
Annales Univ. Sci. Budapest., Sect. Comp. 30 (2009) 97-115

ANALYSIS OF PROFILING TECHNIQUES FOR C++
TEMPLATE METAPROGRAMS

Z. Porkoláb, J. Mihalicza, N. Pataki and Á. Sipos

(Budapest, Hungary)

Abstract. Template metaprogramming (TMP) is an emerging new di-
rection in C++ programming for executing algorithms in compilation time.
Despite all of its already proven benefits and numerous successful applica-
tions, TMP is yet to become an accepted technique in industrial projects.
One reason is the lack of professional software tools supporting the de-
velopment of template metaprograms. On the other hand, a strong ana-
logue between traditional runtime programs and compile-time metapro-
grams presents the possibility for creating development tools similar to
those already used when writing runtime programs. This paper presents
two methods for metaprogram profiling. Firstly, Templight, a debugging
and profiling framework is introduced. The framework reveals the steps
executed by the compiler during the compilation of C++ programs with
templates. Thus Templight is capable of adding timestamps to template
instantiations and measuring their times. The second method uses com-
piler modification acquiring instantiation profiling data from the compiler
itself.

1. Introduction

Code efficiency is an all-important aspect of software design. In order to
improve the efficiency of a program, a programmer must identify the critical parts.
As static analysis methods in many cases fail to explore the dynamical behavior
of the program, execution profiling is a key element to finding bottlenecks in the
code. In order to investigate the behavior of a program profilers should collect

98 Z. Porkoláb, J. Mihalicza, N. Pataki and Á. Sipos

information during the runtime. Boehm reports that 20 percent of the routines
consumes 80 percent of the execution time [4]. Knuth claimes that less than 4
percent of a program usually accounts for more than 50 percent of its runtime
[7].

The more complex the language environment we work in, the more sophis-
ticated profiling toolset we need. In object-oriented languages like C++ tools
must be able to measure all elements of classes, like constructors and destruc-
tors, inlined functions, static variables etc. [12]. Most current profilers [29, 30]
available for object-oriented languages are capable of handling these problems.

The everyday process of programming consists of compiling, executing and
profiling the code. However, the recently emerged programming paradigm, C++
template metaprogramming (TMP) does not follow this pattern. In template
metaprogramming the program itself is running during compilation time. A
cleverly designed C++ code is able to utilize the type-system of the language
and force the compiler to execute a desired algorithm [21]. The output of this
process is still checked by the compiler and runs as an ordinary program. TMP is
based on the C++ templates. Templates are key language elements for the C++
programming language [15, 18] and are essential for capturing commonalities
of abstractions. Generic programming [14] is a recently emerged programming
paradigm for writing highly reusable components. The Standard Template Li-
brary (STL) – the most notable example of generic programming – is now an
unavoidable part of most professional C++ programs [8].

Template metaprograming is proved to be a Turing-complete sublanguage of
C++ [5]. We write metaprograms for various reasons, here we list some of them:

• Expression templates [22] replace runtime computations with compile-time
activities to enhance runtime performance.

• Static interface checking increases the ability of the compile-time to check
the requirements against template parameters, i.e. they form constraints
on template parameters [9, 13].

• Active libraries [19]. Active libraries act dynamically during compile-time,
making decisions based on programming contexts and making optimiza-
tions.

Unfortunately, implementations of template metaprograms are typically far
from optimal [1]. One reason is that compilers are optimized to generate effi-
cient runtime code and not designed to maximize efficiency of the compilation
process itself. Another reason is that programmers are not familiar with all the
background costs of the metaprogram constructs. This may result in a very long
compilation time and huge memory usage. With a profiling tool we should be
able to identify these ”noisy” code segments, which hold up the compilation pro-
cess. Since traditional profiler tools are unapplicable to metaprograms running

Analysis of profiling techniques for C++ template metaprograms 99

in compile-time, the development of metaprogram-specific profiling tools is cru-
cial. Unfortunately, today there are no TMP profiling tools available. In this
paper we propose two methods for TMP profiling, which serve as foundations
of an optimization process. Our first method is instrumenting the C++ source
to emit well-formed messages during compilation. Information gained this way
during the running of a metaprogram is used to measure the compilation pro-
cess. Other methods modify the compiler itself producing profiling information
on C++ template instantiations and memory usage.

This paper is organized as follows. In Section 2 we give an overview of C++
template metaprogramming compared to runtime programming. Section 3 de-
scribes profiling in general. Our external profiling framework is described in
details in Section 4. Our second approach, presented in Section 5, involves the
modification of the open source g++ compiler. In Section 6 we analyze our re-
sults. Limitations and future directions are discussed in Section 7. In Section 8
we overview the most important related works.

2. C++ template metaprograms

In our context the notion template metaprogram stands for the collection of
templates, their instantiations and specializations, whose purpose is to carry out
operations in compile-time. Their expected behavior might be either emitting
messages or generating special constructs for the runtime execution. Henceforth
we will call a runtime program any kind of runnable code, including those which
are the results of template metaprograms.

Conditional statements (and stopping recursion) are solved via specializa-
tions. Templates can be overloaded and the compiler has to choose the narrowest
applicable template to instantiate. Subprograms in ordinary C++ programs can
be used as data via function pointers or functor classes. Metaprograms are first
class citizens in template metaprograms, as they can be passed as parameters for
other metaprograms [5].

Data is expressed in runtime programs as constant values or literals. In
metaprograms we use static const and enumeration values to store quantita-
tive information. Results of computations during the execution of a metaprogram
are stored either in new constants or enumerations. Furthermore, the execution
of a metaprogram may trigger the creation of new types by the compiler. These
types may hold information that influences the further execution of the metapro-
gram.

Complex data structures are also available for metaprograms. Recursive tem-
plates are able to store information in various forms, most frequently as tree

100 Z. Porkoláb, J. Mihalicza, N. Pataki and Á. Sipos

structures or sequences. Tree structures are the favorite implementation forms of
expression templates [22]. The canonical examples for sequential data structures
are typelist [2] and the elements of the boost::mpl library [6].

However, there is a fundamental difference between runtime programs and
C++ template metaprograms: once a certain entity (constant, enumeration
value, type) has been defined, it will be immutable. There is no way to change its
value or meaning. A metaprogram does not contain assignments. In this sense
metaprogramming is similar to pure functional programming languages, where
referential transparency is obtained. That is the reason why we use recursion and
specialization to implement loops: we are not able to change the value of any
loop variable. Immutability – as in functional languages – has a positive effect,
too: unwanted side effects do not occur.

3. Profilers

Profilers are software tools carrying out performance analysis by measuring
the runtime behavior of programs. The most commonly analyzed behaviors are
the frequency and duration of subprogram calls and the used heap memory’s
size. These events are either recorded into a trace, a stream of recorded events,
or a profile, a statistical summary of the observed events. Profilers use numerous
techniques to measure softwares, including hardware interrupts, operating system
hooks, performance counters and code instrumentation.

Instrumentation is a process, during which the profiler modifies the analyzed
program, inserting profiling code fragments. Instrumentations can be executed
manually by the programmer or automatically by the compiler. Instrumentation
may be a binary translation when the tool adds instrumentation to a compiled
binary code. Another method is runtime instrumentation, when the code is
instrumented directly before the execution. In this case the analyzed software is
controlled by the profiler. The profiler may work with runtime injection, i.e. the
code is modified at runtime.

Another profiling method is sampling. These profilers are called statitistical
profilers. A sampling profiler probes the analyzed software’s program counter
at regular intervals using operating system interrupts. Sampling profilers are
typically less accurate and specific, but allow the measured software to run at
near full speed.

Since instrumentations are not the part of the analyzed code, profiling has
overhead [26]. Instrumentations are typically added at specific points to the an-
alyzed software’s code. These points are called instrumentation points (IP). An
instrumentation point encapsulates the functionality of instrumentation and the
IP’s original program context. An instrumentation point consists of an instru-

Analysis of profiling techniques for C++ template metaprograms 101

mentation probe and instrumentation payload. The payload is the activity that
collects the data about the measured program. The probe is the activity that
switches the analyzed code to the payload. The probe may have a condition that
controls the invocation of the payload.

The number of executed probes, or the probe count causes instrumentation
overhead. The probe count for an instrumentation point is the number of the
instances of probe. All executed probes incur overhead associated with executing
the probe code that intercepts program execution. Because of the condition that
controls the payload, every instance of a probe may not incur overhead of the
payload. Thus, the total overhead for an instrumentation point is related to the
number of done probes, how much each probe costs, how frequently the payload
is called and the payload’s cost.

Instrumentation is a widely used technique in profilers, but this method incurs
overhead. Our Templight framework also uses instrumentation for profiling. In
Section 6.1 the overhead of Templight is examined, its performance is compared
to the modified compiler.

4. Modification of the source code

Most compilers generate additional information for profilers. An appropriate
compiler support for measuring template metaprogram profiles would be the
ideal solution. However, as this support is unavailable as of now, an immediate
and portable method is to use external tools cooperating with standard C++
language elements.

Without the modification of the compiler the only way of obtaining any infor-
mation about our metaprogram during compilation is to generate warning mes-
sages [1]. Therefore the task is the instrumentation of the source, i.e. its trans-
formation into a functionally equivalent modified form that triggers the compiler
to emit talkative warning messages. The inserted code fragments are designed to
generate warnings that contain enough information about the context and details
of the actual event. Whenever the compiler instantiates a template, defines an
inner type etc. the inserted code fragments generate detailed information on the
actual template-related event. A pipeline transmits the information for the pro-
filer which measures the time of the event. As we will see in the results, for large
template metaprograms the overhead of the communication between processes is
negligible.

The instrumented code fragments, on the other hand, result in big perfor-
mance overhead, that can significantly distort the measured data.

The instrumentation is based on the Templight framework, designed mainly

102 Z. Porkoláb, J. Mihalicza, N. Pataki and Á. Sipos

for debugging C++ template metaprograms [10]. The framework was intention-
ally designed to be as portable as possible, for this end we tried to use portable
and standard-compliant tools. Almost all components are written in standard
C++ using the STL, boost and Xerces libraries.

The input of Templight is a C++ source file and the output is a trace file, a
list of events like instantiation of template X began, instantiation of template X
ended, typedef definition found etc.

The procedure begins with the execution of the preprocessor, followed by in-
voking the boost::wave C++ parser. Our aim is to insert warning-generating
code fragments at the instrumentation points. As wave does not do semantic
analysis we can only recognise these places by searching for specific token pat-
terns. We go through the token sequence and look for patterns like template
keyword + arbitrary tokens + class or struct keyword + arbitrary tokens + { to
identify template definitions. This pattern matching step is called annotating, its
output is an XML file containing annotation entries in a hierarchical structure
following the scope.

The instrumentation takes this annotation and the single source and inserts
the warning-generating code fragments for each annotation at its correspond-
ing location in the source, thus producing a source that emits warnings at each
annotation point during its compilation. The next step is the execution of the
compiler to have these warning messages generated. The inserted code fragments
are intentionally designed to generate warnings that contain enough information
about the context and details of the actual event. Since the compiler may pro-
duce output independently of our instrumentation, it is important for debugger
warnings to have a distinct format that differentiates them. This is the step
where we ask the compiler for valuable information from its internals. Here the
result is simply the build output as a text file. The warning translator takes
the built output, looks for the warnings with the aforementioned special format
and generates an event sequence with all the details. The result is an XML file
that lists the events that occurred during the compilation in chronological or-
der. For profiling purposes, timestamps are also placed in the XML file for each
instantiation. Following is a segment of the file with profiling data:

<TemplateBegin>
<Position position = "prof1.cpp.patched.cpp|12|1"/>
<Context context = "fibonacci<127>"/>
<History>

<TemplateContext
instance="Templight::ReportTemplateBegin<

C,__formal>">
<Parameter name="C" value="fibonacci<

127>::_T_E_M_P_L_I_G_H_T___0f"/>

Analysis of profiling techniques for C++ template metaprograms 103

<Parameter name="__formal" value="pointer-to-member(0x0)"/>
</TemplateContext>
<TemplateContext

instance="fibonacci<n>">
<Parameter name="n" value="127"/>

</TemplateContext>
</History>
<TimeStamp time = "9F8F2950-01C67659"/>

</TemplateBegin>

original source

preprocessor

#line filter

unaltered preprocessed source
without #line directives

annotator

instrumentator

compiler

warning parser

position adjust

visualiser

trace file

compilation output

instrumented code

annotation

file and line mapping

preprocessed source

line mapping

position correct trace file

Figure 1. Architecture of debugging/profiling framework

Compile-time performance is discussed in [1] with a spectacular test. Since
there was no other applicable tool, the authors had to fall back on measuring
the full compilation time and modifying a preprocessor parameter every time
thus producing measurement series and graphs. With the Templight framework
we have to execute only one compilation that emits warnings for each instantia-
tion, and a post processing pipelined tool memorizes the timestamps whenever a
warning occures. This way we have timestamps for each template-related event,
and the processing time of a certain template instance can be easily computed
by subtracting the timestamps stored at the corresponding template-begin and
template-end event (warning message).

104 Z. Porkoláb, J. Mihalicza, N. Pataki and Á. Sipos

5. Modification of the compiler

Our next method for profiling compilation times of template metaprograms
is compiler-dependent.

The most accurate way for evaluating compilers is by acquiring timing infor-
mation from the compiler itself. As our metaprogram is executed on a meta-level
from the viewpoint of C++, a meta-level profiler is needed, i.e. one measuring
the compiler’s action times. The obvious approach is to use a profiler tool (like
gprof) and measure the compiler’s runtime. Even though we would be able to
measure instantiate class template’s running time in general, we could not
disambiguate certain instantiations. In other words, we could acquire the sum
of all instaniation times, but would not be able to measure each instantiation
separately. So this approach does not fulfil our requirements.

To gain the required detailed data on particular instantiations we have to
modify the compiler. To demonstrate this method we have chosen the widely
used GNU g++ compiler, as its C source code is freely available, thus rendering it
a plausible target for ”hacking”, and developing possible future compiler features.
In the center or our examination is the instantiate class template function.
In g++, instantiation of a new type is done in this function, which resides in the
pt.c file. This function does not handle full specializations (which are important
for ending metaprogram recursions), and does not look up already instantiated
types, this is done in other parts of g++. On the other hand we do not need
timing data of these compilation operations either, as we only want to measure
instantiaton times.

Some of the desired information could be obtained by executing the g++
back-end, cc1plus. This is a process doing the actual compiling, and when called
directly prints debug information, like parsing times, name lookup times and
others. Again, the problem with these timing data is that they refer to the whole
compilation process and not distinct instantiations.

The next step is the modification of the compiler. Our test-phase profiler
for g++ is implemented as follows: we have modified our g++ 3.4.0 to record
timestamps when template instantiations begin and end, thus the time differences
mean the time it takes to instantiate one particular template. Two calls to
gettimeofday are placed to the beginning and very end of mentioned function.
Note that even though this function has more return commands, which obviously
end the function call (and the instantiation), these deal with cases like erroneous
syntax. We do not have to take these into consideration when analyzing a sound
metaprogram [10]. The results of the measurements can be recorded in more
ways, resulting in different sets of data. These can be used for a comparative
study of analysis methods.

Analysis of profiling techniques for C++ template metaprograms 105

We implemented the compiler modifications in two variants. The first method
prints the data to the screen at the moment the data is obtained, at the bottom of
the compiler’s instantiation function. This turned out to be a non-authentic way
of acquiring profiling information, as printing results in considerable time loss
due to the time it takes to carry out I/O operations. Not only does this printf
slow down the compilation (in our test with Example 1 around 20.000 lines
are printed) it seriously distorts profiling data. In fact many operating system-
dependent properties might affect profiling data, like the size of the screen, the
size of the screen buffer, etc.

The second version stores timing data in arrays, whose matter is printed
at the end of the compilation. We conjectured this approach would lead to
more precise data than that of the first method, because of the I/O operations,
buffering, redirections, etc. However, the first method produced similar results
when we chose to redirect all printing to the standard output into a file (see
Section 6).

6. Evaluation of the methods

In this section we present our measurement results with the proposed meth-
ods. We analyzed the profiling methods from the following points of view:

1. Accuracy. What is the accuracy of the different profiler methods?

2. Applicability. Are the profilers applicable to large programs?

3. Overhead. What are the overheads of the profiling methods itselves: i.e. to
what degree do the different methods distort profiling results?

When constructing the tests we partly followed the examples discussed by
Abrahams and Gurtovoy in [1]. In these examples the importance of memo-
ization is emphasized. Memoization is a procedure done by the compiler when
instantiating new types from templates. Each instantiation begins with a lookup
in the compiler’s repository, searching for the type about to be instantiated. If
the compiler does find the type (i.e. it has already been instantiated) it aborts
the creation procedure and uses the already finished type. Memoization speeds
up the compilation [1], as this lookup happens much faster than it would take
to repeat the instantiation. In order to avoid this phenomenon, we modified
our fibonacci metaprogram (computing Fibonacci numbers in compile-time) to
enforce instantiation.

In the following we describe the four test methods whose results are presented
in this section.

106 Z. Porkoláb, J. Mihalicza, N. Pataki and Á. Sipos

The first method follows the test method described by Abrahams and Gur-
tovoy. Here the program was compiled and the full compilation time was mea-
sured with the UNIX time command. Therefore the compilation times of the
templated part and the rest of the program were not separated. The curve rep-
resenting the result data is labelled g++ whole.

The second approach uses the Templight framework to instrument the source
code. The instrumentation results in a code that emits a warning message at the
begin and end points of each template instantiation. As the warnings appear,
the external profiling tool measures the time spent on the instantiation. Thus we
are able to separate the compilation of templates from the rest of the activities.

The third and fourth methods are based on the modification of the g++ com-
piler. Since there was no significant difference between the results with buffering
the output and the immediate printing with redirection to file, we illustrated
these results with one curve labelled g++ mod.

Figure 2 shows the results of our experiments with the same non-memoizating
example.

The most significant experience based on the results is that the characteristics
of all the three curves are similar. Templight has constant overhead. The best
results have been produced by the built-in solution that indicates the importance
of compiler supported template metaprogram debuggers.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160 180 200

t

N

Templight

g++ mod

g++ whole

Figure 2. Instantiation time without memoization

Analysis of profiling techniques for C++ template metaprograms 107

6.1. Accuracy

To estimate the accuracy of our methods we compared the total execution
time of g++ to the outermost template’s instantiation time, i.e. the running
of the whole metaprogram. The difference between fibonacci<N,N> (N =
1, 20, 40...) and the whole compilation time grew linearly, with N = 200 the
difference being about 30 seconds. Even though we have acquired the same
O(N3) complexity for the compilation time as found in [1], there is a significant
difference between numeric data of the outermost template’s instantiation and
the whole compilation time.

N 1 20 40 60 80 100 120 140 160 180 200
full 0.1 0.1 0.4 0.8 2.3 6.1 13.9 27.2 47.6 75.4 116.1
inst 0.1 0.1 0.4 0.8 2.3 5.1 11.2 21.3 36.4 58.6 87.8

Table 1. Full compilation time (full) vs. sum time of instantiation (inst)

The cause of the difference is that even in case of high number of template
instantiations, all the operations g++ carries out before, after, and between
instantiating types (source code analysis, optimization, code generation, etc.)
have heavy costs. The result shows the importance of precise profiling methods.

Template instance Full instantiation time
fibonacci<118,119> 2,5837152
fibonacci<121,123> 2,6137584
fibonacci<113,120> 2,6237728
fibonacci<124,125> 2,6237728
fibonacci<118,121> 2,6337872
fibonacci<55,55> 2,653816
fibonacci<115,121> 2,6638304
fibonacci<120,122> 2,6638304
fibonacci<123,124> 2,6738448
fibonacci<122,123> 2,703888
fibonacci<117,122> 2,7139024
fibonacci<119,123> 2,75396
fibonacci<121,124> 2,7940176
fibonacci<123,125> 2,8440896
fibonacci<56,56> 2,8440896

Table 2. Instantiation times

108 Z. Porkoláb, J. Mihalicza, N. Pataki and Á. Sipos

6.2. Applicability

One of the most frequently used functionalities of a profiler is the determina-
tion of critical parts that slow down the compilation process. Both the modified
g++, and Templight generate a trace containing the names of the instantiated
templates, and the instantiation times. With the help of a script processing this
trace file we can easily obtain a list of template instances sorted by their com-
pilation times. A portion of Templight’s output profiling fibonacci is shown in
Table 2.

On the other hand, fibonacci is a relatively simple metaprogram. In larger
software projects, however, there are many templates referencing each other,
and it is not as easy to spot the exact cause of a slow compilation as in the
previous example. To see how this profiling technique operates in projects where
numerous templates are used we measured the compilation of the Templight
framework itself. The measured source combines different template libraries like
STL algorithms, Boost::spirit, and Boost::wave. Table 3 shows the 20 most
time-consuming instantiations.

Template instance Time
boost::iterator_facade<boost::filesystem::bas... 511
boost::detail::iterator_facade_types<const st... 420
boost::detail::facade_iterator_category_impl<... 290
boost::wave::context<char *,Templight::FileAn... 180
Templight::Grammar<boost::wave::pp_iterator<b... 171
boost::wave::util::functor_input::inner<boost... 161
boost::wave::impl::pp_iterator_functor<boost:... 151
boost::wave::util::macromap<boost::wave::cont... 130
boost::spirit::tree_match<boost::wave::cpplex... 91
boost::mpl::if_<boost::detail::is_iterator_ca... 80
boost::detail::operator_brackets_result<boost... 71
boost::mpl::if_<boost::detail::use_operator_b... 71
boost::detail::is_pod_impl<const std::basic_s... 61
boost::detail::is_scalar_impl<const std::basi... 51
boost::mpl::if_<boost::is_convertible<std::bi... 50
boost::mpl::if_<boost::mpl::and_<boost::is_re... 50
boost::spirit::unary<boost::spirit::chlit<cha... 50
boost::spirit::unary<boost::spirit::chlit<wch... 50
boost::spirit::unary<boost::spirit::strlit<co... 50
boost::spirit::tree_node<boost::spirit::node_... 41

Table 3. Compilation times per template instances

Analysis of profiling techniques for C++ template metaprograms 109

If we are not interested in the actual instances, but rather we would like to see
what templates need the most time during the compilation process, we can see
the table in template level as shown in Table 4. Though none of the instantiations
of the STL templates appear in the first table, in the template level view we can
see that the std::allocator template is instantiated 64 times and takes the
13th most time to be processed.

Template Time Count
boost::iterator_facade 511 1
boost::detail::iterator_facade_types 420 1
boost::mpl::if_ 411 12
boost::detail::facade_iterator_category_impl 290 1
boost::detail::is_convertible_impl_dispatch_base 200 8
boost::call_traits 190 5
boost::spirit::unary 190 4
boost::wave::util::functor_input::inner 181 2
boost::wave::context 180 1
Templight::Grammar 171 1
boost::wave::impl::pp_iterator_functor 151 1
std::allocator 131 64
boost::wave::util::macromap 130 1
boost::detail::is_abstract_imp 120 8
boost::detail::is_pointer_impl 110 6
boost::spirit::tree_match 91 1
boost::detail::is_convertible_impl 80 24
boost::detail::operator_brackets_result 71 1
boost::detail::is_pod_impl 61 5

Table 4. Compilation times per templates

We can easily have a quick overview about the compilation times of the differ-
ent template library usages in our code if we sum the template processing times
by their namespaces. This comparison can be found in Table 5. Tables 4 and 5
not only give an overview of the processing times but also present the number of
template instantiations per templates and per namespaces, respectively.

6.3. Overhead

The Templight framework inserts code fragments into the user code, resulting
in significant compilation time overhead, see Table 6. Compiler modification
methods result only in marginal overheads.

110 Z. Porkoláb, J. Mihalicza, N. Pataki and Á. Sipos

Namespace Time Count
boost 4663 819
std 772 241
Templight 181 5

Table 5. Compilation times per namespaces

Test Overhead
memoisation +646%
Templight source +73%

Table 6. Compilation time overhead caused by the inserted code fragments when
the Templight framework is used

7. Limitations and future work

7.1. Modification of the source code

Compiler support. The Templight framework works only if the compiler gives
enough information when it meets the instrumented erroneous code. Unfor-
tunately not all compilers fulfil this criterion today. Table 7 summarizes our
experiences with some compilers.

It is a frequent case when a warning is emitted, but there is no information
about its context. The most surprising find was that the Borland 5.6 compiler
does not print any warnings to our instrumented statement even with all warnings
enabled. A later version of this compiler (version 5.8) prints the desired messages,
but similarly to many others it does not generate any context information. In
contrast to the others this compiler prints the same warning for each instantiation.

Semantics. Since we do not have semantical information we fall back on using
mere syntactic patterns. Unfortunately without semantic information there are
ambiguous cases where it is impossible to determine the exact role of the tokens.
This simply comes from the environment-dependent nature of the language and
from the heavily overloaded symbols. The following line for example can have
totally different semantics depending on its environment:

enum { a = b < c > :: d };

If the preceding line is

Analysis of profiling techniques for C++ template metaprograms 111

compiler result
g++ 3.3.5 ok
g++ 4.1.0 ok
MSVC 7.1 ok
MSVC 8.0 ok
Intel 9.0 no instantiation backtrace
Comeau 4.3.3 no instantiation backtrace
Metrowerks no instantiation backtrace
CodeWarrior 9.0
Borland 5.6 no warning message at all
Borland 5.8 no instantiation backtrace,

but the warning message is printed
for each instantiation

Table 7. Our experiences with different compilers

enum { b = 1, c = 2, d = 3 };

then the < and > tokens are relational operators, and :: stands for ’global scope’,
while having the following part instead of the previous line

template<int>
struct b {

enum { d = 3 };
};
enum { c = 2 };

the < and > tokens become template parameter list parentheses and :: the de-
pendent name operator. This renders recognising enum definitions more difficult.

7.2. Modification of the compiler

Inheritance. Apart from the obvious disadvantage of modifying compiler source
code, the most important limitation of our simple g++ modification is the lack
of support for inheritance. Consider

template <int N>
struct A
{
...

112 Z. Porkoláb, J. Mihalicza, N. Pataki and Á. Sipos

};
template <int N>
struct Factorial : public A<N>
{
...
};

When measuring the instantiation time of Factorial<N> with some integer N,
only the time of the instantiation of Factorial<N>’s body will be considered.
Our test cannot take into account the time it takes to instantiate parent classes’
bodies. This is a problem when a metaprogram relies heavily on inheritance, like
boost::mpl, boost::wave, etc.

As mentioned in Section 5, full specializations of templates are not taken into
consideration in our profiling data sets, since they are concrete types from the
start and need no instantiation. On the other hand, a possible future direction
would be measuring the lookup times of full specializations, and also already
instantiated templates.

8. Related work

Template metaprogramming was first investigated in Veldhuizen’s articles
[21]. Vandevoorde and Josuttis introduced the concept of a tracer, which is a
specially designed class that emits runtime messages when its operations are
called [18]. When this type is passed to a template as an argument, the messages
show in what order and how often the operations of that argument class are
called. The authors also defined the notion of an archetype for a class whose sole
purpose is checking that the template does not set up undesired requirements on
its parameters.

To improve the compilation of heavily templated C++ programs Veldhuizen
proposed alternative compilation models [20], each with a distinct tradeoff of
compile time, code size and code speed.

In their book on boost [1] Abrahams and Gurtovoy devoted a whole section
to diagnostics, where the authors showed methods for generating textual output
in the form of warning messages. They implemented the compile-time equivalent
of the aforementioned runtime tracer (mpl::print). Compile-time performance
was also investigated via a set of carefully selected test cases. The cost of mem-
oization, memoized lookup and instantiation was characterized and compared
across various compilers.

Analysis of profiling techniques for C++ template metaprograms 113

9. Conclusion

C++ template metaprogramming is a new, evolving programming paradigm.
It extends traditional runtime programming with numerous advantages, like im-
plementing active libraries, optimizing numerical operations and enhancing com-
pile-time checking possibilities. Since metaprograms typically show bad compile-
time performance, identifying the bottlenecks is a crucial task.

In this article we evaluated profiling techniques applicable for C++ template
metaprograms. Instrumenting the C++ source, collecting and measuring the
emitted messages during compilation is a highly portable but limited possibility.
Real profiling information can only be obtained with the help of the compiler. To
demonstrate this possibility we modified the g++ compiler to produce profiling
information on C++ template metaprograms.

References

[1] Abrahams D. and Gurtovoy A., C++ template metaprogramming.
Concepts, tools, and techniques from Boost and Beyond, Addison-Wesley,
Boston, 2004.

[2] Alexandrescu A., Modern C++ design: Generic programming and design
patterns applied, Addison-Wesley, 2001.

[3] ANSI/ISO C++ Committee. Programming languages – C++. ISO/IEC
14882:1998(E), American National Standards Institute, 1998.

[4] Boehm B.W., Improving software productivity, IEEE Computer 20 (9)
(1987), 43-57.

[5] Czarnecki K. and Eisenecker U,W., Generative programming: methods,
tools and applications, Addison-Wesley, 2000.

[6] Karlsson B., Beyond the C++ standard library. An introduction to Boost,
Addison-Wesley, 2005.

[7] Knuth D.E., An empirical study of FORTRAN programs, Software - Prac-
tice and Experience, 1 (1971), 105-133.

[8] Musser D.R. and Stepanov A.A., Algorithm-oriented generic libraries,
Software - Practice and Experience, 27 (7) (1994), 623-642.

[9] McNamara B. and Smaragdakis Y., Static interfaces in C++, First
Workshop on C++ Template Metaprogramming, 2000.

114 Z. Porkoláb, J. Mihalicza, N. Pataki and Á. Sipos

[10] Porkoláb Z., Mihalicza J. and Sipos Á., Debugging C++ template
metaprograms, Proceedings of GPCE 2006, Portland, ACM Series (ac-
cepted)

[11] Dos Reis G. and Stroustrup B., Specifying C++ concepts, Proceedings
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL), 2006, 295-308.

[12] Shende S., Malony A.D., Cuny J., Lindlan K., Beckman P. and
Karmesin S., Portable profiling and tracing for parallel ccientific applica-
tions using C++, Proceedings of SPDT’98: ACM SIGMETRICS Symposium
on Parallel and Distributed Tools, 1998, 134-145.

[13] Siek J. and Lumsdaine A., Concept checking: Binding parametric poly-
morphism in C++, First Workshop on C++ Template Metaprogramming,
2000.

[14] Siek J., A language for generic programming, PhD Thesis, Indiana Univer-
sity, 2005.

[15] Stroustrup B., The C++ programming language special edition, Addison-
Wesley, 2000.

[16] Stroustrup B., The design and evolution of C++, Addison-Wesley, 1994.
[17] Unruh E., Prime number computation, ANSI X3J16-94-0075/ISO WG21-

462.
[18] Vandevoorde D. and Josuttis N.M., C++ templates: The complete

guide, Addison-Wesley, 2003.
[19] Veldhuizen T.L. and Gannon D., Active libraries: Rethinking the roles

of compilers and libraries, Proceedings of the SIAM Workshop on Object
Oriented Methods for Inter-operable Scientic and Engineering Computing
(OO’98), SIAM Press, 1998, 21-23.

[20] Veldhuizen T., Five compilation models for C++ templates, First Work-
shop on C++ Template Metaprogramming, 2000.

[21] Veldhuizen T., Using C++ template metaprograms, C++ Report, 7 (4)
(1995), 36-43.

[22] Veldhuizen T., Expression templates, C++ Report, 7 (5) (1995), 26-31.
[23] Zólyomi I., Porkoláb Z. and Kozsik T., An extension to the subtype

relationship in C++, GPCE 2003, LNCS 2830, 2003, 209-227.
[24] Zólyomi I. and Porkoláb Z., Towards a template introspection library,

LNCS 3286, 2004, 266-282.
[25] Czarnecki K., Eisenecker U.W., Glck R., Vandevoorde D. and

Veldhuizen T.L., Generative programmind and active libraries, Springer
Verlag, 2000.

[26] Kumar N., Childers B.R. and Soffa M.L., Low overhead program
monitoring and profiling, The 6th ACM SIGPLAN-SIGSOFT Workshop on
program analysis for software tools and engineering, 2005, 28-34.

Analysis of profiling techniques for C++ template metaprograms 115

[27] Graham S., Kessler P. and McKusick M., gprof: A call graph exe-
cution profiler, Proceedings of the SIGPLAN ’82 Symposium on Compiler
Construction, Boston, MA, June 1982, ACM, 1982, 120-126.

[28] Gregor D., Jrvi J., Siek J.G., Dos Reis G., Stroustrup B.
and Lumsdaine A., Concepts: Linguistic support for generic program-
ming in C++, Proceedings of the 2006 ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages and Applications (OOP-
SLA’06), 2006.

[29] http://www.cs.utah.edu/dept/old/texinfo/as/gprof toc.html

[30] http://www.cs.uoregon.edu/research/tau/home.php

Z. Porkoláb, J. Mihalicza, N. Pataki and Á. Sipos
Department of Programming Languages
Eötvös Loránd University
Pázmány Péter sét. 1/C
H-1117 Budapest, Hungary
gsd@elte.hu, pocok@inf.elte.hu, patakino@elte.hu, shp@elte.hu

