
Annales Univ. Sci. Budapest., Sect. Comp. 31 (2009) 23-41

TOWARDS A PROFILE-BASED APPROACH TO
MANAGE SOA-TO-SOA INTEGRATION CHALLENGES

T. Systä and M. Hartikainen
(Tampere, Finland)

Abstract. Service-Oriented Architecture (SOA) has been rapidly and
widely adopted in software companies and in IT sector in general. Migrat-
ing existing software systems to SOA is a challenge many companies are
currently facing. The more SOA has been adopted and realized using var-
ious techniques, the more often a new challenge, namely, how to integrate
two SOA-based systems, is encountered.
In this paper we discuss the challenges related to SOA-to-SOA integra-
tion, based on the experiences we have gained in a practical case study.
These challenges can relate to e.g. service descriptions, communication
mechanisms and service composition techniques. We propose an approach,
relying on the use of UML pro�les, as an aid for managing such integration
projects.

1. Introduction

According to OASIS (the Organization for the Advancement of Structured
Information Standards), Service-Oriented Architecture (SOA) is a paradigm for
organizing and utilizing distributed capabilities that may be under the control
of di�erent ownership domains [14]. Service-orientation aims at loosely coupled
services to support the requirements of business processes and users. Ideally, a
client application, which itself may also act as a service, can, at run-time, search
for services from a service registry based on a certain search criteria and then
start communicating with the selected services. These main roles of SOA are de-
picted in Figure 1. Besides enabling �exible point-to-point communication, more



24 T. Systä and M. Hartikainen

Figure 1. The main roles of SOA

complicated applications and business processes are aimed to be composed at
run-time from the services available. SOA itself does not de�ne the formats used
in e.g. for communication or for describing and publishing services. They are
decided by a particular SOA realization. In a Web services system, the language
used for describing and locating services is Web Service Description Language
(WSDL) [30, 31], and the communication among the clients, services, and a reg-
istry is handled with Simple Object Access Protocol (SOAP) [32]. SOAP, in
turn, uses some transportation protocol, e.g. HTTP. Finally, Universal Descrip-
tion, Discovery and Integration (UDDI) [15], for instance, can be used as a Web
service registry.

The interest towards adaptation of SOA in IT companies and organizations
in general has grown rapidly. A common problem related to SOA adoption is
how to migrate existing in-use software systems to SOA. Various wrapping ap-
proaches have, for instance, been proposed for that purpose [3, 27]. The idea is to
wrap existing software interfaces and provide them as services for other, external
software systems or components. Such approaches aim at minimal changes to
the existing systems. After the set of services has been agreed on, realization
techniques of SOA need to be decided. Commonly used Web service languages
and techniques are often chosen for that purpose. These languages have their
inadequacies, too. Web service standards, for instance, have limited support for
communication security and for expressing service-level agreements. Thus, in
some cases other, perhaps, in-house solutions, to realize SOA are chosen.



Towards a pro�le-based approach to manage SOA-to-SOA integration challenges 25

As SOA gets more generally adopted and it is realized using various di�erent
techniques and languages (and their di�erent versions), the problem of how to
integrate di�erent SOA-based systems arises. Rebuilding one SOA realization
to follow the languages and mechanisms used in another is not always an op-
tion. Instead, a loose integration might be desired, allowing the di�erent SOA
systems to remain unchanged and usable for their original purposes and in their
original environments. To solve the integration problem, the software engineer
needs to identify the similarities and di�erences, e.g. in terms of semantics and
expressiveness, among the di�erent languages and technologies used. In essence,
mappings between di�erent registry solutions, between di�erent services descrip-
tions and between di�erent messaging mechanisms, at least, need to be de�ned.
For instance, assume that a proprietary SOA realization uses a speci�c, perhaps
company-de�ned format X for communication between clients and services, and
that this services system is then intended to be integrated with a Web services
system. Then the di�erences between SOAP and X in terms of what kind of
support they provide for messaging need to be identi�ed. If, for instance, X
has support for message routing information, which is not supported by SOAP
(except through extensions), a decision has to be made whether to ignore that
information or implement it somehow on the Web services side.

The integration of the di�erent languages, and possibly their di�erent versions
and/or extensions, used in SOA-based systems should not, however, be solved
solely based on the syntaxes of those languages. The integration goals, namely
how and for what purposes the integrated environment is intended to be used
should drive and guide the technical integration decisions and activities. Also,
the semantics of these languages should be taken into account. The importance of
semantics and metadata has been acknowledged in various Internet-based infor-
mation management systems, e.g. Semantic Web solutions [20]. The semantics
should be given in a well-formed fashion to allow programmatical processing.
The need and importance of semantics has also been emphasized e.g. in many
model-driven software development (MDD) [18] techniques. They heavily rely
on using (UML [17]) pro�les and metamodels: they de�ne the concepts in a sub-
ject domain and constraints related to them. The pro�le information can then
be used e.g. for code generation [8, 12, 21] and for validation [16, 25]. Surpris-
ingly enough, Web service development techniques, and SOA-based approaches
in general, have had limited emphasis on semantics in practise. While the idea
of semantic Web services is not new, practical applications are still rare.

In this paper we discuss the challenges related to SOA-to-SOA integration.
We further propose a �exible approach to de�ne common rules and requirements
for the di�erent languages and formats used for the same purposes (e.g. com-
munication or service descriptions) in di�erent SOA realizations. The approach
relies on use of UML pro�les. The stereotypes de�ned represent the relevant
concepts that must be supported, one way or the other, in di�erent systems.



26 T. Systä and M. Hartikainen

In the case of messaging, they could be concepts related to operation requests,
replies and error handling. In addition, the pro�le may include other rules, inde-
pendent form capabilities or expressiveness of the languages, e.g. those related
to the usage purposes of the integrated system. With proper tool support, they
can be used to aid comparison and validation of the di�erent languages used for
the same purposes in di�erent SOA realizations and can thus be used to manage
SOA-to-SOA integration activities. This requires that the grammars are �rst
transformed to UML representations [10] and then stereotyped according to the
pro�les. Then, UML model comparison operations [24] could be used to identify
the corresponding parts in these grammars and in instance documents (e.g. two
service descriptions given in di�erent languages). Further, conformance check-
ing operations [10] could be used to validate the instance documents against the
language grammar and SOA rules.

2. Challenges in integrationing SOA-based systems

Integration of two SOA-based systems that are realized using di�erent tech-
nologies can be quite challenging. One reason for this is the large variety of
(possibly extensible) languages and techniques needed and used to realize SOA.
That, in turn, implies that several transformations between di�erent languages
and formats are needed. Also the dynamic nature of services systems causes chal-
lenges; clients search and bind to services at run-time, requiring also dynamicity
from the integrated system.

In this chapter we discuss various challenges related to SOA-to-SOA integra-
tions. The points presented are based on our practical experiences, gained in a
real world case study. In this case study we integrated a SOA-based Plenware
PlugIP software and development platform with a Web services system. Plen-
ware PlugIP uses proprietary formats for messaging and service descriptions. It
further uses a registry that di�ers from UDDI in terms of formats used and func-
tionality provided. The aspects discussed in what follows are by no means meant
to be a covering analysis of the challenges, but are intended to give light on the
complexity of the problem.

2.1. Variation points

Two SOA realizations can vary a lot in terms of standards followed, techniques
used and functionalities they o�er. At an abstract level, all parts depicted in
Figure 1 can vary



Towards a pro�le-based approach to manage SOA-to-SOA integration challenges 27

• service registries,
• service implementations,
• service descriptions,
• client implementations,
• communication media used and
• middleware technologies used.

Registry solutions used in di�erent SOA realizations may vary from tradi-
tional database solutions to more enhanched registry solutions. ebXML registry
[13], for instance, allows not only storing service descriptions but also provides
advanced categorization schemas and support for storing service pro�les and
business scenarios.

From the point of view of SOA-to-SOA integrations and use of services in the
�rst place, variation in techniques and technologies used for service implemen-
tations is not very relevant. For calling the service, only the public interface of
the service, given as a service description, is relevant. However, the variations in
the implementations may in�uence di�erent quality of service (QoS) attributes,
such as response times. The service description formats used, in turn, may vary
in terms of language used, expressiveness, bindings to messaging mechanisms,
structure, extendibility etc.

Besides implementation techniques, client applications may vary in terms of
their dynamicity. For instance, static clients know the services it uses already
at compilation time, while dynamic clients search and bind to services at run-
time. This naturally e�ects on performance, �exibility and maintainability. It
also e�ects on what information is needed at the compilation time.

To enable communication among registries, services and clients, a mechanism
depending on various technologies is needed. This implies that variation may
occur as well at the transportation protocol level (http, ftp, smtp, etc.) as at the
message format level.

Besides the technical and purely functional aspects, SOA realizations may
vary concerning various utility services, such as security, QoS attributes, routing,
service monitoring etc.

In what follows we discuss the SOA-to-SOA integration problem mainly from
the point of view of communication mechanism, service descriptions and reg-
istries. This focus naturally addresses only on a small part of all the possible
variation points, listing of which would be an impossible task. This focus was
motivated by the practical integration project we carried out. Thus, an overview
to this case study is presented �rst.



28 T. Systä and M. Hartikainen

2.2. Integration viewpoints

Before considering the integration and transformation details, decisions have
to be made at least on the following: what to transform and integrate, when
the transformations should take place and by which party, and to what kinds of
future extensions and changes should be prepared for.

Deciding what to transform greatly depends on what are the services and
functionalities the systems to be integrated o�er and especially on how and for
what purposes the new system is intended to be used. The intended usages
may signi�cantly scope the integration and transformation needs. It also helps
in selecting the most suitable integration solution from a large set of choices,
which will be discussed in the sequel. The intended use also in�uences in the
decision on when the transformations should be made and by which part. These
decisions have a great impact on the future maintenance of the integrated system.
For example, to enable communication between a client application in one SOA
realization and a service in another one, it should be decided whether the client
is responsible for sending a message in a form understandable by the service, the
service should do the appropriate interpretations, or a �neutral party�, e.g. a
transformation gateway should be used.

It is unlikely that complete (in terms of coverage) transformations can be
made between two SOA-based systems, since the di�erent systems rarely sup-
port exactly the same features. The transformation becomes much easier if not
all the features in one system need to be brought to another system as well.
That, however, would mean �smallest common dominator� fashion transforma-
tions, which may signi�cantly limit the capabilities of the integrated systems.

One option to integrate di�erent realizations of SOA is to build a transforma-
tion gateway, where a set of translators are used. In this solution each translator
acts as a converter between di�erent formats. For example, a service descrip-
tion translator could be implemented for translating a service description given
in one format, e.g. WSDL, into a service description given in another format,
e.g. a proprietary service description language. Even in the case where two SOA
realizations are to be integrated, this solution might get rather complicated. It
may also cause performance overhead. We have observed this in our practical
case study. Even with its complexities, this case is relatively simple, since (bidi-
rectional) one-to-one transformations were able to be used. When more systems
are involved, the number of converters quickly grows if the solution solely relies
on one-to-one transformations. Then, a better solution would be to use an inter-
nal data model, against which the di�erent formats are matched. Semantic Web
solutions for de�ning semantics and metainformation, such as ontology language
OWL [29], have been proposed for that purpose [20].

In our practical case study we also noticed that the integration e�ort may



Towards a pro�le-based approach to manage SOA-to-SOA integration challenges 29

reveal inadequacies and errors in the interfaces of the SOA-based systems. For
instance, not all the provided services and features are necessarily used in �typical
usage scenarios� of the system. This may imply that faults, errors and inadequa-
cies in them may have not been found earlier. They may, however, be exposed
during the integration and especially after using the integrated system.

After the transformation principles have been decided, the next step is to
identify the correspondences and di�erences between di�erent languages to be
transformed. Besides the di�erences, problems may also raise due to limitations
and/or extensibility of the languages. In addition, tools and implementations
used by the SOA realizations and those used to support the integration e�orts (if
appropriate ones are available) might in�uence the transformations. For instance,
the tools might limit the ways the languages are or can be used. For Web services
systems, for example, tools are available for generating WSDL descriptions from
an existing service interface implementation. Also, tool support is available for
generating SOAP messages based on WSDL descriptions. In our earlier study,
we have observed that the tools to e.g. generate service descriptions di�er; we
noticed that di�erent vendors' tools generated di�erent WSDL descriptions from
the same service interface [9].

While many varying points may exist in the languages to be integrated, the
overall goal for the integration and the usage purposes can and should be used
to guide the integration. To further high-light the complexities of the transfor-
mations, we will next discuss them from the point of view of service descriptions,
messaging and registries.

2.3. Case study

In this chapter we discuss various challenges related to SOA-to-SOA integra-
tions. The points presented are based on our practical experiences, gained in a
real world case study. In this case study we integrated Plenware PlugIP software
and development platform with a Web services system. PlugIP is a platform
that allows developing highly distributed software systems. It is based on mes-
sage dispatcher architecture and it uses a registry that di�ers from UDDI in
terms of formats used and functionality provided. PlugIP has been implemented
according to SOA principles. It uses proprietary formats for messaging and ser-
vice descriptions. PlugIP systems' software components (plug-ins) are divided
into client plug-ins, service plug-ins and core plug-ins. Core plug-ins are part
of the plugIP core system and o�er features such as authentication, validation
and registration of service plug-ins, a watchdog, logging and system monitoring.
Most of those features are not supported by the Web service concept. Each added
plug-in will be attached to a product group. A group limits the visibility of a
plug-in to the group it belongs to. The main idea of service plug-ins is the same



30 T. Systä and M. Hartikainen

as with Web services; the purpose is to o�er a service for anyone who needs it.
A client plug-in can be any independent application that uses service plug-ins.

This case study had two goals. First, from the point of view of plugIP,
a Web service needs to look like a plugIP interface. Second, correspondingly,
PlugIP plug-ins need to look like a Web service for Web service clients. In this
case study, the integration problem was solved by building a gateway between
these two SOA-based systems [4]. The aim for gateway was to have dynamic
solution for this integration need. Gateway translates all incoming messages to
target system's format and delivers translated messages to a service that is being
called. It translates service descriptions from one format to another at run-time
and keeps registries synchronized. This allows systems to communicate with each
other and enables a client to �nd a service from both systems, no matter if the
client is a plugIP client or a Web service client.

Due to the di�erences the two SOA-based systems o�er, we followed the
�smallest common dominator� approach and did not enhance either of the system
with functionalities provided by the other. The aspects discussed in what follows
are by no means meant to be a covering analysis of the challenges, but are
intended to give light on the complexity of the problem of integrating two SOA
realizations.

2.4. Service descriptions

A mapping between di�erent service description languages is needed for at
least two reasons. First, a client application in one SOA realization needs to be
able to communicate with services in another SOA realization; it formulates the
service request based on the service description. Second, the service descriptions
stored in one registry need to be able to be used and found by clients of another
SOA realization.

In Web services systems, WSDL is the current standard way to describe and
locate Web services. They thus act as IDLs for the services and are a key for
interoperability. A service description should contain all the information needed
for the client applications to call the service, including the service interfaces,
data types used in them, address of the service and communication mechanisms
supported by the service. In WSDL 2.0, for example, they are given in XML
format with elements interface, types, service and binding, resp.

When transforming one service description given in, say WSDL, to another
format, the semantically corresponding parts should be �rst identi�ed. A simple
solution, as discussed above, would be to transform only the information that
can be expressed with both of the formats. That might, however, yield to di�-
culties; e.g. the expressiveness of the transformed service description might be
insu�cient. For instance, if di�erent types of registries are used in the di�erent



Towards a pro�le-based approach to manage SOA-to-SOA integration challenges 31

SOA realizations, storing, categorizing and searching services might get di�cult.

2.5. Messaging formats

Transformation from one messaging mechanism to another is a more compli-
cated matter than the transformation of service descriptions. One reason for this
is the several dependencies the messaging format has with other languages and
protocols. For instance, support for the transportation protocol (e.g. HTTP)
used may di�er. Responsibilities of the di�erent levels in the protocol stack
may di�er in di�erent SOA realizations. This may be the case e.g. with the
security aspects; for one solution it might be su�cient to rely on SSL if HTTP
connections are used, while in another solution digital signatures and encryp-
tions are required, which are handled with the messaging mechanism itself. Also,
the messages themselves may require information, e.g. concerning routing, from
the transportation protocol level. Also, sending messages may require additional
information from the service descriptions.

As mentioned above, to enable communication between a client application
in one SOA realization and with a service in another, it should be decided which
party is responsible for the transformations. In this case, a service call can be
implemented at least in two ways. One option is to convert a message in one
format to a message in another, either by the client or by a third party, for the
called service to be able to understand and process it. Another option might be
to generate a run-time wrapper for the called service and let the conversion be
a responsibility of the service. The latter option is, however, rarely applicable,
mostly depending on the dynamicity of the services systems and since the re-
quirements of the called service (i.e. information needed) need to be taken into
account.

2.6. Registries

To support storing and searching of available services, external service reg-
istries and databases have been used in practical services system applications. Be-
sides information relevant for the services systems, such registries and databases
may also include other information. In the integration it should take care that
only the right and relevant services are accessible in all SOA realizations.

The same problem of varying support and features that applies to messaging
formats and service descriptions, also apply to registries. In the case of ebXML
[13], for instance, the registries support storing and managing of business pro-
cess speci�cations, collaboration agreements, business scenarios and pro�les etc.
These features are not similarly supported with e.g. UDDI, which is often used
in Web services systems. In cases where the registries are used solely for the
purposes of the service-based systems, replacing the several registries with one



32 T. Systä and M. Hartikainen

common registry might be a good solution. That would also provide more e�-
cient means for service categorizations and linkage in the registry, which, in turn,
gives better support for the clients in searching services.

3. Pro�le-based support for SOA-to-SOA integrations

We propose a UML pro�le based approach to support the identi�cation and
management of the similarities and di�erences of di�erent formats used in dif-
ferent SOA realizations. This approach could serve as an initial step towards
tool support for linking and integrating such formats. Such linkage requires
well-de�ned descriptions of the features the formats should support. Ontology
languages, such as OWL [29] have been proposed in the literature [20] for de�n-
ing semantics and metainformation for Web services systems. These languages
typically come from the Semantic Web domain. We, instead, propose the use of
UML pro�les, which are used in software engineering essentially for de�ning con-
cepts, rules and also semantics for certain domain and/or purpose. The bene�ts
of using UML pro�les include the following:

• model analysis and checking tools are straightforward to be implemented,
some of such already exist,

• the notation is familiar to software engineers,
• various other notations and views can be derived from them, and
• tool support is available.

To allow linkage of di�erent service description languages, messaging formats
and registries, well-de�ned descriptions of semantics is need. If provided, the
integration e�orts could even be at least partly automated. Rather than aiming
at language-to-language transformations, mappings to a common model would
be desirable. The goal would be to have a model with well enough support for
expressing semantical rules and metainformation to allow automation (at least,
partly) of such evolutional and integration activities. Pro�les for SOA and its
realizations could be constructed as follows.

Step 1 Constructing a pro�le for the chosen SOA concerns. For instance, pro�les
can be constructed to de�ne general rules and requirements concerning
service descriptions, messaging and registry usage.

Step 2 Transforming particular language grammars into UML pro�le represen-
tations. In case the grammar is given e.g. as an XML Schema document,
the process is rather straightforward, as demonstrated in [10].



Towards a pro�le-based approach to manage SOA-to-SOA integration challenges 33

Step 3 Extending the language pro�le (formed in Step 2) to also support the
generic SOA rules (formed in Step 1), i.e. rules for a family of formats (e.g.
rules for all service description languages).

As an illustrative example, we will next discuss the steps to construct a SOA
pro�le for WSDL service description language.

3.1. Example: construction of a SOA pro�le for service descriptions

Selonen and Xu have proposed the concept of architectural pro�les in [25].
Architectural pro�les are extended UML pro�les specialized for describing archi-
tectural constraints and rules for a given domain. The structural constraints and
rules are given in a form of a class diagram. While the architectural pro�les were
developed for validation of UML models, special operations we developed that
can be used to check whether a given UML model conforms to the rules given in
a pro�le (or a set of them). This approach has been implemented in artDECO
toolset [1, 19] and applied when maintaining a large-scale product platform ar-
chitecture and real-life product-line products built on top of this platform [23].
We have earlier applied the approach also for WSDL validation [10]. An archi-
tectural pro�le has two parts: stereotype de�nitions and constraint de�nitions.
The former de�nes the stereotypes used in the architectural pro�les and in the
actual UML models and views. The latter states the constraints and rules that
the views must conform to. Together they de�ne the WSDL 2.0 grammar rules.

Figure 2 shows a stereotype de�nition part of WSDL 2.0 pro�le. The classes
have two kinds of stereotypes: �metaclass� and �stereotype�. The former refers
to an element in standard UML metamodel. A class with the latter stereotype
extends the metamodel element it is attached to with a dependency relation-
ship. Here we follow UML 1.4 with Action Semantics. All new model elements
are extended from UML metaclass �Class� or �Attribute�. All of them, except
�Extension� classes, represent key elements given in the WSDL speci�cation.
Stereotype �Extension� is designed for extensible elements that are not de�ned
in WSDL speci�cation nor in our architectural pro�les.

Figure 3 shows the constraint de�nition part of the WSDL 2.0 pro�le. The
WSDL speci�cation introduces many optional attributes for various elements.
Therefore, we use stereotypes �required� and �optional� to distinguish the re-
quired attributes from the optional ones. The aggregation relationships indicate
a containment relationship. E.g. a message element may have zero or more (mul-
tiplicity 0..n) part elements as its subelements, while a particular part element
belongs to exactly one message element (multiplicity 1).

The WSDL 2.0 pro�le can be used to validate instance WSDL descriptions,
as demonstrated in [10]. The validations are done at UML level, which im-



34 T. Systä and M. Hartikainen

Figure 2. Stereotypes for a WSDL 2.0 pro�le

plies that the instance WSDL documents are �rst reverse engineered to UML
representation. The tool developed transforms a WSDL document into a UML
class diagram using stereotypes speci�ed in the stereotype de�nition parts of
the architectural pro�les: elements are modeled as classes and attributes of the
elements are placed as attributes of the corresponding classes. The aggregation
relationships are formed based on element-subelement relationships in the WSDL
document. Since the actual mapping between the model and the pro�le is based
on stereotypes, the classes in the reverse engineered model are given stereotypes
according to their class names. Finally, the UML representation of the WSDL
document is validated against the pro�le, which de�nes the grammar for WSDL.
In this approach, also additional pro�les were used, e.g. one for de�ning WS-I
Basic Pro�le recommendations for WSDL [28].

In this paper, we propose extending such language-dependent pro�les with
SOA-related rules. In the case of the WSDL 2.0 pro�le, extensions are made to
also support the SOA service description pro�le, namely, the pro�le that de�nes
the requirements for all service description languages (see Figure 4). In Figure 4,
for example, ws:Address element (belonging to the SOA pro�les) is extended with
wsld:endpoint element (belonging to the WSDL 2.0 pro�le). This means that all
the constraints de�ned in the WSDL 2.0 pro�le (Figure 3) and the constraints
de�ned in the constraint de�nition part of SOA service description pro�le, if
exists, apply to wsld:endpoint element. Note that the constraint de�nition part of
SOA service description pro�le may be missing altogether or it may include (also)
constraints that are not structure-related. In the latter case, the conformance
checking needs to be geared accordingly.



Towards a pro�le-based approach to manage SOA-to-SOA integration challenges 35

Figure 3. Constraint de�nitions for WSDL 2.0 pro�le

Figure 4. Extending the WSDL 2.0 pro�le



36 T. Systä and M. Hartikainen

3.2. Using the SOA pro�les

Pro�le-based support for validating and comparing languages used in di�erent
SOA realizations is sketched in Figure 5. From the process of constructing the
full pro�les (Steps 1-3) explained above, only the last step (pro�le extension) is
shown in the �gure as activities �0 (extend)". The constructed pro�les can then
be used for various purposes, e.g.:

1. for comparing the language grammars and instance documents at UML
level visually;

2. for validating individual instance documents (e.g. WSDL description) against
the language pro�le (e.g. WSDL pro�le) [10] and against the SOA pro�le
to identify possible violations or to ensure that the document follows the
rules de�ned in the pro�les; and

3. to support future maintenance activities and managing the evolutionary
changes of the languages: the pro�les can be used to identify and study the
impacts of the changes.

Comparison of language grammars. The comparison of two languages
(activity 5 in Figure 5), say WSDL and language Y that is also used for service
descriptions, can be (partly) automated after the corresponding pro�les have
been constructed. This requires speci�c operations that can take two (or more)
pro�les as input and identify the corresponding and di�ering parts in them. Such
tools have been developed at TUT [24]. Also several other tools for comparing
UML diagrams exist [33, 11]. The approach proposed by Selonen and Kettunen
in [24] is �exible and would thus well �t for the purposes of comparing language
grammars at UML level. For instance, the approach and the implementation
allows users to adjust correspondence rules, that is rules for identifying corre-
sponding parts in the diagrams. This is a useful feature, since the application
purpose may e�ect on what parts are to be identi�ed as corresponding. In the
case of UML class diagrams, for instance, in some cases the classes need to match
completely, including their names, stereotypes, attributes and methods, as well
as their nearest neighborhood (e.g. associations related to them). In some other
cases, matching simply based on the class names is su�cient. Correspondence
rules in our case should be based on stereotypes.

The comparison can also be done at instance document level (activity 4 in
Figure 5), which allows e.g. comparing two service descriptions given in di�erent
languages. This requires that the instance documents are �rst reverse engineered
to UML representations (activities 1 in Figure 5), as explained in Section 3.1.

Validating instance documents. The pro�les also allow, according to their
intended usage, validation of models. The validation toolset artDeco [23, 25]



Towards a pro�le-based approach to manage SOA-to-SOA integration challenges 37

could be e.g. used for that purpose. Since the language pro�les (e.g. WSDL 2.0)
are extended to support also the SOA service description pro�le, the validation
of instance documents includes both language syntax validation and SOA-level
validation, which are marked as activity 2 and 3 in Figure 5, resp. Also the
application of artDeco requires that the instance documents are �rst reverse
engineered to UML representations.

Figure 5. Pro�le based support for validation and comparison of languages used
in SOA-based systems.

Maintenance and future evolution. The use of UML pro�les also sup-
ports maintenance and management of future evolutionary changes to be made
in the integrated system. For example, when yet another services-based system is
intended to be integrated either with the whole system or one of the SOA realiza-
tions already integrated to it, the pro�les are again used to guide the integration.
Also other evolutionary changes may occur. For instance, the format used may
evolve. In this case, too, the pro�le can be used to identify the di�erences be-
tween di�erent formats. In [9] we have demonstrated how the di�erences in two
WSDL format versions (1.1 and 2.0) can be conveniently identi�ed by applying
the comparison operations by Selonen and Kettunen [24]. Migrating a WSDL
1.1 pro�le to a WSDL 2.0 pro�le is also rather easy, since the UML pro�les are
models that can be easily edited [10].

Besides supporting language updates, as discussed above, easy and �exible
changeability and extensibility of UML pro�les allows the proposed approach
to be geared according to speci�c needs. For instance, if there is a need to
take some of the variation points discussed in Section 2.1, say security, into



38 T. Systä and M. Hartikainen

account, the existing pro�les could be extended or new pro�les could be added
to support that. This requires naturally that the tool support (e.g. validation)
is geared accordingly. It should be noted, however, that use of the pro�le-based
approach proposed does not solve any possible mismatches, it just supports in
their identi�cation.

4. Summary

Recent software development methods and principles, such as model-driven
development (MDD), emphasize the role of abstractions and automation. Ab-
stractions aim at reusability: di�erent kinds of lower level models for di�erent
domains can be derived from the same abstract models. The transformations of
the models, in turn, are assumed to be fully or semi-automated. To enable this,
the metamodels and (UML) pro�les are used to de�ne the domain-speci�c terms,
relations and rules.

The MDD principles are potentially useful also in the development of SOA-
based systems. This has already been acknowledged in various techniques and
tools for transforming high-level work�ow descriptions into concrete and exe-
cutable business process descriptions, given e.g. in BPEL [2, 6, 22, 26]. Also,
UML pro�les for SOA have been proposed [5, 7]. In [5], Heckel et al. propose
a UML pro�le to de�ne the appropriate syntax of SOA in a well-formed fash-
ion. They further suggest de�ning the semantics of the pro�le, which allows
interpretation of the behavior of SOA applications, using UML collaboration di-
agram notation. The SOA pro�le proposed by Johnson [7] also aims to cover
various activities through the development lifecycle and to provide views to dif-
ferent stakeholders. These approaches provide valuable support for development
of SOA-based systems. However, to the best of our knowledge, semantics and
MDD-fashion approaches have not been as successfully used to support integra-
tion and evolution of services and service-based systems.

In this paper we propose application of MDD principles and UML pro�les in
particular to support SOA-to-SOA integration activities. First, as an analogy
to MDA, SOA can be thought of corresponding to the platform-independent
level and SOA realizations to the platform-speci�c level. The transformation
needed in the integration of two SOA realizations then corresponds to horizontal
transformations in MDA. Second, (UML) pro�les and metamodels play a key role
in MDD to allow reuse and evolution. In this paper we propose an approach, also
relying on the use of UML pro�les, to guide the transformations needed when
integrating two or several SOA-based systems. The pro�les are used to de�ne
SOA-level rules and requirements that should apply to all its realizations. The



Towards a pro�le-based approach to manage SOA-to-SOA integration challenges 39

same way platform-independent rules and requirements in MDA should apply to
all the platform-speci�c models and to the actual implementations. The essence
in using pro�les is to de�ne concepts, metainformation, and semantics in a well-
de�ned way.

The approach proposed was motivated by a concrete SOA-to-SOA integration
case study we have applied. In this work we integrated Plenware's proprietary
SOA-based system, called PlugIP, with a Web services system. In this paper we
also discuss the challenges related to such SOA-to-SOA integration projects from
various points of view, to emphasize the complexity of the problem.

As part of our future work we plan to fully implement the approach proposed
in this paper.

Acknowledgement

This work has been �nancially supported by TEKES, Nokia, Plenware and
Solita. The authors would like to thank Imed Hammouda and the reviewers for
their valuable comments.

References

[1] Airaksinen J., Koskimies K., Koskinen J., Peltonen J., Selonen
P., Siikarla M. and Systä T., xUMLi: Towards a tool-independent UML
processing platform, Proc. of the 10th NWPER Workshop, IT University of
Copenhagen, Denmark, 2002, ed. K. Østerbye, 1-15.

[2] Business Process Modeling Initiative, Business process modeling lan-
guage, http://www.bpmi.org/, 2005.

[3] Canfora G., Fasolino A.R., Frattolillo G. and Tramontana P., Mi-
grating interactive legacy systems to web services, Proc. of CSMR, IEEE
Computer Society, 2006, 24-36.

[4] Hartikainen M., Integration gateway for SOA-based systems, MSc thesis,
Tampere University of Technology, 2007.

[5] Heckel R., Lohmann M. and Thöne S., Towards a UML pro�le for
serivce-oriented architectures, MDAFA, 2003.

[6] IBM, The Emerging Technologies Toolkit (ETTK),
http://www.alphaworks.ibm.com/tech/ettk (last visited 2007)

[7] Johnston S., UML 2.0 Pro�le for Software Services, IBM whitepaper.
http://



40 T. Systä and M. Hartikainen

www-128.ibm.com/developerworks/rational/library/05/419_soa/
(last visited 2007)

[8] I-Logix, Rhapsody,
http://modeling.telelogic.com/ (last visited 2007)

[9] Jiang J., Lipponen J., Selonen P. and Systä T., Visualizing and com-
paring Web service descriptions in UML, NWUML, 2005.

[10] Jiang J. and Systä T., UML-based support for designing and validating
Web service descriptions, Journal of Web Services Research (JWSR), 3 (2)
(2006), 101-120.

[11] Kelter U., Wehren J. and Niere J., A generic di�erence algorithm for
UML models. Proc. of the SE 2005, Essen, Germany, 2005, 295-304.

[12] Meunier J.-N., Lippert F. and Jadhav R., RT modeling with UML
for safety critical applications: the HIDOORS project example, Proc. of
SVERTS, co-located with UML, 2003.

[13] OASIS, Electronic Business XML,
http://www.ebxml.org/ (last visited 2007)

[14] OASIS, Organization for the Advancement of Structured Information Stan-
dards,
http://www.oasis-open.org/ (last visited 2007)

[15] OASIS, Univeral Description, Discovery and Integration (UDDI) speci�ca-
tions,
http://www.oasis-open.org/ (last visited 2007)

[16] Ober I., Graf S. and Yushtein Y., Using an UML pro�le for timing
analysis with the IF validation toolset, Dagstuhl-Workshop 06022 � MBEES
2006, Model-Based Development of Embedded Systems, IEEE, 2006.

[17] OMG, Uni�ed Modeling Language Speci�cation v. 2.0.,
http://www.omg.org/ (last visited 2007)

[18] OMG, Model Driven Architecture (MDA),
http://www.omg.org/ (last visited 2007)

[19] Peltonen J. and Selonen P., An approach and a platform for building
UML model processing tools, Proc. of the ICSE Workshop WoDiSEE'04,
2004, 51-57.

[20] Pollock J.T. and Hodgson R., Adaptive information - improving busi-
ness through semantic interoperability, grid computing, and enterprise inte-
gration, Wiley, 2004.

[21] Rational Software, Rational software architect,
http://www-306.ibm.com/software/rational (last visited 2006)

[22] Rito-Silva A., Fernandes S., Martins J. and Domingos D., Micro-
work�ow component framework supporting service composition. INESC-ID,
Deliverable IST-2001-37724 ACE-GIS D4.2, 2003.



Towards a pro�le-based approach to manage SOA-to-SOA integration challenges 41

[23] Riva C., Selonen P., Systä T. and Xu J., UML-based reverse engineer-
ing and model analysis approaches for software architecture maintenance,
Proc. of ICSM, 2004, 50-59.

[24] Selonen P. and Kettunen M., Metamodel-based inference of inter-model
correspondence, Proc. of CSM , 2007, 71-80.

[25] Selonen P. and Xu J., Validating UML models against architectural pro-
�les, Proc. of ESEC / SIGSOFT FSE, 2003, 58-67.

[26] Skogan D., Grønmo R. and Solheim I. Web service composition in
UML, Proc. of EDOC, 2004, 47-57.

[27] Sneed H.M. Integrating legacy software into a service oriented architecture,
Proc. of CSMR, IEEE Computer Society, 2006, 3-14.

[28] Web Services Interoperability Organization,
http:/ /www.ws-i.org/ (last visited 2007)

[29] World Wide Web Consortium (W3C), OWL-S, Semantic Markup for
Web Services,
http://www.w3.org/ (last visited 2007)

[30] World Wide Web Consortium (W3C), Web Service Description Lan-
guage (WSDL) 1.1.,
http://www.w3.org/ (last visited 2007)

[31] World Wide Web Consortium (W3C), Web Service Description Lan-
guage (WSDL) 2.0.,
http://www.w3.org/ (last visited 2007)

[32] World Wide Web Consortium (W3C), Simple Object Access Protocol.
(SOAP),
http://www.w3.org/ (last visited 2007)

[33] Xing Z. and Stroulia E., UMLDi�: An algorithm for object-oriented
design di�erencing, Proc. of ASE, ACM Press, 2005, 54-65.

T. Systä and M. Hartikainen
Department of Software Systems
Tampere University of Technology
P.O. Box 553
FIN-33101 Tampere, Finland
{tarja.systa,mikko.hartikainen}@tut.fi




