
Annales Univ. Sci. Budapest., Sect. Comp. 31 (2009) 3-22

An Agent Based Architecture Style for Application
Integration

Jari Peltonen and Mikko Vartiala

(Tampere, Finland)

Abstract. In order to realize the time-to-market needs of an information
system, it is essential that integration of existing applications is reason-
ably utilized. In addition, also flexibility, maintainability, and incremental
development are typical requirements for software architectures, led from
the typical business and marketing needs. To succeed in fulfilling these
requirements, attention must be paid to various architectural viewpoints,
including the location and granularity of business logic, as well as simplicity
and loose coupling in the architecture. In this paper, the main focus is in
integration of applications in a maintainable and flexible way that supports
incremental development. We consider our agent based software architec-
ture style, and show how higher level of abstraction in dependencies, as well
as relocation of the strategic business logic to agents, provides a feasible
solution to the above-mentioned needs. To validate the approach, we have
implemented a framework for agents and used it to create the architecture
for a process support environment.

1. Introduction

The constant business goals in software development are to use less time and
money for development and maintenance, get the products faster on the market,
and still preserve appropriate quality and the ability to adapt to the changing
world. From the technical point of view, this indicates that high level of flexibil-
ity and maintainability is typically required, and incremental development and
integration of existing applications are often preferable ways of making software.



4 Jari Peltonen and Mikko Vartiala

Maintainability is important simply because considerable amount of time and
money is used to the maintenance of a system, especially in systems where the
life span of the system is long. Flexibility is necessary for adaptation to, e.g.
technological trends and an increasing variety in device and communication en-
vironments. Incremental development and integration of existing applications
may considerably help to fulfill quality, cost, and time-to-market requirements
set.

Especially in the information system development, integration of existing sys-
tems, components, and applications can generate great savings and raise the qual-
ity of the system. The need for integration includes also possible legacy systems
and commercial off-the-shelf products. Furthermore, integration of legacy sys-
tems is often more of a necessity than a choice. Incremental development process
is a good choice due to the fact that the time-to-market requirement is typically
not so much about the time when the full system is functional, but more about
when some functional system is on the market.

Incremental development, flexibility, maintainability, and integration are best
utilized when they are considered already in the architecture of the system. To
succeed in fulfilling these requirements, simplicity of the architecture and loose
coupling of the architectural entities are proven to be successful paradigms. For
instance, service orientation [18] is largely based on these ideals.

However, the difficulty of managing dependencies in any architecture depends
also on how the functionality and data are divided across the architecture. Specif-
ically, the location and granularity of functionality are traditional issues in the
design of an information system. Too often, even a simple functionality concern-
ing a single aspect in a system is wide spread across the architecture. This is
not just counterproductive, but this kind of scattering of functionality efficiently
prevents all attempts, e.g. for easy maintenance and incremental development.
In addition, badly designed architecture and communication within it easily leads
to transmitting excess data that can affect negatively, e.g. on the performance
and resource requirements of the system.

The main focus in this paper is in integration of applications in a maintain-
able and flexible way that supports incremental development. We gain this by
providing a simple infrastructure model, promoting loose coupling by higher level
of abstraction in dependencies, and locating each strategic business logic case to
a single place – an agent. The architecture style also aims at, e.g. optimizing
communication within the system.

The current trend of using messages in application integration is considered in
Section 2. In Section 3 an overview of our agent based architecture style is given.
In Section 4 the implementation of our framework for agents is presented, and
Section 5 shows how we have used the framework to create the architecture for a
process support environment. Section 6 summarizes and discusses the approach
and Section 7 discusses some related work. Finally, in Section 8 we give some



An Agent Based Architecture Style for Application Integration 5

concluding remarks.

2. The current trend in application integration – Messages

2.1. Why messages?

Messages are often seen as the most versatile option for application integration
over file transfer, shared database, and remote procedure calls (RPC) (e.g. [9]).
File transfer and shared database approaches are solutions for sharing data, but
not functionality. RPC again makes it possible to share functionality, but couples
the applications tightly to each other at the same time. In addition, remote
procedure calls are slower and much more likely to fail than local ones, and
due to the synchronous nature of communication, a failure in one application
may break down the whole system. File transfer, as an integration approach, is
asynchronous and decouples applications well, but does not transmit the data in
real time.

Messaging aims at mixing the good attributes of file sharing and RPC by
allowing near to real time data transmission and functionality invocation asyn-
chronously. Asynchronous communication is one of the key points when aiming
at loose coupling among applications. Sending a message does not require all
participating systems to be available at the same time, and the sender does not
have to wait the response, but it can continue on doing other things. In addition,
any procedure calls a message actuates are local, which makes the system more
reliable.

Architectural styles like Service Oriented Architectures (SOA) [18] and En-
terprise Service Bus (ESB) [5, 10] emphasize loose coupling by relying on indirect
asynchronous message based communication. They work conceptually on higher
level than, e.g. traditional client-server architectures, since they do not discuss
physical clients or servers, but logical services and their consumers. This de-
taches the architectures from physical world, and thus from physical addresses.
The service consumers also tell what services they want, not how they will be
performed. Higher level of abstraction in dependencies is a favorable solution in
application integration since it makes loose coupling as the central pattern in the
architecture.



6 Jari Peltonen and Mikko Vartiala

2.2. Deficiencies of message based systems

In a message based system, a close to real time communication is achieved by
sending a lot of small messages and letting the receiver to know immediately when
a message is available. This generates easily a great amount of network traffic,
which may become a problem in larger and more complex systems. In addition,
not all of the messages are small and simple, since they are used to transmit
all the information and related meta-data in the system. Hence, messaging may
put a heavy burden on a communication channel. This is a problem in any
environment, but especially in the ones where the communication channels are
thin (like mobile environments).

Due to various schemas and data formats in different applications, each mes-
sage goes trough a transformation chain, where the message is first formulated,
translated to a common format and sent, and in the other end it is received,
parsed, interpreted and actuated. This requires some processing power, as well
as causes lag for the communication. In addition to the minor inconveniences
caused by latencies, the total completion time may grow considerably.

Since the message must be interpreted in the receiver end, both the sender
and receiver must understand the exact semantics of the message. This means
that a single concern in functionality is always divided across the architecture,
and the comprehension, maintenance, and testing of such concern gets very hard.
The problem is even worse when the needed functionality is complex, and there
is a need for several messages to get a single thing completed.

Due to need to minimize the network traffic and to simplify the communica-
tion, a high granularity in services would be favorable. However, e.g. maintain-
ability and re-use of services would benefit from lower granularity. This is not
solely a challenge of message based systems, but more a balancing issue of any
system where there is a need to communicate over network. A typical solution is
to compose higher level “services” of lower level components, or to introduce some
middleware. In the case of the service oriented architectures, the only lower level
components are other services, which sets the lower limit for rational granularity
rather high. In addition, the basic problems of message based systems do not
vanish as long as the only way of communication is by using messages.

Basically, any sequence of service requests in a message is a sequence of com-
mands and can hence be considered as a script. The language for specifying a
script just does not have the power of typical scripting languages. There are no
other ways in messages to react dynamically for varying or exceptional situations
either. Not very much can be done, for example, if a service fails during the
execution. The service may be able to send an error message to the service con-
sumer, but again, an amount of messages are sent to various places. In addition,
there must be some code to react to that kind of messages too – in all the service



An Agent Based Architecture Style for Application Integration 7

consumers who might be interested.
As an example, let us consider a situation where a service consumer wants

to calculate a trend based on a large amount of information on several services.
This means that there are several related messages either sent one by one to
the services and then the results are collected and interpreted in the consumer,
or there is a chain of messages where the information from previous service is
forwarded to next one, and the following service again interprets the data it gets.

Particularly, if the data in services depend on each other in the calculation,
or the way of performing the calculation is dynamical (e.g. depending on the
consumer or data provided by the services), there is either a huge amount of
network traffic, or the services become unnecessary complex. Either way, the
functionality needed for performing a single calculation is spread across the ar-
chitecture, the business sequence gets hard to comprehend, maintain, and test,
and it is hard to get the whole system robust and fault tolerant.

3. An agent based architecture style

3.1. An overview of the approach

The good ideas of promoting loose coupling by higher level of abstraction in
dependencies, as well as the simplicity of architecture style are worth preserving.
However, to overcome the deficiencies of message based communication men-
tioned in Section 2.2, we wish to promote locating each strategic business logic
case to a single place – an agent. We believe this to be a more feasible solution
for application integration than messaging.

The general idea of the agent based architecture style is that there is an
infrastructure offering services for agents, which use the infrastructure to move
around and to achieve their goals. It is notable that typical agents are not very
complex; on the contrary, most often they are simple task based agents with a
predefined behavior. Additionally, one agent should only be related to a single
task for simplicity.

To make a clear distinction between the entities on different abstraction lev-
els, we present the approach in three meta-levels, where a higher level archi-
tecture defines the possible instances of lower level architectures. As seen in
the vertical axis in Fig 1 the levels are from the most abstract to the most
concrete: meta-architecture, system architecture and runtime architecture. The
meta-architecture, i.e. the architecture meta-model, describes the entities that
can be used to define new system architectures. Basically, a meta-architecture



8 Jari Peltonen and Mikko Vartiala

Figure 1. The three metalevels describing the agent based architecture model

is an architectural style defining a language for specifying possible architectures
according to that style. In this sense, all the architecture definition languages
can be seen as architectural styles.

System architecture is the logical architecture definition of a concrete system
and runtime architecture is a possible, physical, runtime instantiation of the
system architecture. There is also fourth level, meta-meta level, which defines
a language for specifying meta-architectures. In this case we use OMG Meta
Object Facility (MOF) as such language [17]. Besides that the architecture is
divided vertically to meta-levels, it is also divided horizontally to infrastructure
and agents as seen in Fig 1. That is, we separate the business logic from the
underlying infrastructure.

The meta-architecture of the infrastructure, as shown in the upper right cor-
ner of Fig 1, consists of areas, locations, methods of locations and transporters.
An area represents one group of locations typically located in one computer.



An Agent Based Architecture Style for Application Integration 9

Locations offer different kinds of services to agents through their methods and
they can also create new agents when something needs to be done. Typical loca-
tions include user interfaces, as well as interfaces to databases and various other
applications.

Transporters are special kind of locations connected to each other. They are
used for transporting agents to remote areas. The architecture style allows three
different forms of traveling: Agent tells the infrastructure 1) only the type of the
location, 2) the type of the location and the type of the area or 3) the type of
the location and the ID of the area. The locations, areas, etc. are meant to be
built in a way that they do not know anything about the functionality provided
by other entities in the infrastructure.

The agents, seen on the left side in Fig 1, use the functionality offered by
the infrastructure to achieve their predefined tasks. More specifically, the agents
move among different locations, possibly located in different areas, and use the
methods of the locations to achieve tasks. The agents do not need to know
anything about the runtime architecture, but they can rely on their knowledge
of the description of the system architecture. More specifically, they typically
only need to know directly the types of the locations they want to use. The only
things that get transferred between areas are agents.

The architecture does not limit the amount or type of the above-mentioned
entities in any way. On the contrary, one of the key points is that it should be
made as easy as possible to expand any system using this architecture by adding
new agents, locations, areas and transporters to it. This helps to achieve the
needed flexibility, customizability, and incremental development requirements.
For the same reason, the maintenance of the system is straightforward.

3.2. System and runtime architectures

System architecture is the description of the architecture of a concrete system.
It is achieved by instantiating the meta-architecture in any way the architect
desires. A possible example of system architecture can be seen in the middle
part of the Fig 1. The example consists of two agents, two areas, two locations
and a transporter, named according to their types. Notable in the example is
that both areas have Transporter1 and Location2, but Area1 has additionally
Location1. A reason for this might be that Location1 requires some special
resource or processing power not available in a normal workstation, thus a more
efficient server is required to run Area1.

What cannot be seen from the figure is what kinds of connections are allowed
by Transporter1. Generally, the type and number of possible connections depends
entirely on what kind of transporters there are in an area. For example, Trans-
porter1 could allow connecting to an unrestricted number of other transporters,



10 Jari Peltonen and Mikko Vartiala

or it could only allow one connection to a transporter of type Transporter1. In
this case there can be an unrestricted number of connections.

All the program code, including the behavior of the agents, is defined in
the system architecture level. That is, agents rely typically only on the logical
architecture elements instead of physical ones. As an example, the behavior of a
simple agent type (Agent1) is illustrated in Fig 1 with a sequence diagram like
presentation. A location or agent creates an agent of type Agent1 whenever they
need a service provided by such an agent. When an agent is created, it typically
gets parameters that guide its execution, as well as other information, like the
ID of the area where it was born. The example agent uses Method1 in a location
of type Location1 to perform its task. Since the programmer of an agent cannot
typically know whether there is a needed type of location nearby, the needs must
be indicated to the infrastructure (e.g. the area where the agent currently is).
After the infrastructure moves the agent to an appropriate area and location, the
wanted method can be used.

Runtime architecture consists of all entities and their states of a system in one
moment during runtime. It is possible to have an unlimited number of different
runtime architectures using the same system architecture, because typically the
amount of entities is not constrained in any way. An example of a possible
runtime structure is seen in the bottom level of Fig 1. This runtime structure
consists of three areas, and as defined in the system architecture, each area has an
instance of Transporter1 and either one or two locations. All of the transporters
are connected to each other over the network, and hence they form a kind of a
peer-to-peer network in this case. The situation in the example, three areas and
two agents, is not caused by any restrictions; an equally possible case would a
runtime situation with, say, tens of areas and hundreds agents.

The dashed lines in the bottom level of Fig 1 show the runtime behavior of
two different instances of Agent1. Both of them are created by a location of type
Location2. The leftmost dashed lines show what happens when such an agent
is invoked in Area1. When the agent comes to a situation where it needs to use
Method1, it indicates to the infrastructure that it needs to use a location of type
Location1. Since a location of that type is located in the same area, the agent is
moved there. After the short travel the agent calls Method1 and decides that it
has done everything it needed and thus the agent stops there.

The rightmost dashed lines show the behavior of Agent1 when it is created in
an area of type Area2. As a distinction from the previous example, there is no
Location1 in the area where the agent is created. Thus, when the agent wants
to use Method1 of Location1, the infrastructure transports it to an area which
has a location of type Location1, in this case the area A1 is chosen. The second
line is a composition of all the events that occur during that travel. After the
traveling the agent uses Method1 of the location L1 and stops.



An Agent Based Architecture Style for Application Integration 11

Figure 2. Using observer-pattern in agent-based architecture

3.3. An example: observer-pattern

The simplest complete system architecture to support observer pattern [4]
can be created with five entities in the system level as seen in Fig 2. The meta-
level is not described anymore as it is same for all system architectures. In the
infrastructure side there is one area, Simple Area, which consists of two locations,
Simple Transporter and Simple Location. Simple Location works as both the
observer and the subject, and it offers methods Register and Update. To achieve
the functionality needed in the pattern we need two agents. RegisterObserver-
agent registers an observer to a subject and UpdateObserver-agent is then used
to update the registered observer.

In the bottom level of Fig 2 there is the runtime architecture with two in-
stances of Simple Area. The Simple Location in the leftmost area works as
an observer and the Simple Location in the rightmost area works as a subject.
The dashed lines in Fig 2 show the sequence of events during the lifetime of a
RegisterObserver-agent. The sequence starts when the leftmost Simple Location
wants to register itself to the Subject and creates an agent for this purpose. The
needed parameters are also given to the agent at this point. These parameters
include at least the type of the subject-location and the ID of Area2, because
the agent needs to know exactly who to register and to whom. Additionally the
initialization data could include, e.g. the type of events that the observer is in-
terested in. The second line is a composition of all the events that occur during
the travel from the observer to the subject. Line 3 shows the actual registration
of the Observer-location. After that the agent stops and is destroyed.



12 Jari Peltonen and Mikko Vartiala

4. Implementation of a prototype framework

4.1. The infrastructure supported by the framework

To validate the approach, we have implemented a prototype framework. The
framework implements all described entities in the meta-level (location, area,
agent, and transporter) of the architecture and makes it possible to specialize
system level architectures from it. The framework also implements several other
helpful entities to make the implementation of a working system easier. There
are also some implementation specific details not part of the architecture model
itself. These details are described in the following paragraphs.

All locations in the infrastructure offer some basic functionality to agents.
They allow the agents to travel to other locations and to redirect an agent to a
transporter if the wanted location is in another area. They also allow asking the
current area and the type of the current location. The type of the location is
important information, since the agents typically navigate in the infrastructure
using them. Areas only know the types of their locations and have no other
knowledge of them or other areas, i.e. areas are autonomous and running an area
does not directly require the presence of any other areas. All areas have a type
and an ID; these can also be used by agents to move among them. Each area
also has at least one transporter.

Agents are transported by first serializing the state and data of an agent in
a transported, then creating a similar agent at another transporter in a remote
location and deserializing the state and data for this new agent. One transporter
can have multiple connections to other transporters. Common functionality to
all transporters is that they can be asked for all currently connected areas and to
transport an agent to any of them. Common to the whole framework is that it
must take care of concurrency, network communication and all other things that
are not related to the business logic, so that the agents can focus on implementing
the non-quality requirements of the system.

4.2. The general characteristic of agents in the framework

An agent has current location, current state and a home area. The home area
tells where an agent originates from, and where it should navigate if it wishes to
come back from a remote location. Current state is used to determine what the
agent has done, and what it should do next. There is no predefined state behavior
or other constraints for the states of the agents, but it is hard coded to them, i.e.
it is left to the creator of an agent to use the agents any way she prefers.



An Agent Based Architecture Style for Application Integration 13

Agents can create other agents and in some cases even interact with them,
but they can only coordinate their movement according to locations and have no
knowledge of other running agents unless a location provides this information.
Agents cannot create themselves, but otherwise their lifespan is completely han-
dled by themselves. Agents can duplicate themselves at will and they are never
destroyed unless first requested by themselves.

Agents do not directly need to handle lower level things, like concurrency,
in any way. The framework takes care of those. Of course there can be many
agents under execution at the same time, but agents should not have to care
about this. Still, they might have to wait before the execution of any called
method of any location. The order of the queued agents may also change in some
cases. Therefore, it is not always guaranteed that a preceding agent can use a
location before a later arrived agent. It is also possible that when calling two
non-related methods in the same location another agent comes and calls the same
location in between the two calls.

The whole execution path of an agent should typically not be considered as
a transaction since the framework does not currently offer any means to recover
an agent which is in a disconnected area or to detect the loss of an agent. Agents
can of course try to offer quality of service, but it is usually easier to just try to
notify the user about an error and then leave the rest to her.

5. An example system - a process support tool

5.1. An overview of the example system

We have used the agent based architecture style to implement a process sup-
port environment. The environment is used to execute a software development
process with several tools and developers. The process support environment must
make it possible to define the used process and the users must be able to see the
state of the process and control it. The state of the process, as well as the arte-
facts produced and used need to be persistent. Because of several developers,
the process needs to be synchronized among all of them. It is also essential that
existing tools, used by the developers, can be integrated to the environment. The
inherent nature of software development is such that the process, tools and envi-
ronment may change for every project. Hence, the abovementioned definitions,
integrations, etc. must be very flexible. Additionally, for performance, usability,
etc. reasons, it must be possible to execute process activities and use tools both
on local and remote computers.



14 Jari Peltonen and Mikko Vartiala

We have made several architectural decisions regarding the environment.
Only the most important ones are listed here. The process is defined as a Visiome
script [19], which is run in a Visiome Engine. On top of Visiome Engine runs a
model processing platform called xUMLi [1, 20]. Both of them will be part of
the architecture and existing modeling tools (like Rational Rose) are integrated
through xUMLi. The existing tools could of course be also integrated directly
to the architecture, but since there is an existing implementation fulfilling our
needs, we do not need to do that. A frontend is needed for following and con-
trolling the state of the process. It was decided that the persistency is handled
by saving the state of the process to a database and the artefacts to a version
control system. A process backend is used to make it simple to synchronize the
process among different frontends and to allow remote processing at the backend.

5.2. The system architecture

The prototype framework was used to implement the example system, i.e. we
have inherited all the used locations, areas, transporters and agents from their
corresponding base classes. These inherited entities can be seen in the upper
part of Fig 3. The current instantiation of the architecture can basically be seen
as a kind of client-server architecture. The system infrastructure consists of two
different kinds of areas, Backend and Frontend. Both of these have their own
transporter. The frontend transporter can only connect to one backend trans-
porter at a time, and the backend transporter can only receive connections from
frontend transporters. To add support for multiple backend areas either the back-
end transporter should offer functionality to connect to a backend transporter or
a frontend transporter would have to be added to the backend area.

Common locations for both of the areas are Database and VersionController.
Database-location offers an interface to the shared database of the system and
VersionController-location offers an interface to use the shared version control
of the system. FrontendEngine and UI are only located at the Frontend. Fron-
tendEngine handles the communication to a Visiome Engine at the frontend and
UI is a single user interface. ProjectHandler is only located at the Backend. It
manages the relations between users and projects and creates new visiome en-
gines. There are several different kinds of agents in the architecture; these include
a StartProject-agent and an ExecuteActivity-agent. Most of the agents in the
architecture are typically started by a software developer who uses the UI in a
frontend.



An Agent Based Architecture Style for Application Integration 15

Figure 3. The specialized architecture and a sequence of an ExecuteActivity-
agent

5.3. An example run-time architecture

There is an example runtime architecture with one Frontend area and one
Backend area in the bottom of the Fig 3. The dashed lines show the sequence of
events during the lifetime of a bit more complicated agent, an ExecuteActivity-
agent. This agent executes an activity at the area in which it was created. The
traveling between the areas and locations has been omitted for simplicity.

The sequence starts when a user implies her wish to execute an activity.
Then an agent is created, and it uses the locations in the order shown by the
numbers. First it must travel to the backend and use ProjectHandler to lock the
activity so that no other user can execute it at the same time. At this point the
agent fetches the needed input files of the activity from the VersionController and
starts to execute the activity at the Visiome Engine of the frontend. The activity
itself can be of several different types, including an automatic activity with no
user intervention or an interactive activity which requires interaction during the
execution. After the execution the output is saved to VersionController at the
frontend and synchronization is done at the backend using the outputs.



16 Jari Peltonen and Mikko Vartiala

5.4. Experiences

The framework and the complete system were implemented quite painlessly
and successfully in reasonable time; therefore the case study can be considered a
success. Also, if only the user interface is left out of the row count of the code,
then the implemented system architecture has only a little more code lines than
the implemented meta-architecture, i.e. the framework.

The division to the framework and to the system itself was quite viable and
the framework implements several functionalities in their entirety. These include
the transporting of the agents; including the moving over network; handling of
the concurrency and general structures for managing locations and agents. Addi-
tionally there was only a minimal need to put non-requirements related things in
the implementation of the system architecture. In the example system the meth-
ods of the locations are individual in the sense that there is no session between
locations and agents using them, i.e. the locations do not provide methods which
require that a specific agent calls them one after the other.

6. Discussion

The presented architecture style is relatively simple, but it still considers the
requirements set in Introduction Section. Any architecture made according to
the style is loosely coupled, since the system architecture level entities have no
direct dependencies and the agents are only dependent on the types of locations
instead of any specific locations. In other words, the agents have information
about the logical system architecture, but not about the physical runtime archi-
tecture. Additionally the locations used by agents merely offer methods to them;
they do not have to know anything about the way they are used, for example,
interpret messages. The agents are the only entities having knowledge about
their behavior.

Typically, agents are directly related to a single business sequence, i.e. each
agent implements an aspect, like the whole higher level communication over dif-
ferent components during the order making sequence. This provides easy viewing
of the completeness of an aspect, and as important consequences, easy mainte-
nance of them and possibility to add new aspects to the system incrementally.

Incremental development is also achieved by making it easy to add new areas,
locations, transporters, and agents. By using inheritance, it is easy to create
extended versions of existing entities. In addition, agents can be “composed” of
other agents, i.e. they can use other existing agents to perform their tasks. For



An Agent Based Architecture Style for Application Integration 17

example, to add the functionality of sending a message to all currently connected
testers in a project only a new simple agent would have to be created. If there
would already exist a SendMessage agent, the new agent could use it, or be
specialized from it. Adding a new type of an agent does not change anything else
in the system.

Agents can also easily react to varying or exceptional situations, since from
the viewpoint of an aspect, all essential things happen in a single agent. An agent
can, for example, spontaneously fetch more information if needed, or dynamically
decide the area, i.e. computer, in which the processing is done, e.g. in complex
calculations. For instance, in the trend calculating example presented in Section
2, an agent could travel through all of the information providers sequentially and
make decisions regarding the rest of the calculation on-the-spot, thus reducing
the amount of network traffic, since some information could be discarded imme-
diately. More generally, agents aim always at optimizing network traffic by their
very nature, i.e. they only carry with them the currently needed information.

In a way the agents can be compared to messages in a message based system,
the difference being that a message implicitly tells the system what to do, but
an agent explicitly has the information in it. Additionally, an agent has the
whole expression power of a decided programming language at use, and they
are always executed locally if considered from the viewpoint of a location. No
transformation chains or extra data formats are needed as the agent designers
generally understand the interfaces of the locations. Whether the interfaces of
service providers, that is locations, are descriptive or procedural does not matter.
In any case they are close to the service itself and thus no transformation is
needed.

The communication model of the instantiated architecture can be anything
the developer wishes, it completely depends on what kind of transporters there
are in the system. For example, a peer-to-peer network is achieved by having a
peer transporter, which can connect and simultaneously receive multiple connec-
tions from other peer-transporters. The agents do not care about the runtime
architecture, as long as they can move among locations they need. Many quality
requirements not explicitly defined in the architecture style, including reliability,
security, QoS, etc. could be handled by adding specific functionality to trans-
porters. They could, e.g. encode the agent states after serializing etc.

In our approach the granularity problem is divided into two parts, there is the
granularity of the methods of the locations, and the granularity of the agents.
Typically the methods are more fine-grained and the agents more coarse, as
the agents use the methods to aggregate higher-level functionality. This way a
designer in need of some functionality can first browse the existing agents, and
if no proper agent exists, she can create a new one to use, not only the methods
of the locations, but also other agents.

The implementations of the agents are typically fairly simple, consisting



18 Jari Peltonen and Mikko Vartiala

mostly of straightforward snippets like 1. To infrastructure: Transport me to
LocationX, 2. Call method XY of that location, 3. Change internal state of the
agent according to the return value of method XY. Agents in the example system
described in Section 5 were usually about 50-100 lines of code, the longest being
about 250 lines. This could have been made even smaller by some more careful
planning and additional optimization of the framework and perhaps by using for
example, Python to implement the agents.

7. Related Work

SOA [18] has been successfully used at several integration projects, including
[24] and [25]. To integrate a system using the agent based architecture with an
external SOA system is, at least in theory, relatively easy. It could, for example,
be done by creating a location which accepts external SOA-messages and converts
them to the right agents. Also the same location could convert method calls made
by agents to SOA-messages and send them to the right service providers.

There exists a lot of research done in a multitude of areas involving agents
directly or indirectly. For instance, [14] gives an overview of agent concepts and
applications of agent technology. Baumann et al. [2], Lange and Oshima [12], and
Gray et al. [8] have found similar benefits of using agents as we pointed out. The
experiences with first- and second-year undergraduates successfully developing
D’Agent applications [8] also suggested that agents are easier to understand than
message- or RPC-based techniques.

There are also numerous agent-based architectures, infrastructures and mid-
dlewares, including Mole [2], the Aglet API [11], Open Agent Architecture (OAA)
[15], D’Agents [8], RETSINA [23] and Hermes [7]. The middleware presented in
Hermes has been successfully used to design an agent-based tool integration sys-
tem [6]. A summary of several projects using agent technology for enterprise
integration and supply chain management is presented in [22]. Existing agent
architectures are discussed and an architectural model for mobile agent systems
is described in [21]. Additionally, [16] considers the use of agents in electronic
business, including complex integration of existing infrastructures.

A common difference with our approach and many of the mobile agent sys-
tems is that our focus lies in simplicity which is achieved by restricting the mutual
communication of agents to be between agents and locations. This allows us to
support flexibility in a controlled manner while still keeping the system easily
maintainable. A more specific difference with other agent-based architectures is
that we have a special entity called as location, which provides local services. Our
service provider is called Location, instead of service agent or static agent, be-



An Agent Based Architecture Style for Application Integration 19

cause of the fundamental differences between agents and locations in our system.
The most relevant differences being that locations are not mobile or goal-oriented
and they are permanent.

Architectures containing this kind of an entity are typically the most similar
ones to our approach. These include EMAA [13], which has servers providing
services, as well as Hermes and Mole [2] with ServiceAgents. Also docks in EMAA
have some similarities with our transporter, but distinctively our transporters
only handle things related to the communication over network. This makes the
architecture clearer and reusable, since if many communication protocols are
needed, an area can contain several transporters of different types. Also our
approach does not rely on the need for each node/transporter to be able connect
to all other areas or to a centralized naming directory/resource server. On the
contrary, the architecture model can be built in a way that the transporters work
like routers and only know the next destination while asked for a certain type
of a service. This is beneficial in several cases, for example, if communicating
through several firewalls.

8. Concluding remarks

In this paper, we presented an agent based architecture style and specified it
in three meta-levels. We also showed how higher level of abstraction in depen-
dencies, and agent based communication are a feasible solutions in application
integration. We validated our approach by implementing a framework for agents
and by using it to create the architecture for a process support environment. We
also showed in an example, how the way of specifying the architecture can be used
also in specifying reusable architectural patterns (observer pattern example).

The presented architecture style attains a relatively good level of flexibility,
customizability, and maintainability, as well as provides means for incremental
development, e.g. because of the easiness of adding new entities to the system
and keeping each business logic case in a single place. The architecture style is
also simple, concrete, and well defined. There are some similarities to existing
architectures, including other agent-based architectures and SOA.

The architecture model and the implementation of the case study could be
improved and extended in many ways. For example, graphical specification of ar-
chitecture meta-model combined with code generation facilities, as well as simple
mechanisms for defining at least the simplest agents, like in BPEL (Business Pro-
cess Execution Language) for Web services [3], might be useful. More extensive
practical tests about performance, suitability, etc. would help us to understand
all the benefits and disadvantages concerning the architecture model. We also



20 Jari Peltonen and Mikko Vartiala

continue the work with the implementation of the framework, for example, the
case of adding new entities to the system could be more automated.

Acknowledgements

We would like to thank Kai Koskimies and the anonymous referees for their
valuable comments. This research has been financially supported by the Institute
of Software Systems (Tampere University of Technology), the National Technol-
ogyAgency of Finland (project Inari), Nokia, Plenware Group, TietoEnator, and
John Deere.

References

[1] J. Airaksinen, K. Koskimies, J. Koskinen, J. Peltonen, P. Selonen, M. Si-
ikarla and T. Systä. xUMLi, towards a tool-independent UML processing
platform. In Proceedings of 10th Nordic Workshop on Programming and
Software Development Tools and Techniques (NWPER’2002), Copenhagen,
Denmark, August 2002.

[2] Baumann J., Hohl F., Rothermel K., Straßer M., Mole – Concepts of a
mobile agent system, World Wide Web 1 (1998) 123–137.

[3] Business Process Execution Language for Web Services Version 1.1,
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

[4] F. Buschmann et al. Pattern-Oriented Software Architecture: A System of
Patterns. Wiley, 1996, p. 339-343.

[5] Chappell D., Enterprise Service Bus, O’Reilly, 2004.

[6] Corradini F., Mariani L., Merelli E., An agent-based approach to tool in-
tegration, International Journal on Software Tools for Technology Transfer
(STTT), Volume 6, Issue 3, Aug 2004, Pages 231 – 244.

[7] Corradini F., Merelli E., Hermes: Agent-Based Middleware for Mobile Com-
puting, Lecture Notes in Computer Science, Volume 3465, Jan 2005, Pages
234 – 270.



An Agent Based Architecture Style for Application Integration 21

[8] Gray R., Cybenko G., Kotz D., Peterson R., Rus D., D’Agents: Applica-
tions and performance of a mobile-agent system, Softw. Pract. Exper. 2002;
32:543–573002E.

[9] Hohpe G., Woolf B., Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions, Addison-Wesley, 2003.

[10] Keen M., Acharya A., et al., Patterns: Implementing an
SOA using an Enterprise Service Bus, IBM Redbooks, 2004,
http://www.redbooks.ibm.com/redbooks/pdfs/sg246346.pdf

[11] Lange D., Oshima M., Mobile agents with Java: The Aglet API, World Wide
Web 1 (1998) 111–121.

[12] Lange D., Oshima M., Seven Good Reasons for Mobile Agents, Communi-
cations of the ACM, March 1999/Vol. 42, No. 3.

[13] Lentini R., Rao G., Thies J., Kay J., EMAA: An Extendable Mobile Agent
Architecture - AAAI Workshop on Software Tools for Developing Agents,
1998.

[14] Manvi S., Venkataram P., Applications of agent technology in communica-
tions: a review, Computer Communications 27 (2004) 1493–1508.

[15] Martin D., The Open Agent Architecture: A Framework for Building Dis-
tributed Software Systems, Applied Artificial Intelligence, 1999.

[16] Müller J., Bauer B. and Berger M., Software Agents for Electronic Business:
Opportunities and Challenges, Lecture Notes in Computer Science, Volume
2322, Jan 2002, Page 61.

[17] Object Management Group, OMG-Meta Object Facility, v. 1.4, April 2002.

[18] Papazoglou M, Service-oriented computing: concepts, characteristics and
directions, Web Information Systems Engineering, 2003.

[19] J. Peltonen, "Visual Scripting for UML-Based Tools", In Proceedings of
ICSSEA 2000, Paris, France, December 2000.

[20] J. Peltonen, P. Selonen. An approach and a platform for building UML
processing tools. In Workshop on Directions in Software Engineering Envi-
ronments (WoDiSEE 2004), Edinburgh, Scotland, May 2004, pp. 51-57.

[21] Schoeman M., Cloete E., Architectural components for the efficient design
of mobile agent systems, In proc. of SAICSIT, 2003.



22 Jari Peltonen and Mikko Vartiala

[22] Shen, W., Norrie, D.H., Agent-Based Systems for Intelligent Manufactur-
ing: A State-of-the-Art Survey. Knowledge and Information Systems, an
International Journal, 1(2), 129-156, 1999.

[23] Sycara K., Paolucci M., Velsen M., Giampapa J., The RETSINA MAS In-
frastructure, Autonomous Agents and Multi-Agent Systems, Volume 7, Issue
1 - 2, Jul 2003, Pages 29 – 48.

[24] Zimmerman O., Milinski S., Craes M., Oellermann F., Second generation
web services-oriented architecture in production in the finance industry,
OOPSLA, 2004.

[25] Zimmerman O. et al. Service-Oriented Architecture and Business Process
Choreography in an Order Management Scenario: Rationale, Concepts,
Lessons Learned. OOPSLA, 2005.


