
Annales Univ. Sci. Budapest., Sect. Comp. 30 (2009) 191-200

NODE-BASED ARCHITECTURE FOR LIGHTWEIGHT
MIDDLEWARE

V.-M. Hartikainen, M. Vulli and H.-M. Järvinen

(Tampere, Finland)

Abstract. We propose a simple middleware architecture for mobile de-
vices. The architecture is based on nodes and streams. In a REST-like
way, the nodes only provide standard operations for control. Several mid-
dleware solutions have been created for developing distributed software.
However, the existing solutions do not suit well for use in embedded or
mobile devices. By specifically targeting the design of the middleware to
mobile domain we can focus on the most relevant issues and still keep the
design of the infrastructure simple, thus allowing the components to be im-
plemented in software or hardware. The architecture proposed changes the
programming paradigm, making it more suitable for component-oriented
development.

1. Introduction

Service-based architecture promises a lot of things. One of the biggest promises
is that building of big systems can be made simpler by dividing them into indepen-
dent components. This is already happening in the world of enterprise computing
with Service-Oriented Architecture and Component technologies. In our opinion,
the world of mobile computing could benefit from a service-based architecture,
where the infrastructure is targeted to mobile devices. The infrastructure should
be loosely coupled, reflective, flexible, dynamic, lightweight, simple for developers
to understand and offer possibility to implement the components in hardware or
software.

192 V.-M. Hartikainen, M. Vulli and H.-M. Järvinen

In the mobile and embedded world we just cannot use the Web Service tech-
nologies to connect the software components inside the device due to the con-
straints of the devices (performance, footprint, etc.), but we can learn from their
best practices. Component technologies (such as Corba, DCOM and J2EE), even
in their light-weight implementations, have not gained foothold in the mobile de-
vices. There are many reasons for this. We think that standard middleware
solutions have not yet been successful in the mobile world, because they are not
designed for embedded devices. Therefore they are heavy-weight, complex and
too generic. The standard technologies do not really support the possibility for
implementing a component in hardware and therefore require additional software
wrapping of hardware.

One of the most valuable lessons that we have learned from variety of dis-
tributed systems is that tight coupling eventually leads to integration problems.
When abstraction level has been raised in developing distributed systems, the
coupling between participants has loosened. For example, Corba over propri-
etary binary protocols, Web Services over Corba, REST over Web Services.

Decreased coupling allows the nodes to communicate with each other when
they are using the subset of messages that both understand. When trying to use
other messages we still may get something useful done. However, the main point
here is that extending node’s interfaces with new messages and messages with
new parameters in a really loosely-coupled environment never brakes anything
and therefore, it is easier to add compatible components to the system or upgrade
current components with new features.

This paper presents our vision for lightweight middleware, targeted for mobile
devices, that provides a service-based architecture. The target hardware is above
the smallest embedded controllers, but far below desktop computer performance.
For example next-generation hand-held products such as video-phones, portable
communicators, PDAs or other consumer products like set-top boxes and digital
video cameras. These devices typically have 32-bit RISC processors with few
hundred MIPS computing capability.

2. Node-based architecture

In this architecture we have nodes and streams. The data is transported in
streams between the nodes and the nodes operate on the streams. Nodes are
controlled with a fixed set of standard operations. Application developer uses
Unified API to control the system. The ideology of the approach is quite close to
the ideology in the REST-style of implementing Web Services [1]. Our architec-
ture resembles architecture of GStreamer-framework. There are also similarities

Node-based architecture for lightweight middleware 193

between our approach and traditional Unix approach, where different kind of
resources (devices, files, processes) can be accessed with standard file operations.

2.1. Unified API

Service discovery has been traditionally initiated by a client. The client looks
up a server and then starts to send requests to the server. In a multi-tier archi-
tecture, a single component can operate both as a client and a server (or both).
Traditional architecture may easily lead to situations where both the client and
the server are tightly coupled to each other. Since nodes are usually connected
also to other nodes, we may end up having a long chain of dependencies. An
alternative and a more dynamic approach is to let an external party (control) to
connect the nodes to each other based on capabilities of the nodes. For example,
when user wants to play a video, control looks up a video source and then video
output. After finding the nodes the control connects the nodes with a stream
and then starts the stream. Figure 1 illustrates structure of the video player
application.

Figure 1. Structure of simple video player

This means that a node programmer sees only Unified API and streams. The
middleware takes care of the rest. Developers do not need to know that, behind
the API, services are provided by several nodes. The infrastructure is made in
such a way, that from node developer point of view, the node only communicates
with Unified API. The infrastructure transparently relays the communication to

194 V.-M. Hartikainen, M. Vulli and H.-M. Järvinen

correct recipient. Application programmer does not need to know if the nodes
are local or distributed. The middleware hides the differences of local and remote
nodes.

Application developer needs to define what streams he wants to use and what
operations the application wants the system to perform to the stream. For ex-
ample if an application wants to play a MP3-file, the application first asks from
the middleware a stream with a file path. The middleware finds a node that
can produce a stream from the file path. The middleware then asks the node to
produce the stream. After that the application asks the middleware to modify
the state of the stream to played state. Middleware then looks up a node or a
chain of nodes that do the necessary operations on the stream (including possibly
decoding and playback) and connects all the nodes needed to the stream. Finally,
the application asks the middleware to start the stream. Figure 2 illustrates how
a video stream could be played.

Video decoder

Video stream

Application Unified API File System

Stream from

file system

to video

decoder

starts

no3:

true12:

getStream(Type)1:

convertTo(Stream, Type)10:

start()14:

isAvailable(Type)2:

Is available(Type)4:

getStream(Type)6:

video stream9:

canConvert(Stream, Type)11:

convertTo(Stream, Type))13:

true5:

7:
video stream8:

Figure 2. Opening a video stream

Node-based architecture for lightweight middleware 195

2.2. Nodes

A node is the basic component of the system. It is an entity, which is able
to perform some operation. For example, there might exist a node which would
take an audio stream as input, and then output it as a compressed audio stream.
Nodes can be implemented with software or hardware. In a networked device a
node can be remote or local.

2.3. Streams

A stream is data transport between nodes. A stream is created by a node that
can produce some data on the middleware’s request. The middleware requests
a stream from a node, when another node requests to receive or manipulate a
stream. For example, when application wishes to receive a stream. Although, a
stream connects two nodes, neither node is responsible for opening the stream.
Hence, the middleware decides which nodes to connect, and the middleware con-
nects them with a stream in the most appropriate way.

The type and the state of stream is described by properties. The properties
are divided to property classes. The properties and property classes form a tree
structure, which reminds of a directory structure in a file system. For example,
a property describing a JPEG-image stream would be /media/image/jpeg.

Properties may contain attributes. An attribute is a name and value pair
describing the property. For example, the above-mentioned property for jpeg-
image stream could have integer-valued attributes /media/image/jpeg/width
and /media/image/jpeg/height describing the width and height of the image,
respectively.

Nodes use properties to describe what kinds of streams they can consume
and produce. Middleware uses properties to find what nodes can be connected
to each other.

2.4. Control

The nodes are controlled using a predefined interface. All nodes implement
the same interface and the nodes cannot provide any additional operations. Since
purpose of nodes is to manipulate streams (create, show, modify, etc.) the op-
erations are mostly related to manipulating streams. There are operations for
controlling the flow of stream (start, stop, hand-over) and operations for con-
trolling properties of the stream. There are operations for checking what kind of
streams the node is able to receive and what the node is able to produce out of
those streams.

196 V.-M. Hartikainen, M. Vulli and H.-M. Järvinen

3. Lightweight middleware

It is quite clear that for implementing the architecture proposed, a middleware
is needed. The middleware needs to be so light-weighted that its services can be
implemented in hardware. Whether the service is actually an independent unit
on a chip or a software service offered by a CPU, should not really matter for
application developers.

In a typical middleware-based distributed solution, the software stack con-
tains five layers below the application. Figure 3 shows a software stack for typ-
ical distributed software systems. Transport layer is responsible for transferring
data from component to component. The messaging layer transforms high level
messages (such as remote procedure calls) to a communication protocol that can
be sent using the transport layer. The description layer describes services. The
discovery tracks service providers so that service consumers can locate and utilize
services provided.

Figure 3. Typical distributed application software stack

In the proposed architecture the application developer does not really need
to use the discovery layer, since the application node only needs to communicate
with Unified API. However, there is really no good reason to deny access to
discovery services, although normally they would not be needed. Since we allow
usage of discovery services also for nodes, it is possible to explicitly compose a
higher-level service from other nodes. Since it is possible to explicitly state which
nodes are used, we can also know the characteristics of these nodes beforehand,
thus making it easier to create deterministically behaving flows for time-critical
situations.

Node-based architecture for lightweight middleware 197

Since all nodes are controlled using the same interface, the description layer
does not need to describe the interface for nodes. Instead it is responsibility of the
description layer to know the types of streams nodes can produce and consume,
and what kind of transformations the nodes can do to streams. For software nodes
and intelligent hardware nodes the features are queried dynamically during run
time. The middleware needs to store the same information for those (simple)
hardware nodes that cannot answer queries of this nature during run time.

Messaging needs to use protocol that is simple enough so that it can be eas-
ily implemented in hardware. Here we are not really interested in the problems
and solutions of transport level, since it is mainly a concern of hardware and
networking people. So from our view point, the software stack should be trans-
port agnostic and the underlying transport may be TCP/IP, some chip-internal
transport on a network-on-chip device, or some other form of communication.

In addition, the middleware has resource management responsibilities and
needs to be aware of capacity of hardware, networking costs, etc. so that quality-
of-service type of needs can be met.

With middleware, it is possible to use multiple programming languages. We
can use C to implement the performance critical components and the middleware
itself. For building applications one can then use a higher-level language and
thus enjoy the greater productivity of higher-level languages. However, since the
proposed middleware is targeted to be light-weight, the C-language has to have
the top priority.

4. Related work

Schmidt et al. collected the challenges for distributed real-time and embedded
systems. If all the challenges could be answered, the payoff would be a reusable
middleware that simplifies the development of large distributed real-time and
embedded systems. There is a demand for end-to-end QoS (Quality of Service)
since usability of the resulting products is dependent on properties of the whole
system. The solutions need to be adaptive and reflective, so that they can handle
both variability and control. The middleware itself is not enough to deliver
the capabilities envisioned for next generation embedded systems. Advances in
system engineering approaches and tools are also needed [2].

Capra et al. explored reflection in mobile computing middleware. Current
generation of mainstream middleware is heavy-weighted, monolithic and inflex-
ible. Current middleware is not well suited for mobile environments where re-
sources are scarce. Mobile middleware needs to be context-aware and needs to

198 V.-M. Hartikainen, M. Vulli and H.-M. Järvinen

cope with heterogeneous platforms. Reflection is one possible solution to chal-
lenges of mobile middleware, since it allows more configurable and reconfigurable
middleware. University Collage in London has project CARISMA, where reflec-
tion is used to support dynamic adaptation of middleware behavior to changes
in context. On the other hand, Lancaster University’s ReMMoC project uses
reflection to accommodate heterogeneity requirements imposed by both appli-
cations and underlying device platforms. Drawbacks of the reflective approach
are in performance, integrity and security. The reflection is not enough, also
other mobile code paradigms are needed for having a good level of dynamism
and flexibility in the middleware. [3]

Batista et al. used a scripting language called Lua to dynamically intercon-
nect component-based applications. Architecture is composed of CORBA com-
ponents, LuaORB and Lua-language. Lua is a interpreted, dynamically-typed
language and it offers several reflective facilities. LuaOrb is a binding between
the language and CORBA. LuaOrb allows dynamic installation of implementa-
tions written in Lua. LuaOrb exploits the dynamic features of Lua to access
CORBA objects like any other Lua objects at runtime [4].

Michi Henning analyzed what can be learned from CORBA’s mistakes. The
main reasons for the fall of CORBA according to Henning are complexity, insuffi-
cient features and interoperability problems. The lessons learned are: standards
should be followed more strictly, standard should not be approved without a ref-
erence implementation and standards should be tested in realistic scale projects
before being accepted [5].

Mungee, Surendran, and Schmidt described an implementation of OMG au-
dio/video streaming model, which is based on TAO, a real-time CORBA ORB.
CORBA IIOP is used for control and stream establishment, while streams are
allowed to use more efficient transports, like ATM, TCP, or UDP because they do
not go trough the ORB. Separating control and data is necessary to achieve high
performance. However, this CORBA-based solution is not lightweight enough for
embedded devices [6].

As discussed in this article, we have mentioned SOA and Web Services as
examples for our architecture. Using Web Services from mobile devices is possi-
ble with JSR-172 J2ME Web Services API, which adds support for using Web
Services to mobile Java. This allows usage of Web Services with SOAP communi-
cation from mobile devices. JSR-172 operates on higher-level and uses Java. The
services are higher granularity and since the services are accessed through net-
work, lower latencies are accepted. It suites well for integration high-end mobile
devices to external Web Service world. JSR-172 is not a performance-oriented
API suitable for low-level integration inside the device, which is the main target
of the architecture presented in this article [7].

Node-based architecture for lightweight middleware 199

5. Conclusions and future work

In this paper, we presented a simple architecture for lightweight middleware,
which in our view is capable of answering some of the challenges in the mobile
domain.

Unified API offers unique way for developing component-based applications.
It eases developers work a lot, but on the other hand makes developing the actual
middleware quite challenging. Especially, since the target is to have lightweight
middleware suitable for embedded and mobile devices. We can really only say if
the idea works or not after we have a running prototype.

One of our main ideas is to control the nodes only using standard operations.
This brings in flexibility and loose coupling as the interfaces always remain the
same. Deciding the actual set of standard operations is a very important task
and it will probably require some prototyping before the set of operations is most
appropriate.

Reflection on the system is achieved through properties that describe the
streams’ and the nodes’ capabilities on operating on the streams. There is a lot
of work in designing the property system. We need to have a rich model how to
describe the streams and currently our model is not very specific. Since streams
are controlled through the properties, we need to have standard properties for
well known types of streams. We need to have a lot of conventions and standards
for describing the streams. We need guidelines on how the property hierarchy is
formed. Otherwise, the control through just using standard operations will not
be possible.

References

[1] Fielding R.T., Architectural styles and the design of network-based software
Architectures, PhD Thesis, University of California Irvine, Information and
Computer Science, 2000.

[2] Schmidt D.C. and Gokhale A., Middleware R&D Challenges for dis-
tributed real-time and embedded systems, SIGBED Review, 1 (1) (2004).

[3] Capra L., Blair G. S., Mascolo C., Emmerich W. and Grace P.,
Exploiting reflection in mobile computing middleware, ACM SIGMOBILE
Mobile Computing and Communications Review, 6 (4) (2002), ACM Press,
34-44.

[4] Batista T. and Rodriguez N., Using a scripting language to dynami-
cally interconnect component-based applications, 6th Brazilian Symposium
on Programming Languages, 2002, 180-194.

200 V.-M. Hartikainen, M. Vulli and H.-M. Järvinen

[5] Henning M., The rise and fall of CORBA, ACM Queue, 4(5) (2006),
http://www.acmqueue.com/modules.php?name=Content&pa=

showpage&pid=396

[6] Mungee S., Surendran N. and Schmidt D. C., The design and perfor-
mance of a CORBA audio/video streaming service, HICSS-32. Proceedings of
the 32nd Annual Hawaii International Conference on System Sciences, 1999.

[7] Java Community Process, JSR-172: J2MET Web Services Specification,
http://www.jcp.org/en/jsr/detail?id=172, referred at 17.5.2007.

V.-M. Hartikainen, M. Vulli and H.-M. Järvinen
Institute of Software Systems
Tampere University of Technology
P.O. BOX 553
FIN-33101 Tampere, Finland
{vesa-matti.hartikainen, mikko.vulli, hannu-matti.jarvinen}@tut.fi

