidity sensor based on the ambient temperature
that was valid an hour ago is unlikely to be correct). Which means that if the
interpretation of the resistance of the humidity sensor depends on the ambient
temperature and the resistance of the humidity sensor is monitored using a given
time constant, the time constant in the temperature stream must be the same.
Another option is to predict the temperature value, but this can only be done
within the temperature stream process as the necessary knowledge is only present
there. Otherwise the interpretation of the input stream that represents humidity
is not correct. If the time constant of one stream is changed, the time constant
of the other stream may have to be changed also.

The result of stream processing can be viewed as a context parameter charac-
terizing a specific parameter, such as the temperature of humidity, of the current
context. If such interpretation is used, then instead of saying that the processing
of one stream is dependent of another stream we can say that the processing of
one stream depends on specific context parameter values (that correspond to the
timeset of the stream). In the latter case we are also able to use (more abstract)
context parameters instead of using outputs from another stream processing. A
simple example to illustrate that point can be drawn, again, from the realm of
sensor networks. In case of a node, which can either be powered from an external
(stable) power supply or from batteries, the voltage need not be measured when
an external power supply is used. The voltage sample stream can therefore be
reduced by increasing its sampling interval quite significantly, while the other
streams are operated normally, without sacrificing correctness.

Context awareness in distributed computing systems 63

3.2. Collecting context information from remote devices

In a distributed computing scenario where data for building context awareness
is received from remote computing nodes, the received data must be accompa-
nied with metadata such as a timestamp and the location so that the context
information can be built correctly. Functionality similar to the channel informa-
tion, as described in (7], can be used to manipulate the received data according
to the metadata. If data received from different nodes (incoming data from each
node can be viewed as a different stream of data) was originated at different time
instances, the data from different streams can be conditioned (for example using
interpolation, averaging, normal distribution rules or methods similar to techni-
cal analysis) to achieve values that can be mapped to a specific time instance.
Same applies to the location - if information is received from several locations
and must be mapped to one specific location for data fusion purposes the data
must be conditioned accordingly so as to build context awareness locally.

4. Context depending scheduling

While context information - the state of the processed sensor inputs, temporal
information and interactions - is important in the interpretation of the physical
world as explained above, it is also relevant in the cyber side of the computing
network. This is because the network itself has topological and temporal prop-
erties that change over time as well as due to changes in the environment and
the state of programs and their workloads. The changes in the network must be
taken into account in order to successfully produce the desired outcomes. For
instance if the network latency increases and data is needed at given times at
a destination, say a speaker, the data must consequently be sent earlier from a
source, such as a disk CD player. Since the changes in network and processing
delays can be caused by a multitude of reasons and their complex interactions,
it is in practice not feasible to analytically predict the timing characteristics.
Instead we employ the well known tool for dealing with chaos: statistics.

The idea here is to predict the future based on the past. While every stock
trader is familiar with the disclaimer ” past performance does not guarantee future
results” it is often the case that recent observed activity is a good indicator of the
overall state of the system, just as temperature is an indication of the state of a
gas in a thermodynamical system. The general approach to modelling a chaotic
changing system is a stochastic process. The stochastic process presented in
section ”Partiture case study” shows how even a very simple stochastic process
based on the Gaussian distribution and a proportional blending of current mea-

64 J. Preden and J. Helander

surements to the prior states can adapt to changes to a system in a meaningful
way. The distribution is used to calculate a confidence interval to produce a tim-
ing that will be sufficient for a given reliability (as expressed in a probability of
success). A higher confidence requires a higher level of over-provisioning, where
the level of resource reservation needed for the given reliability can be precisely
quantified.

The stochastic approach is not only useful in quantifying the time or other
resources needed for a given reliability but also in predicting when failure is get-
ting too close for comfort. Thus a system does not only have to helplessly resort
to trying to recover after a failure when the "can’t fail” system inevitably fails
anyway due to uncontrollable factors, but can actually go to plan B before the
failure as a preventative measure. Thus the uncontrollable factors are not beyond
reach of this approach but rather just another factor affecting the measurements
that are fed into the stochastic process that produces the context awareness.

A stochastic process is also not beyond the reach of a tiny computing node.
As is seen in [8] the inverse integral of the Gaussian (perhaps surprisingly) does
not require complex calculations but can be done in terms of a simple binary
search, one multiplication and one addition. This is a convenient property of the
standard shape of the Gaussian, so the inverse integral can be pre-calculated into
a table of fixed point integers.

The above makes the fact that context information can be very useful in a
cyber-physical system, very evident. In the following paragraph we present a
general architecture that enables dynamic collection of information required for
building context awareness in a dynamic way.

5. The partiture

To systematically monitor and predict context parameters an architecture is
used that relies on the usage of metadata to describe (among other things) the set
of functions involved in a computing scenario, the interactions between functions
within a node and the interactions between the nodes executing functions. A
computing partiture - a collection of metadata about the computing scenario - is
the source of information for the nodes executing the scenario. The description of
a computing scenario contains the list of functions or services required to imple-
ment the scenario, the contextual information of these functions (such as location
and temporal parameters) and the interaction patterns between the functions,
In addition to describing a computing scenario the partiture allows describing
how the context information required for a computing scenario is collected and
used. On Figure 1is a sample partiture for a simple one producer - one consumer

Context awareness in distributed computing systems 65

scenario. The location property has been specified for the producer since we are
interested for the sensor data from a specific location (in the current sample from
room 1I305).

<partiture name="samplePartiture">
<function name="producerFunction">
<node name="sensorProducer™
<location>rocom_{i_305</location>
</node>
<output>
<consumer>sensorConsumer</consumer>
<function>consumerFunction</function>
</output>
</function>
<function name="consumerFunction™>
<node name="sensorConsumer">
</node>
<input>
<producer>sensorProducer</producer>
<function>producerFunction</function>
</input>
</function>
</partiture>

Figure 1. Cooperation between three components of an operating system

The partiture does not contain details of the implementation of the functions
involved in the partiture - it only describes the functions that are involved and
the metadata relevant to these functions. Neither does the partiture contain
information on the specific nodes that should execute the partiture but it rather
describes the functions that are executed as part of the partiture. The node names
in the sample partiture are only placeholders - once the partiture is executed the
names are replaced with names of real nodes in the network. The functions
described in a partiture can run on one or more nodes depending of the details
of the partiture and the avaibility of resources at the nodes in the given network.

The partiture describes the interactions (messaging patterns) between the
functions including the timing constraints of the individual interactions - intervals
of execution, duration and tolerance to jitter of the intervals called bars. The
partiture also contains information on the possible repetitions and repetition
intervals of the partiture.

In order to collect the computing context information the partiture contains

66 J. Preden and J. Helander

information on how the performance of the execution of the individual functions
should be monitored at the nodes, i.e. a sampling schedule. The information
describes how execution time of the functions is monitored, allowing a node to
locally monitor the execution and later provide the performance information on
the execution of functions and message delivery. Based on the context history the
nodes can also make predictions on the future executions of functions on a node
and provide these estimates to the nodes that they interact with. The partiture
can also be modified according to the recorded context history if such behaviour
has been prescribed by the designer of the system.

As in the case with computing context parameters the partiture also contains
information on how the values of physical context parameters should be computed
and what models (functions) should be used to predict future values of physical
context parameters. We believe that formal mathematical analysis methods are
often not required to predict future values of context parameters with sufficient
accuracy. In addition to being computationally intensive (especially considering
the limited processing power of the motes) the use of formal analysis methods
requires good information on the physical domain and the creation of adaptive
and context history exploiting systems is much more complex using these meth-
ods. Instead stochastic, heuristic, physical models or technical analysis tools are
used to predict behaviour.

As the nodes monitor the context, add to the context history and make some
decisions based on the context history, they can also update the partiture ac-
cording to the computing scenario they are executing.

Figure 2 depicts components residing on a node involved in the execution of
a partiture. The elements on Figure 1 should be interpreted as follows: conduc-
tor - initiates a partiture, parses the partiture description, locates nodes that
are able to execute functions described in the partiture, sends fragments of the
partiture description to the selected nodes. The conductor is responsible for run-
ning the partiture, but the selection of the specific partiture to run may come
from a human user, another node or the current node. The bookie deals with
requests received from other conductors for partiture execution. Both partitures
and functions may be assigned costs and the bookie is responsible for assigning
costs to different functions and negotiating costs with other nodes. The task
master is responsible for executing functions on the local node as specified by
the partiture. The stochastic prediction module deals with observing the local
computing context. The observation results are used by the task master to op-
timize the operation of the local node. Remote conductor is the conductor at
another computing device. Overall system monitoring - monitors the network of
computing devices and applications for overall performance.

The architecture outlined above allows measuring different phenomena. ac-
cording to predefined patterns and predicting the future values of context pa-
rameters based on past measurements of phenomena. The predicted values are

67

Context awareness in distributed computing systems

Overall system
monitoring

Remote
conductor

Node capability description
-ws_discovery
-ws_metadata_exchange

Jazz partiture
-messaging pattern
-repetitions / concurrency
-services and functions needed
~criticality
-slack
- jitter
-prediction parameters
-performance monitoring params (raw, cooked)
-rough description that may get more precise automatically
(learning from context history)

Instigator
-what (instigation params)
-how (partiture)
-when (start time)
Itself a worker function

Bookie

7

Conductor

Stochastic prediction
/ technical analysis

~Performance monitoring -

/\ \Z

z_m}ﬂ /0TC
\Cost = intrinsic 89
(power, wear) +

_ﬁ&mzm:o: cost (mark
m_...oma. rule based) /

N ,\/.1\\

~

AN

Task master

Figure 2. Cooperation between three components of an operating system

68 J. Preden and J. Helander

used either directly or indirectly in future computations to improve the efficiency
and (user-observable) quality of systems. According to [9] these features - the
ability to anticipate the evolution of its surrounding environment is one charac-

teristic of proactive systems, which invisible computing systems are expected to
be.

To execute the partiture a computing node includes a conductor that can
execute the partiture. In a distributed application the conductor is responsible
for selecting the nodes that are going to execute the functions described in the
partiture and delivering the information required for the execution to the nodes.
In addition to the function and interaction information the conductor is also
responsible for delivering the information on context parameter collection and
context history utilization as described in the partiture. A conductor, with the
help of the bookie, is also responsible for negotiating with conductors on other
nodes to execute part of their partiture.

As the conductor reads the partiture and monitors progress, the context his-
tory is used to update the partiture itself with additional details of the execution
flow. For instance the instrumentation of an executed function might reveal
that there are two temporally distinct phases in the operation, such as an ini-
tial partiture prescribing reading data from a disk. The monitoring might then
repeatedly observe that there is some computation leading to the read, then a
long pause while the disk is seeking, followed by more computation. Based on
the observation the disk read bar can be split into two separate bars. The con-
text history is thus used to evolve the problem description, allowing the original
human author to use rough terms of intent and letting the system discover the
details. The properties of specific interactions (such as timing) observable by a
given computing node form the context history of the interaction. Based on the
context history future operations and temporal properties of interactions can be
adjusted. It seems fitting to call this type of a rough partiture a Jazz partiture,
given that the learning and specialization process is akin to improvisation.

The claim that even quite thin embedded nodes are able to perform the
predictions on context parameters is not unsubstantial, since in [8] it is shown
how even quite simple mathematical models suffice to predict the future values
of context parameters, such as execution times of scheduled functions, with quite
useful results.

"The main overhead that the partiture approach introduces is from the discov-
ery and setup phase, once the system is running and the nodes are performing the
functions described in the partiture, there is no overhead introduced by the par-
titure architecture. Naturally monitoring the context parameters creates some
overhead, but this can be mitigated by reduction of the sampling rate and buffer-
ing the samples. It is the a compromise between the quality control overhead
and accuracy, much akin to the quality control of a manufacturing process. The
trade-off itself can be analyzed statistically as is done in industrial quality control,

Context awareness in distributed computing systems

Eovicd b Figar deadine
: i

!

L Lolotobid Lo P
AEEmAN g gammy s xava [

;R L SN T ST PR

wikwas sesaamem vess 0

."*‘w’

- e o

LA R 11 TREN &+ L k]
SRR EILS IR R L ILLL LR "
BABASL R L DR AVR SRS 2 oS od L
PR INBER R TATAIBCRS (D W Wi
EETELIT I ELE T T TR R TN
dduNsN G G % e S

22 IR ABRE K AR BAWMEWR 1 R 8F "y

din kb

Figure 3. Cooperation between three components of an operating system

but is beyond the scope of this paper.
5.1. Partiture case study

The concept of applying simple stochastic methods to predicting context in-
formation was tested on a development platform equipped with a 25 MHz ARM7
microcontroller with 256KB of ROM and 32 KB of RAM running the Microsoft
Invisible Computing Platform [15]. At the core of the study was a stochastic
planner that used the monitored execution times of scheduled functions to make
adjustments to the scheduling partiture of the functions.

It should be noted that the case study used a previous iteration of the ar-
chitecture where the conductor was distinctly separated from the nodes that
executed the application specific functions. Initially the planner uses a predeter-
mined fixed schedule for scheduling the jobs on the worker nodes. The schedule
is adjusted according to the information on the actual execution times received
from worker nodes.

The working of the stochastic planner was estimated through sampling. A
simple test method does 20000 multiplications. Starting with no context infor-
mation the planner uses an application provided guess. Once the planner receives

70 J. Preden and J. Helander

samples from the measured execution times it uses the information with smooth-
ing between each step. The calculation times include formatting and sending the
reply message. The table below contains the relevant numbers. The estimate is
produced by the live planner, while the mean and deviation have been calculated
offline for reference from the raw measurements.

Step | Estimate | Measured | Standard | Confidence

95% conf mean deviation | 95% | 99%
1 339 337 1.7% 1.0 1.4
2 341 337 1.6% 1.0 1.4
3 346 337 1.8% 1.0 1.4

Table 2. Time measurement and prediction of a CPU intensive task - times
in milliseconds, 32 samples per iteration on embedded microcontroller board.
'The confidence number indicates the extra time allocated for jitter. Fixed point
integer arithmetic rounds the number up slightly

Since the low-level RT'OS scheduler did not produce much jitter, the test was
also executed on a PC running WindowsXP with the same XML communications
middleware stack used in the previous measurement on top. Running without
an underlying real-time scheduler introduces more uncertainty but the planner
still deals with it correctly and produces a larger confidence allocation to cope
with the increased jitter. As the CPU is faster a million multiplications is done
each time. From a steady state the number of calculations is dropped to half.
The table below shows how the planner adapts to the larger jitter by padding
the estimates.

Step | Estimate | Measured | Standard | Confidence
95% conf mean deviation | 95% | 99%

1 126 123 6.4% 19 | 2.5
2 124 120 14% 4.2 | 55

3 69 55 2.1% 28 | 3.7

4 58 55 2.9% 3.9 | 5.2

Table 3. Time measurement on PC in milliseconds. After the steady state at
step 2, the workload is cut in half and the estimate adapts to the new load

Context awareness in distributed computing systems 71

6. Related work

The current paper is related to two distinct topics: context awareness and
distributed applications. While quite a substantial amount of work has been
done in both fields, there is little work that combines these two areas and allows
the collection of situation and context information in a distributed way, while also
describing and implementing distributed applications. A superficial overview of
related work in these areas is presented below.

Much work has been done in the area of user context identification. The aim
in this direction is to provide a better service to the user by customizing the
offered service according to the user’s context. Anagnostopoulos et al. in [6] and
Schilit et al. in [10] make some suggestions on how to determine and predict the
user context. The work presented in [6] focuses on predicting context by creating
related context entities and observing past and current values of context entities.
In [13] a context aware middleware is presented, but the main purpose of the
middleware is to capture the user context and act as a middleware between the
user and a ubiquitous computing system. However in the current paper the con-
text is viewed from the standpoint of a computing device - the context as it can
be perceived by a single computation, a single computing device or a collection
of devices. Work described in [11] proposes an architecture that allows building
distributed applications in a distributed manner. The authors focus on sensor
networks and they introduce the concept of roles to describe the tasks that nodes
must perform in a network. Roles in the network are described in a high-level
way and all nodes in the network are assumed to possess role information. Once
a node is operational it tries to assume a role based on the role descriptions, its
capabilities and its property values (current context). The network of nodes con-
figures itself automatically and should start executing an application defined by
the role descriptions. The nodes broadcast their property values (context infor-
mation) to all the neighboring nodes, providing them with sufficient information
for the selection of roles. The idea of a decentralized architecture is interesting,
but the authors do not suggest how it would be possible to determine whether
an application can run on a given network and what components are missing
from a node, so it would be possible to run an application on a given network. It
seems that the architecture assumes hierarchical data flow, which is reasonable in
the context of sensor networks, but not in the context of cyber-physical systems
where the network contains many heterogeneous devices and where the data flow
is also heterogeneous. The approach also relies on hop count, which is reasonable
to some extent in a multi-hop sensor network, but is of little importance in case
of other types of networks.

The approach presented in [12] introduces a middleware that tries to cope with

72 J. Preden and J. Helander

the differences between different types of networks. The proposed middleware
promises to meet the QoS requirements of applications running on a network
by adapting the network configuration, overcoming the network delay and other
similar issues characteristic to specific network.

7. Conclusion

This paper presented methods for collecting and analyzing context informa-
tion and showed that it was possible to construct a system that could deal with
a lot of chaos and uncertainty, but still make good choices and function properly.
Fairly simple mathematical methods are sufficient to create a system that cor-
rectly adapts to its environment in both the cyber and physical domains. The
concepts of the software framework and methodology presented in the article were
used in a sensor network scenario and appear to contribute valid methodology
for bringing the ubiquitous computing vision one step closer to reality. However
a substantial amount of practical and theoretical work must be still done to de-
velop these methods to a level where practical applications could be assembled
using the described approach.

References

(1] Milner R. and Stepney S.: Nanotechnology: Computer science oppor-
tunities and challenges, Submission by the UK Research Committee to
the Nanotechnology Working Group of the Royal Society and the Royal
Academy of Engineering, August 2003.

[2] Wegner P., Why interaction is more powerful than algorithms, Comm. of
ASM, 40 (5) (1997), 80-91.

[3] Goldin D., Keil D. and Wegner P., An interactive viewpoint on the
role of UML, Ch.15. in Unified modelig Language: Systems, analysis, design
and development issues, eds. K.Siau and T.Halpin, Idea Group Publishing,
Hershey, PA, 2001, 250-264.

[4] Preden J. and Helander J., Auto-adaption driven by observed context
histories, UbiComp Workshop ECHISE, 2006, 36-41.

Context awareness in distributed computing systems 73

[5] Wang A.Y., An FSM model for situation-aware mobile application software
systems, Proc. 42nd Annual Southeast Regional Conf., Huntsville, Alabama,
USA, April 2-3, 2004, ACM, 2004, 52-57.

[6] Anagnostopoulos C., Mpoggiouris P. and Hadjiefthymiades S.,
Context awareness: PI‘(‘CllCtl()Il intelligence in context-aware apphocatlons
Proc. 6th International Conf. on Mobile Data Management MDM’05, 137-
141.

(7] Motus L. and Rodd M.G., Iiming analysis of real-time software, Elsevier

Science, 1994.

Helander J. and Sigurdsson S., Self-tuning planned actions: Time to

make real-time SOAP real, Proc. of the Eighth IEEE Int. Symp. on Object-

Oriented Real-Time Dumbm‘ed Computing, Seattle, May 2005, 80-89.

(9] Meriste M., Helekivi J., Kelder T., Marandi A., Mtus L. and
Preden J., Loca,tion awareness of information agents, LNCS 3631, 2005,
230-242.

[10] Schilit B., Adams N. and Want R., Context-aware computing appli-
cations, Proc. Workshop on Mobile Computing Systems and Applications,
199, 85-90.

[11] Frank C. and Rmer K., Algorithms for generic role assignment in wire-
less sensor networks, Proc. 9rd Int. Conf. on Embedded Networked Sensor
Systems, 2005, 230-242.

[12] Heinzelman W.B., Murphy A.L., Carvalho H.S. and Perillo M.A.,
Middlware to support sensor network applications, JEEE Network, 18 (1)
(2004), 6-14.

(13] Tran M.T., Hirsbrunner B. and Courant M., A context aware middle-
ware for multimodial dialogue applications with context tracing, Proc. 3rd
Int. Workshop on Middleware for Pervasive and Ad-hoc Computing, 2005,
1-8.

[14] Stepney S. et al., Journeys in non-classical computation I: A grand chal-
lenge for computing research, Int. J. of Parallel, Emergent and Distributed
Systems, 20 (1) (2005), 5-19

(15] http://research.microsoft. com/research/embeddedsystems/ews/

8

J. Preden J. Helander

Tallinn University of Technology Microsoft Research
Ehitajate tee 5 1 Microsoft Way

19086 Tallinn, Estonia Redmond, WA 98052, USA

jurgo.preden@ttu.ee jvh@microsoft.com

