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COMMANDING A ROBOT IN A SAFE WAY1

Z. Istenes and T. Kozsik

(Budapest, Hungary)

Abstract. Certified Proved-Property-Carrying Code is a technique for
efficiently ensuring correctness of mobile code. It relies on a trusted certify-
ing authority that statically verifies correctness proofs and certifies correct-
ness of program components passed as mobile code from a code producer
to a code receiver. This paper uses an implementation of CPPCC to en-
able the safe dynamic reconfiguration or reprogramming of a robot. In this
implementation the B-method is used to construct programs together with
machine-verifiable proofs of correctness.

1. Introduction

Mobile code technologies make it possible to extend a running application (a
“code receiver”) with components, e.g. by downloading a piece of code through
a network and dynamically linking it to the application. Such technologies are
extremely vulnerable against malicious code, as well as against accidentally er-
roneous or improper code. There are a number of solutions to increase trust in
mobile code. A widely used solution is to attach certificates to the mobile code
(e.g. to a web-browser plug-in or to a Java applet). Such a certificate may provide
a guarantee that the mobile code originates from a certain code provider, hence
the risk of executing malicious code can be minimalized. This solution, however,
gives no protection against accidentally erroneous or improper mobile code.

1Supported by ELTE IKKK (GVOP-3.2.2.-2004-07-0005/3.0) and Stiftung Aktion
Österreich–Ungarn (66öu2).
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Another popular solution is the use of proof-carrying code [1]. Proof-carrying
code (PCC) is a piece of mobile code with attached properties and proofs. The
receiver of the proof-carrying code can verify the attached proofs, and – by in-
vestigating the attached properties – it can decide whether to use or to refuse
the received mobile component. This approach also has some drawbacks. Due to
the proofs, the size of the mobile components may become significantly larger,
and the verification of the proofs may significantly slow down the code receiver
application. It is even possible that the code receiver does not have the necessary
resources (memory, network bandwidth, CPU-time, proof-checking software) for
verifying the proofs. The successful applications of PCC target simple safety
properties of low-level code (e.g. JVM bytecode). Functional correctness needs
to be expressed at a higher level of abstraction, at source-code level (e.g. on Java
code) and typically requires large proofs.

Certified Proved-Property-Carrying Code [2] (or CPPCC, for short) is a tech-
nique that aims at eliminating the drawbacks of the above two approaches by
combining certificates and PCC and by splitting the verification process into two
phases. Using this technique the producer of a mobile component proves the
correctness of the source code of the mobile component (in the presented case
study the source code is expressed as a set of B abstract machines and B imple-
mentations). A trusted third-party certifier authority checks the proofs – this is
the first phase of the verification process – and signs the mobile component. The
code receiver application checks the signature and whether the specification of
the received mobile code (which is received as a part of the mobile component)
corresponds to the requirements of the code receiver – this is the second phase
of the verification process.

As illustrated in this paper, the CPPCC approach can be used to dynami-
cally modify the behaviour (the software) of a robot in a safe way. This makes
it possible to reconfigure or reprogram the robot at run-time, or to have the
robot complete missions expressed as mobile components (see Figure 1). One
can develop a robot controlling component using e.g. the B-method, and use the
CPPCC framework to transmit this component to the robot as a piece of mo-
bile code. The robot software will execute the received component only if the
component satisfies the requirements imposed by the robot software.

This paper is not about the verification of a particular software system, but
rather about the way the verification could proceed in the case of mobile com-
ponents. The main contribution of this paper is a case study exploring how the
CPPCC approach lets us obtain formal guarantees on the proper collaboration of
the components that make up a software system. In this case study it is assumed
that the robot is being shared by various users who submit mission programs
(mobile components) into the robot controlling system. The mission programs
make use of a simple API of primitive robot controlling operations. The robot
controlling system refuses the execution of mission programs that violate a cer-
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Figure 1. Verified mobile component expressing a robot mission integrates into
the robot software

tain set of requirements. The requirements are expressed in terms of the formal
specification of the robot control API.

The rest of the paper is organized as follows. In Section 2 the Certified
Proved-Property-Carrying Code technology is summarized. Section 3 presents
briefly a framework that implements CPPCC. Then Section 4 describes a concrete
application of the CPPCC approach, where the correctness of the mobile code
is described with respect to, and verified against, the formal specification of an
API used by the mobile code. Finally, Section 5 concludes the paper.

2. Certified Proved-Property-Carrying Code

Certified Proved-Property-Carrying Code (CPPCC) is a technology for guar-
anteeing the correctness of mobile code with a special emphasis on efficiency.
This technology was first proposed in [2], and a prototype implementation based
on a functional programming language was presented in [3]. This paper applies
an implementation of CPPCC which uses Java Virtual Machine bytecode as the
target code [4]. The CPPCC technology and this particular implementation is
described in more details in [5].

CPPCC combines the certificate-based and the PCC approaches in order to
provide highly efficient use of verified mobile program components. In contrast
to traditional certificate-based approaches, the code receiver need not trust in the
intentions, the skill and the accuracy of every code producer: the code receiver
can make a decision on whether or not to accept and utilize the received code
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Figure 2. Overview of the Certified Proved-Property-Carrying Code technology

based on the declared properties of the code and on the opinion of a third-
party, creditable certificate authority, which verified that the code indeed has the
declared properties. Furthermore, in contrast to PCC, the run-time overhead
compared to unverified mobile code does not become a burden. The increase in
the size of the mobile code and in the time necessary to perform verification is
significantly less than in the case of PCC.

As Figure 2 illustrates, participants of a CPPCC system play four different
roles. The scenario for producing and receiving safe mobile components is the
following.

1. The code producer develops a program component, and formulates and
proves the properties of the program component based on its source code
(proof systems that can be used for this purpose range from manual to
fully automatic). The source code, the properties and the proofs are packed
together and the package is sent to the certificate authority.

2. The certificate authority checks that the source code of the received pro-
gram component has the specified properties by verifying the received
proofs. Then it prepares the target code from the source code. Finally,
it packs the target code and the properties together, signs the package and
sends it back to the code producer.

3. The code producer uploads the signed package to a code repository.
4. The code receiver sends a requests to a code repository. The request con-

tains a specification of what the code receiver needs. The code repository
selects a signed package that satisfies the specification and sends this pack-
age to the code receiver.

5. The code receiver checks the certificate attached to the received package. If
the signer is trusted, the code receiver compares its requirements with the
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properties found in the package. If the properties match the requirements,
the received code is linked into the code receiver and gets executed. The
requirements against the mobile component form an integral part of the
code receiver, and are formalized by the developer of the code receiver
application.

The first three steps are performed “at static time” with respect to the code
receiver, viz. before (and independently of) the execution of the code receiver
application. Henceforth these steps have no run-time costs in the code receiver.
Furthermore, the correctness proofs supplied for the mobile component are veri-
fied in step 2 before the generation of the target code, so the properties describing
the correctness of the code can be expressed on the source code, at a sufficiently
high level of abstraction.

The properties that the mobile code has to possess in order to be considered
correct may be of various kinds. They may be functional (safety/security and
progress) properties, but also extra-functional ones (QoS, resource consumption,
timing etc.). The range of possible properties is influenced by the formal speci-
fication language and the verification tools utilized in any given implementation
of CPPCC.

It is worth to mention here that neither CPPCC nor this paper deals with the
important problem of having a compiler that is proved correct. It is assumed that
correct source code is compiled into correct target code. Therefore the level of
safety obtained by applying CPPCC depends on the quality of the compiler used
by the certifier. The case study presented in this paper investigates functional
correctness; extra-functional and quantitative properties (e.g. resource consump-
tion) are even more vulnerable against malfunctioning compilers and incorrect
code generation.

3. CPPCC for JVM bytecode

This paper uses an implementation of the CPPCC architecture for Java Vir-
tual Machine bytecode [4, 5]. The class loading and dynamic linking mecha-
nisms of the JVM provide an environment that is suitable for the transmission
of platform independent mobile code. The main parts of this particular CPPCC
implementation are a toolset (Project Packer), two middleware components (Cer-
tifier Server and Repository Server) and a Java module (CPPCC-API). In this
CPPCC framework different programming languages and proof systems are in-
corporated. For the extensible robot controlling software presented here the B
formal method [6] was applied. This setting is illustrated in Figure 3.
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Figure 3. Using the B-method in the JVM-based implementation of CPPCC

• The Project Packer is a toolset for code producers. For program and proof
development B4free [7] and Click’n’Prove [8] are used. In [4] an additional
tool has been developed that can remember and store proofs (Click’n’Prove
logger), and another one to produce “P-packages” (P stands for producer).
Such a package contains a B specification, zero or more refinements, an
implementation and the textual representation of B4free proofs.

• The Certifier Server accepts P-packages and produces C-packages (C stands
for certifier). Write’n’Prove is a tool developed in [4]; it can interact with
B4free in order to verify proofs found in a P-package. If the P-package
is correct, (a slightly improved version [4] of) jBTools [9] is called which
generates Java code from the B implementation module. The Java code is
compiled into JVM bytecode, put into a Java Archive (JAR file) and signed
with Sun’s Java SDK [10]. The C package is the signed JAR file containing
the B specification and the JVM bytecode of the mobile component.

• The Repository Server is a web-application serving requests for mobile com-
ponents coming from code receivers through the HTTP-protocol.

• The CPPCC-API is a JVM class loader that can download JAR files from
the Repository Server, verify the X.509 certificate and compare the require-
ments (a local file) with the properties found in the C package.
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The producer of the mobile code applies the B-method to develop the source
code of the mobile component together with the proof of correctness. The source
code, its properties and the proofs are expressed as B machines, B refinements,
B implementation modules and proof steps saved by the Click’n’Prove logger.
The certifier checks the integrity of the B project by executing the proofs in
Write’n’Prove and B4free. Then the target code (the JVM bytecode) is produced
in two steps: Java code is generated from the B implementation modules and this
Java code is compiled into JVM bytecode. The target code and the topmost-level
B machine are packed together and are signed. The code receiver application
contains a B machine describing the requirements imposed against the mobile
component. This B machine has to be compared with the B machine found in
the mobile component. The way this comparison is made may vary: it may be
smart (but resource consuming) or it may be cheap (but simplistic). Currently
our implementation uses trivial (textual) comparison.

4. Controlling a robot

The objective of the presented research was to develop a robot shared by
multiple entities (people, software applications). These entities intend to assign
different tasks (missions) to the robot. These tasks are expressed as mobile code
components. In order to guarantee that each task finds the robot in a well-defined
state, the tasks should be proven to satisfy certain requirements. Some examples
of such requirements are the following.

• After completing the mission the robot is in its original position (if it is a
robot, like in the presented case, that can change its position).

• The mission terminates.
• The mission terminates within a given amount of time.
• The resource (memory, time, power) consumption of the mission is within

certain bounds.
• The robot does not go too far away from its base.
• The robot avoids dangerous situations (too high speed, too steep slopes

and tilts).

One can consider this approach as a requirement to use a shared resource
(the robot) in a transactional way. Each mission is assumed to be started from,
and required to stop in a consistent state. Compare this with a job execution
environment, e.g. with a grid system. In such a system a submitted job might
be restricted to use a bounded amount of resources (CPU-time, memory etc.).
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Figure 4. Checking properties of mobile components against requirements and
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If the job exceeds the limits, it will be aborted by a supervisor process. This
approach is not feasible here: if the code controlling the robot were aborted, it
might be impossible to reset the robot to a consistent, well-defined state. This
is the case when a moving robot cannot find its way back to its base by itself,
or it cannot proceed any longer if its power resources are exhausted. The only
way to ensure that the missions do no harm to the robot, and that they leave
the robot available for the forthcoming missions is to prove the correctness of
the missions’ code. A Certified Proved-Property-Carrying Code framework can
support the transmission of safe mission programs to the robot in an automated
way, without a human supervisor.

The software that controls the robot is highly modular. It is made up of
components (the API containing primitives for robot control and mobile com-
ponents expressing missions) which know nothing about the inner workings of
one another apart from the formal specifications available in the CPPCC sce-
nario. The goal of applying CPPCC in this case is to describe formally how
the components interact. The properties of the received mobile components are
expressed with respect to those of the primitive API operations. The verifier in
Figure 4 checks whether the properties of the mobile component correspond to
the requirements of the robot, assuming that the robot control API satisfies its
formal specification.
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4.1. Technical overview

A case study of the above ideas has been carried out with stock hardware,
a simple universal NXT robot built from the Lego Mindstorms kit [11]. The
robot is moved by two motors, and it collects information through an ultrasound
distance sensor. It has an ARM7 onboard microprocessor with 256KB of memory.

Different firmwares that make the operation of the motors and the sensors
more convenient are available for this kit. There is a Java compiler for one of
these firmwares, but it produces platform-dependent binary code and not the
usual JVM bytecode. Dynamic loading and linking of components – which are
necessary for mobile code technologies – are not supported. Therefore the robot
is extended with an additional offboard computing device (a laptop, a palmtop
or a mobile phone), which communicates with the NXT through Bluetooth.

The architecture of the robot control software is presented in Figure 5. A Java
application running on the offboard computing device plays the role of the code
receiver from the CPPCC model. It downloads mission programs from the code
repository and executes those that correspond to the imposed requirements. A
set of elementary programs – such as moving forward the robot by a unit, turning
it left and right, and querying the distance sensor – has been made available for
the mission programs through the robot control API. These elementary programs
were implemented in a C-like programming language called NXC, compiled with
the NBC [12] cross-compiler and pre-installed on the robot. The NXC programs
are executed from the mission programs through the Bluetooth communication
layer. It is assumed that the Bluetooth communication channel is reliable, safe
and secured (e.g. only the offboard computer can access the robot).

The correctness of the mission programs has to be proven against the re-
quirements and with respect to the formal specification of the API; both the
requirements and the API specification are provided as B abstract machines.
The code receiver Java application uses the CPPCC class-loader to integrate the
mission programs. This class-loader is responsible for verifying the certificate
attached to, and the properties of the mobile components. In the presented case
each mobile component should contain two B machines: one to be compared with
the specification of the robot control API, and another one to be compared with
the requirements of the robot controlling system.

In this robot controlling case study the repository server is basically a job
scheduler that makes the submitted mission programs available for the robot
controlling system.
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Figure 5. The architecture of the robot controlling software

4.2. The specification of the robot control API

In the experiment presented here the robot can move in a finite grid world.
There are obstacles in certain positions in this world, which the robot cannot
pass through, but which are sensible with its distance sensor.

The robot has five elementary programs.
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• Turn left (by 90 degrees),

• turn right (by 90 degrees),

• turn back (by 180 degrees),

• query if there is an obstacle between the current position and the next
position ahead (“freeahead”), and

• forward to the next position, if freeahead and the next position is not outside
of the world.

In the B machine in Figure 6 it is specified that the world is of bounded size
and that it is static: during the execution of a mission no new obstacles between
grid positions appear. Furthermore, obstacles are symmetric, namely there is an
obstacle between A and B exactly when there is an obstacle between B and A
(this is expressed by the last four properties of ENV). Finally, the starting position
(0,0) is accessible from every direction.

The NXC programs implementing the elementary_routines machine were
not developed by using the B-method. However, they are simple enough (consist-
ing one or two basic robot firmware instructions), so it can be verified by testing
that they satisfy their specification – at least to the desired extent and precision.

4.3. Requirements against mission programs

As Figure 7 reveals, in this case study mission programs are considered cor-
rect if they satisfy the following requirement: at the end of the mission the
robot is in its original (0,0) position, facing in the original North direction.
Code producers must implement the mission program as the route operation
of the robot_navigation abstract machine. The elementary_routines and
robot_navigation machines should be made public so that producers of mis-
sion programs can base their implementations on these machines.

4.4. A simple mission program

As a proof of concept, a simple mission program has been developed using
the B-method. This mission tries to move the robot forward to the northern
border of the world: it succeeds if the robot finds no obstacles in the way. After
reaching the northern border or finding an obstacle, the robot is turned back and
returned to the original position as required.

The source code of the mission program consists of the elementary_routines
and robot_navigation machines, and an implementation module containing the
route operation of Figure 8.
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5. Conclusions

This paper described a technique to ensure that components incorporated
dynamically into a system co-operate correctly with the other components. This
technique was illustrated with a case study, in which mission programs developed
as mobile components were integrated into the controlling software of a robot.
The technique also enables the safe dynamic reprogramming or reconfiguration
of the robot by upgrading or replacing parts of its software with pieces of cor-
rect mobile code. The robot software can automatically and efficiently verify the
correctness of the mobile code. To achieve this, an implementation of the Cer-
tified Proved-Property-Carrying Code technology is used. This implementation
is based on Java Virtual Machine bytecode. Specifications, programs and proofs
are devised, for instance, by using the B-method. Proofs are verified, JVM code
is generated and signed by a trusted certifying authority. Mobile code is trans-
mitted to the code receiver (to the main robot control software) together with
its specification and with a certificate of correctness. The main robot control
software executes the mobile component (describing a mission to complete) only
if the properties of the component satisfy the requirements of the robot.

In the presented experiments the robot software was programmed in Java
and NXC and the mobile code was developed with the B method. In the future
an exploration of the possibilities of programming the NXT in Hume [13] and
proving the correctness of mobile code written in Hume are planned.
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elementary routines.mch

MACHINE
elementary_routines

SETS
DIRECTIONS = {North, East, South, West}

VARIABLES
x, y, dir

ABSTRACT_CONSTANTS
ENV

CONSTANTS
world

PROPERTIES
world : NATURAL & world = 5 &
ENV : (-world..world) * (-world..world) * DIRECTIONS --> 0..1 &
ENV(1,0,West)=1 & ENV(0,1,South)=1 & ENV(-1,0,East)=1 & ENV(0,-1,North)=1 &
!(i,j).(i:-world..world & j:-world..world-1 & ENV(i,j,North)=1 => ENV(i,j+1,South)=1) &
!(i,j).(i:-world..world & j:-world+1..world & ENV(i,j,South)=1 => ENV(i,j-1,North)=1) &
!(i,j).(i:-world..world-1 & j:-world..world & ENV(i,j,East)=1 => ENV(i+1,j,West)=1) &
!(i,j).(i:-world+1..world & j:-world..world & ENV(i,j,West)=1 => ENV(i-1,j,East)=1)

INVARIANT
x: INTEGER & x : -world..world &
y: INTEGER & y : -world..world &
dir : DIRECTIONS

INITIALISATION
x := 0 || y := 0 || dir := North

OPERATIONS
TurnBack = CASE dir OF

EITHER North THEN dir := South
OR West THEN dir := East
OR South THEN dir := North
ELSE dir := West
END

END;
TurnRight = ...
TurnLeft = ...
d <-- FreeAhead =

d := ENV(x,y,dir)
Forward =

IF ENV(x,y,dir) = 1 THEN
CASE dir OF

EITHER North THEN IF y < world THEN y:=y+1 END
OR East THEN IF x < world THEN x:=x+1 END
OR South THEN IF y > -world THEN y:=y-1 END
ELSE IF x > -world THEN x:=x-1 END
END

END
END

END

Figure 6. The specification of the elementary programs of the robot
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robot navigation.mch
MACHINE

robot_navigation

INCLUDES

elementary_routines

SETS

STATES = {Moving, Stopped};

RETURN = {Success, Failure}

VARIABLES

state

INVARIANT

state : STATES & ( state=Stopped => x=0 & y=0 & dir = North )

INITIALISATION

state:= Stopped

OPERATIONS

r <-- route =

PRE

x=0 & y=0 & dir = North

THEN

state:=Stopped || r :: RETURN

END

END

Figure 7. The requirements imposed against the mission programs
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mission1.imp
r <-- route =

VAR

n, freeAhead

IN

state := Moving;

n := 0;

freeAhead <-- FreeAhead;

WHILE (freeAhead = 1) & n < world

DO

Forward;

n := n+1;

freeAhead <-- FreeAhead

INVARIANT

dir = North & x = 0 & n = y &

y >= 0 & y <= world & y : NATURAL & y:(-world)..world &

!i.(i:INTEGER & i>=0 & i<n => ENV(0,i,dir) = 1) &

freeAhead = ENV(0,n,dir)

VARIANT

world - n

END;

IF n=world

THEN r := Success

ELSE r := Failure

END;

TurnBack;

WHILE n > 0

DO

Forward;

n := n - 1

INVARIANT

dir = South & x = 0 & n = y &

y >= 0 & y <= world & y : NATURAL & y:(-world)..world &

!i.(i:INTEGER & i>=0 & i<n => ENV(0,i,North) = 1) &

!i.(i:INTEGER & i>=0 & i<n => ENV(0,i+1,South) = 1)

VARIANT

n

END;

TurnBack;

state:=Stopped

END

Figure 8. A fragment of the implementation of a mission program




