
Annales Univ. Sci. Budapest., Sect. Comp. 30 (2009) 79-95

CODE FACTORING IN GCC ON DIFFERENT
INTERMEDIATE LANGUAGES

Cs. Nagy, G. Lóki, Á. Beszédes and T. Gyimóthy

(Szeged, Hungary)

Abstract. Today as handheld devices (smart phones, PDAs, etc.) are
becoming increasingly popular, storage capacity becomes more and more
important. One way to increase capacity is to optimize static executables
on the device. This resulted that code-size optimization gets bigger atten-
tion nowadays and new techniques are observed, like code factoring which
is still under research.
Although GNU GCC is the most common compiler in the open source com-
munity and has many implemented algorithms for code-size optimization,
the compiler is still weak in these methods, which can be turned on using
the ‘-Os’ flag. In this article we would like to give an overview on imple-
mentation of different code factoring algorithms (local factoring, sequence
abstraction, interprocedural abstraction) on the IPA, Tree, Tree SSA and
RTL passes of GCC.
The correctness of the implementation was checked, and the results were
measured on different architectures with GCC’s official Code-Size Bench-
mark Environment (CSiBE) as a real-world system. These results showed
that on the ARM architecture we could achieve 61.53% maximum and
2.58% average extra code-size saving compared to the ‘-Os’ flag of GCC.

1. Introduction

GCC (GNU Compiler Collection) [1] is a compiler with a set of front ends and
back ends for different languages and architectures. It is part of the GNU project
and it is free software distributed by the Free Software Foundation (FSF) under

80 Cs. Nagy, G. Lóki, Á. Beszédes and T. Gyimóthy

the GNU General Public License (GNU GPL) and GNU Lesser General Public
License (GNU LGPL). As the official compiler of Linux, BSDs, Mac OS X, Sym-
bian OS and many other operating systems, GCC is the most common and most
popular compilation tool used by developers. It supports many architectures and
it is widely used for mobile phones and other handheld devices, too. When com-
piling a software for devices like mobile phones, pocket PC’s and routers where
the storage capacity is limited, a very important feature of the compiler is being
able to provide the smallest binary code when possible. GCC already contains
code size reducing algorithms, but since in special cases the amount of saved free
space may be very important, further optimization techniques may be very useful
and may affect our everyday life.

One new technique is code factoring, which is still under research. Develop-
ers recognized the power in these methods and nowadays several applications use
these algorithms for optimization purposes. One of these real-life applications is
called ‘The Squeeze Project’ maintained by Saumya Debray [2], which was one of
the first projects using this technique. Another application is called aiPop (Au-
tomatic Code Compaction software) which is a commercial program released by
the AbsInt Angewandte Informatik GmbH with ‘Functional abstraction (reverse
inlining) for common basic blocks’ feature [3]. This application is an optimizer
suite software with support for C16x/ST10, HC08 and ARM architectures and
it is used by SIEMENS as well.

In this paper, we will give an overview of the code factoring algorithms on
the different intermediate representation languages (IL) of GCC. The main idea
of this approach was introduced on the GCC Summit in 2004 [4], and since these
techniques represented a class of new generation in code size optimization, we
thought that the implementation on higher level IL should lead to better results.
We tested our implementation and measured the new results on CSiBE [5], which
is the official Code-Size Benchmark Environment of GCC containing about 18
projects with roughly 51 MB size of source code.

The paper is organized as follows. Section 2 gives an overview of code factoring
algorithms and the optimization structure of GCC. Sections 3 and 4 introduce
local code motion and procedural abstraction with subsections for corresponding
ILs. Finally, Section 5 contains the results we reached with our implementation,
and Section 6 presents our conclusion.

2. Overview

Code factoring is a class of useful optimization techniques developed especially
for code size reduction. These approaches aim to reduce size by restructuring the

Code factoring in GCC on different intermediate languages 81

code. One possible factoring method is to do small changes on local parts of the
source. This is called local factoring. One other possible way is to abstract parts
of the code and separate them in new blocks or functions. This technique is
called sequence abstraction or functional abstraction. Both cases can work on
different representations and can be specialized for those languages.

GCC offers several intermediate languages for optimization methods (Figure
2). Currently, most of the optimizing transformations operate on the Regis-
ter Transfer Language (RTL) [6], which is a very low level language where the
instructions are described one by one. It is so close to assembly that the final as-
sembler output is generated from this level. Before the source code is transformed
to this level, it passes higher representation levels, too. First it is transformed
to GENERIC form which is a language-independent abstract syntax tree. This
tree will be lowered to GIMPLE which is a simplified subset of GENERIC, a
restricted form where expressions are broken down into a 3-address form.

Figure 1. Optimization passes in GCC.

Since many optimizing transformations require higher level information about
the source code, that is difficult or in some cases even impossible, to obtain from
RTL, GCC developers introduced a new representation level called Tree-SSA
[7, 8] based on Static Single Assignment form developed by researchers at IBM
in the 1980s [9]. This IL is especially suitable for optimization methods that
work on the Control Flow Graph (CFG), which is a graph representation of the
program containing all paths that might be traversed during the execution. The
nodes of this graph are basic blocks where one block is a straight-line sequence
of the code with only one entry point and only one exit. These nodes in the flow
graph are connected via directed edges and these edges are used to represent
jumps in the control flow.

It may be reasonable to run one algorithm on different representations to-
gether (e.g. first on SSA level and later on RTL). Due to the different information
stored by various ILs, it is possible that after running the algorithm on a higher
level it will still find optimizable cases on a lower level as well. For the same
reason, we obtained our best results by combining the mentioned refactoring
algorithms on all implemented optimization levels.

82 Cs. Nagy, G. Lóki, Á. Beszédes and T. Gyimóthy

Figure 2. Implemented algorithms introduced in this paper.

We implemented the presented code factoring algorithms on the Tree-SSA and
on the RTL levels as well, and for the sequence abstraction we made an interpro-
cedural version, too. Due to the experimental state of interprocedural analysis
in GCC, our implementation is also under research. Figure 2 demonstrates the
order of our new passes.

3. Sinking-hoisting

The main idea of local factoring (also called local code motion, code hoisting
or code sinking) is quite simple. Since it often happens that basic blocks with
common predecessors or successors contain the same statements, it might be
possible to move these statements to the parent or child blocks.

For instance, if the first statements of an if node’s then and else cases
are identically the same, we can easily move them before the if node. With
this moving - called code hoisting - we can avoid unnecessary duplication of
source code in the CFG. This idea can be extended to other more complicated
cases as not only an if node, but a switch and a source code with strange goto
statements can contain identical instructions. Furthermore, it is possible to move
the statements from the then or else block after the if node, too. This is called
code sinking which is only possible when there are no other statements depending
on the moved ones in the same block.

For doing this code motion, we must collect basic blocks with common prede-
cessors or common successors (also called same parents or same children) (Figure
3). These basic blocks represent a sibling set and we have to look for common
statements inside them. If a statement appears in all the blocks of the sibling set
and it is not depending on any previous statement, it is a hoistable statement, or
if it has no dependency inside the basic blocks, it is a sinkable statement. When
the number of blocks inside the sibling set is bigger than the number of parents
(children) it is worth hoisting (sinking) the statement (Figure 4).

Code factoring in GCC on different intermediate languages 83

?
A
B

?
C
D

¡¡ª @@R
PPPPPq

³³³³³) ¡¡ª @@R
E
F
G
H
?

I
F
J
?

F
K
?

?
A
F
B

?
C
F
D

¡¡ª @@R
PPPPPq

³³³³³) ¡¡ª @@R
E
G
H
?

I
J
?

K
?

(a) (b)

Figure 3. Basic blocks with multiple common predecessors (a) before and (b)
after local factoring.

?
A
B
C

?
D
C
E

?
F
G
C

@@R
PPPPPq¡¡ª @@R

³³³³³) ¡¡ª
H
?

I
?

?
A
B

?
D
E

?
F
G

@@R
PPPPPq¡¡ª @@R

³³³³³) ¡¡ª
C
H
?

C
I
?

(a) (b)

Figure 4. Basic blocks with multiple common successors (a) before and (b) after
local factoring.

?
A
B
C
D

?
E
A
C
D

?
F
G
C
HXXXz? »»»9

I
?

?
B

?
EHHj ©©¼

A
D

?
F
G
HPPq ³³)

C
I
?

(a) (b)

Figure 5. Basic blocks with multiple common successors but only partially com-
mon instructions (a) before and (b) after local factoring.

To obtain a better size reduction, we can handle a special case of local fac-
toring when there are identical statements not appearing in all the basic blocks
of the sibling set. When the number of blocks counting these statements is quite
big and we could sink or hoist these statements, it is still possible to simplify the
CFG (Figure 5). For instance, we can create a new block and link it before or
after the sibling set depending on the direction of the movement. By building
correct edges for this new basic block we can rerun the algorithm on the new
sibling set with the same statements, and move the identically same statements
into our new basic block. This way the gain may be a bit less because building
a new basic block needs some extra cost for the new statements. However, this
way we can have a more efficient algorithm in code size optimization.

84 Cs. Nagy, G. Lóki, Á. Beszédes and T. Gyimóthy

3.1. RTL code motion

We first implemented this algorithm on the RTL level of GCC’s optimization
phases. This internal representation language is a low level representation of
the source code, very close to the assembly. Therefore, when we are thinking of
movable statements we should think of assembly kind statements where we are
working with registers, memory addresses, etc.

RTL expressions (RTX, for short) are small instructions classified by expres-
sion codes (RTX codes). Each RTX has an expression code and a number of
arguments. The number of these small instructions is quite big compared to
other representations. Due to this the number of potentially movable instruc-
tions is the biggest on this level. Although it has an effect on the compilation
time, too, it is not relevant because the instructions must be compared to each
other only for local parts of the CFG where we do code factoring. The asymptotic
complexity of this algorithm is O(n2) (where n is the number of instructions).
The reason for this complexity is the comparison of all instructions one by one
in the basic blocks of a sibling set in order to find identical statements.

One important flavour of the hoisting-sinking algorithm running on this rep-
resentation level is the definition for ‘identically same’ statements. It is evident
that equal instructions must have the same RTX code, but because of the low
level of RTL, the arguments must be exactly equal, too. To decide if one state-
ment is movable, we have to check its dependencies, too. We simply have to
check the statements before the current instruction for hoisting and do the same
checking with the instructions after the movable statement until the end of the
current basic block for sinking.

With this implementation, we could achieve 4.31% code size reduction (com-
pared to ‘-Os’) on a file in CSiBE environment. Compiling unrarlib-0.4.0 for
i686-elf target we could reach 0.24% average code-size saving. The average re-
sult measured on CSiBE was about 0.19% for the same architecture.

3.2. Tree-SSA code motion

Tree-SSA [7, 8] is a higher level representation than RTL. This representa-
tion is similar to GENERIC (a language independent code representation) but
it contains modifications to represent the program so that every time a variable
is assigned in the code, a new version of the variable is created. Every vari-
able has an SSA NAME which contains the original name for the variable and
an SSA VERSION to store the version number for it. Usually, in control flow
branches it is not possible at compile time (only at run time) to decide for a used
variable which of its earlier versions will be taken. To handle these situations in
SSA form, phi nodes [9] are created to help us follow the lifecycle of the variable.

Code factoring in GCC on different intermediate languages 85

A phi node is a special kind of assignment with operands that indicate which
assignments to the given variable reach the current join point of the CFG. For
instance, consider the use of variable a (from example Figure 6a) with version
number 9 and 8 in the then and else cases of an if node. Where a is referenced
after the join point of if the corresponding version number is ambigous, and to
solve this ambiguity a phi node is created as a new artifitial definition of a with
version number 1.

The SSA form is not suited for handling non-scalar variable types like struc-
tures, unions, arrays and pointers. For instance, for an M [100] [100] array it
would be nearly impossible to keep track of 10000 different version numbers or
to decide whether M [i] [j] and M [l] [k] referes to the same variable or not. To
handle these problematic cases, the compiler stores references to the base object
for non-scalar variables in virtual operands [7]. For instance, M [i] [j] and M [l] [k]
are considered references to M in virtual operands.

For this optimization level we should redefine ‘identically same statements’
because we should not use a the strict definition we used before, where we ex-
pected from two equal statements for each argument to be equal, too. Due to
the strict definition ax1 = by1 + cz1 differs from ax2 = cz2 + by2. However, these
kinds of assignments are identical because ‘+’ operand is commutable and SSA
versions are indifferent for our cases. On the SSA level, we should define two
statements to be equal when the TREE CODE of the statements are equal, and
if their arguments are variables, their SSA NAME operands are equal, too (ver-
sion number may differ). We require non-variable arguments to be exactly the
same, but if the statements are commutable, we check the arguments for different
orders as well.

For dependency checking, Tree-SSA stores the immediate uses of every state-
ment in a list that we can walk through using an iterator macro. Thanks to this
representation, the dependency check is the same as before in the RTL phase.

When moving statements from one basic block to another one, we have to pay
attention to the phi nodes, the virtual operands and the immediate uses carefully.
Usually, a variable of a sinkable assign statement’s left hand appears inside a phi
node (example Figure 6). In these situations, after copying the statement to the
children or parent blocks we must recalculate the phi nodes. After this, in both
sinking and hoisting cases, we must walk over the immediate uses of the moved
statements and rename the old defined variables to the new definitions.

The current implementation has a weakness in moving statements with tem-
porary variables. This problem occurs when an assignment with more than one
argument is transformed to the SSA form. The problem is that in the SSA
form one assignment statement can contain one operand on the right hand, and
when GCC splits a statement with two or more operands, it creates temporary
variables which have unique SSA NAME containing a creation id. As we have
defined, two variables are equal when their SSA names are equal. Consequently

86 Cs. Nagy, G. Lóki, Á. Beszédes and T. Gyimóthy

int D.1770 ;
<bb 0>:

i f (a 2 > 100) goto <L0>;
else goto <L1>;

<L0> : ;
a 9 = b 5 + a 2 ;
c 10 = a 9 ∗ 10 ;
a 11 = a 9 − c 10 ;
goto <bb 3> (<L2>);

<L1> : ;
a 6 = a 2 + b 5 ;
c 7 = a 6 ∗ 12 ;
a 8 = a 6 − c 7 ;
a 1 = PHI <a 11 (1) , a 8 (2) > ;

<L2> : ;
D.1770 3 = a 1 ;
return D.1770 3 ;

int D.1770 ;
<bb 0>:

a 16 = a 2 + b 5 ;
i f (a 2 > 100) goto <L0>;
else goto <L1>;

<L0> : ;
c 10 = a 16 ∗ 10 ;
goto <bb 3> (<L2>);

<L1> : ;
c 7 = a 16 ∗ 12 ;
a 14 = PHI <a 16 (1) , a 16 (2) > ;
c 15 = PHI <c 10 (1) , c 7 (2) > ;

<L2> : ;
a 1 = a 14 − c 15 ;
return a 1 ;

(a) Before code motion (b) After code motion

Figure 6. An example code for Tree-SSA form with movable statements.

these statements will not be recovered as movable statements. Since these kinds
of expressions are often used by developers, by solving this problem in the im-
plementation we may get better results in size reduction.

On Tree SSA, with this algorithm the best result we could reach was 10.34%
code saving on a file compiled to ARM architecture. By compiling unrarlib-0.4.0
project in CSiBE for i686-elf target, we could achieve 0.87% extra code saving
compared to ‘-Os’ optimizations and the average code size reduction measured
for the same target was about 0.1%.

4. Sequence abstraction

Sequence abstraction (also known as procedural abstraction) as opposed to
local factoring works with whole single-entry single-exit (SESE) code fragments,
not only with single instructions. This technique is based on finding identical
regions of code which can be turned into procedures. After creating the new
procedure we can simply replace the identical regions with calls to the newly
created subroutine.

There are well-known existing solutions [10, 11] already, but these approaches
can only deal with such code fragments that are either identical or equivalent in
some sense or can be transformed with register renaming to an equivalent form.
However, these methods fail to find an optimal solution for these cases where
an instruction sequence is equivalent to another one, while a third one is only

Code factoring in GCC on different intermediate languages 87

identical with its suffix (Figure 7a). The current solutions can solve this situation
in two possible ways. One way is to abstract the longest possible sequence into
a function and leave the shorter one unabstracted (Figure 7b). The second way
is to turn the common instructions in all sequences into a function and create
another new function from the remaining common part of the longer sequences
(Figure 8c). This way, we should deal with the overhead of the inserted extra
call/return code as well.

Our approach was to create multiple-entry single-exit (MESE) functions in
the cases described above. This way, we allow the abstraction of instruction
sequences of differing lengths. The longest possible sequence shall be chosen
as the body of the new function, and according to the length of the matching
sequences we define the entry points as well. The matching sequence will be
replaced with a call to the appropriate entry point of the new function. Figure
8d shows the optimal solution for the problem depicted in Figure 7a.

?
A

B

C
?

?
D

E

B

F
?

?
G
E

B

H
?

?
A

B

C
?

?
D

call

?
G

callHHj ©©¼
E

B

retHHj©©¼
F
?

H
?

(a) (b)

Figure 7. Abstraction of (a) instruction sequences of differing lengths to proce-
dures using the strategy for abstracting only the longest sequence (b). Identical
letters denote identical sequences.

Sequence abstraction has some performance overhead with the execution of
the inserted call and the return code. Moreover, the size overhead of the inserted
code must also be taken into account. The abstraction shall only be carried out
if the gain resulting from the elimination of duplicates exceeds the loss arising
from the insertion of extra instructions.

4.1. Sequence abstraction on RTL

Using the RTL representation algorithms one can optimize only one function
at a time. Although sequence abstraction is inherently an interprocedural op-
timization technique, it can be adapted to intraprocedural operation. Instead
of creating a new function from the identical code fragments, one representative

88 Cs. Nagy, G. Lóki, Á. Beszédes and T. Gyimóthy

?
D

call

?
G

callHHj ©©¼
E
retHHj©©¼

?
A

call call callXXXz? »»»9

B

ret»»»9 ?XXXz
C
? F

?
H
?

?
A

callXXXz

»»»9
C
?

?
D

call
?

E
?

B

ret
?
F
?

?
G

call»»»9

XXXz
H
?

(c) (d)

Figure 8. Abstraction of instruction sequences from Figure 7 of differing lengths
to procedures using different strategies (c,d). Identical letters denote identical
sequences.

instance of them has to be retained in the body of the processed function, and
all the other occurrences will be replaced by the code transferring control to the
retained instance. However, to preserve the semantics of the original program,
the point where the control has to be returned after the execution of the retained
instance must be remembered somehow, thus the subroutine call/return mecha-
nism has to be mimed. In the current implementation, we use labels to mark the
return addresses, registers to store references to them, and jumps on registers to
transfer the control back to the “callers.”

Implementing sequence abstraction on the RTL phase has the quite signifi-
cant benefit of reducing the code size instead of implementing the abstraction on
a higher intermediate language. Most of the optimization algorithms are finished
while the abstraction is started in the compilation queue. Those very few algo-
rithms which are executed after sequence abstraction do not have or only have a
very little impact on code size. So our algorithm still has an observable effect on
the output before it is generated by GCC.

The current implementation can only deal with identical statements where the
registers and the instructions are exactly the same. For further improvements,
with some extra cost it might be possible to abstract identical sequences where
the registers may differ.

This implementation has approximately O(n2) cost of running time. The
reason for it is the comparison of possible sequences inside basic blocks with n
instructions on the current IL. This cost can be optimized to O(n log n) using
hashtables with fingerprints. We already have a version for this optimization as
well but further tests are required to validate this implementation.

This algorithm brought us maximum 45.69% code saving on a source file

Code factoring in GCC on different intermediate languages 89

compiled in CSiBE. Compiling libmspack project of CSiBE for arm-elf target,
we achieved 2.39% extra code saving compared to ‘-Os’ optimizations, and our
average result in size reduction measured for the same target was about 1.01%.

4.2. Sequence abstraction on tree

As a general rule in compilers the commands in a higher intermediate language
representation could describe more architecture dependent instructions than in
a lower IL. In our view if the sequence abstraction algorithm can merge similar
sequences in a higher IL, it could lead to better code size reduction.

In Tree IL, there are less restrictions than in RTL. For instance, we do not
have to care about register representations. So, the algorithm is able to find more
sequences as good candidates to abstraction, while in RTL we must be sure that
all references to registers are the same in every subsequence.

Unfortunately, the results do not achieve our expectations. The main problem
is that the sequence abstraction algorithm is in a very early stage of compilation
passes. Other algorithms followed by abstraction could simply mess up the re-
sults. This is supported by the fact that after our pass there, we could achieve
even 9.25% (2.5% in average) code size reduction counted in Tree unit. In ad-
dition, there are some cases when the abstraction does the merge, but it is not
really wanted because one or more sequences are dropped (for example a dead
code), or there is a better solution for code optimization. These cases mostly
occur when the algorithm tries to merge short sequences.

However, for a better performance there are still additional improvements on
the current implementation. One of them is to extend the current implemen-
tation with the ability to abstract approximately equal sequences as well. The
current implementation realizes abstractable sequences where the statements are
equal, but for several cases it might be possible to deal with not exactly the
same sequences as well. Another possible improvement is to compare temporary
variables as well. It is exactly the same problem as the one described before for
code motion on the Tree-SSA level.

This implementation, similarly to the RTL, has a cost of running time about
O(n2) for the same reason. We also have an optimized version for O(n log n)
using hashtables with fingerprints, but further tests are required for validation.

With this optimization method we could reach maximum 41.60% code-size
saving on a source file of CSiBE, and by compiling flex-2.5.31 project of the
environment for arm-elf target, we achieved 3.33% extra code saving compared
to ‘-Os’ optimizations. The average result in size reduction measured for the
same target was about 0.73%.

90 Cs. Nagy, G. Lóki, Á. Beszédes and T. Gyimóthy

4.3. Procedural abstraction with IPA

The main idea of interprocedural analysis (IPA) optimizations is to produce
algorithms which work on the entire program, across procedure or even file bound-
aries. For a long time, the open source GCC had no powerful interprocedural
methods because its structure was optimized for compiling functions as units.
Nowadays, new IPA framework and passes are introduced by the IPA branch
and it is still under heavy development [12].

We have also implemented the interprocedural version of our algorithm. This
implementation is very similar to the one we use on Tree with one big difference:
we can merge sequences from any functions into a new real function.

With this approach we can handle more code size overhead coming from func-
tion call API than the other two cases described above. In addition, we are also
able to merge the types of sequences which use different variables or addresses,
because it is possible to pass the variables as parameters for our newly created
function. The procedural abstraction identifies and compares the structure of
the sequences to find good candidates to the abstraction, and with this method
we are able to merge sequences more efficiently than in the previously discussed
implementations.

In spite of these advantages, there are disadvantages as well. The IPA is
also in a very early stage in compilation passes, so there is a risk that other
algorithms are able to optimize the candidates better than procedural abstraction
(the same cases as in sequence abstraction on Tree). The other disadvantage
is that the function call requires many instructions and estimating its cost is
difficult. This means that we can only guess the gain we can reach by a given
abstraction, because determining how many assembly instructions are in a higher
level statement is not possible. This cost computation problem is our difficulty
on the Tree level, too. The guessing will not be as accurate as the calculation of
the gain on RTL level, and for several cases where we could save code size this
may cause that the algorithm does no abstraction.

Our implementation of this algorithm has a cost of running time about
O(n log n) already, as the comparision of possible sequences is realized using
hashtables. It can be compared to the slower O(n2) implementations for other
representations on Table 3.

With IPA our best result on a source file of CSiBE was 59.29% code saving
compared to ‘-Os’. By compiling zlib-1.1.4 project of the environment for arm-elf
target, we achieved 4.29% average code saving and the measured average result
on CSiBE was about 1.03%.

Code factoring in GCC on different intermediate languages 91

5. Experimental evaluation

For the implementation, we used the GCC source from the repository of the
cfo-branch [13]. This source is a snapshot taken from GCC version 4.1.0 on
2005-11-17. Our algorithms are publicly available in the same repository as well.

We used CSiBE v2.1.1 [14] as our testbed, which is an environment developed
especially for code-size optimization purposes in GCC. It contains small and
commonly used projects like zlib, bzip, parts of Linux kernel, parts of compilers,
graphic libraries, etc. CSiBE is a very good testbed for compilers and not only
for measuring code size results, but even for validating compilation.

Our testing system was a dual Xeon 3.0 Ghz PC with 3 Gbyte memory and a
Debian GNU/Linux v3.1 operating system. For doing tests on different architec-
tures we crosscompiled GCC for elf binary targets on common architectures like
ARM and SH. For crosscompiling, we used binutils v2.17 and newlib v1.15.0.

The results show (on Table 1 and Table 2) that these algorithms are really
efficient methods in code size optimization, but on higher level intermediate rep-
resentation languages further improvements may still be required to get better
performance due to the already mentioned problems. For i686-elf target, by
running all the implemented algorithms as extension to the ‘-Os’ flag, we could
achieve maximum 57.05% and 2.13% average code-size saving. This code-size
saving percentage is calculated by dividing the size of the object (compiled with
given flags) with the size of the same object compiled with ‘-Os’ flag. This value
is substraced from 1 and converted to percentage (by multiplying it with 100).

flags
i686-elf arm-elf sh-elf

size saving size saving size saving
(byte) (%) (byte) (%) (byte) (%)

-Os 2900177 3636462 3184258
-Os -ftree-lfact -frtl-lfact 2892432 0.27 3627070 0.26 3176494 0.24

-Os -frtl-lfact 2894531 0.19 3632454 0.11 3180186 0.13
-Os -ftree-lfact 2897382 0.10 3630378 0.17 3179622 0.15

-Os -ftree-seqabstr -frtl-seqabstr 2855823 1.53 3580846 1.53 3149822 1.08
-Os -frtl-seqabstr 2856816 1.50 3599862 1.01 3162678 0.68
-Os -ftree-seqabstr 2888833 0.39 3610002 0.73 3166054 0.57

-Os -fipa-procabstr 2886632 0.47 3599042 1.03 3160626 0.74
all 2838348 2.13 3542506 2.58 3123398 1.91

Table 1. Average code-size saving results. (size is in byte and saving is the size
saving correlated to ’-Os’ in percentage (%))

Here we have to mention that by compiling CSiBE with only ‘-Os’ flag using
the same version of GCC we used for implementation, we get an optimized code
which size is 37.19% smaller than compiling it without optimization methods.

92 Cs. Nagy, G. Lóki, Á. Beszédes and T. Gyimóthy

flags
i686-elf arm-elf sh-elf

max. saving (%) max. saving (%) max. saving (%)
-Os -ftree-lfact -frtl-lfact 6.13 10.98 10.29

-Os -frtl-lfact 4.31 3.51 4.35
-Os -ftree-lfact 5.75 10.34 8.78

-Os -ftree-seqabstr -frtl-seqabstr 36.81 56.92 43.89
-Os -frtl-seqabstr 30.67 45.69 42.45
-Os -ftree-seqabstr 30.60 41.60 44.72

-Os -fipa-procabstr 38.21 56.32 59.29
all 57.05 61.53 60.17

Table 2. Maximum code-size saving results for CSiBE objects. (saving is the size
saving correlated to ’-Os’ in percentage (%))

By running all the implemented algorithms together we get a smaller code
saving percentage compared to the sum of percentages for individual algorithms.
This difference occurs because the algorithms work on the same source tree and
the earlier passes may optimize the same cases which would be realized by later
methods, too. This is the reason why for i686-elf target, by running local factor-
ing on RTL level and Tree-SSA, we could achieve 0.19% and 0.10% average code
saving on CSiBE, while by running both of these algorithms the result was only
0.27%. This difference also proved that the same optimization method on differ-
ent ILs may realize different optimizable cases and running the same algorithm
on more than one IL will lead to better performance.

The answer for negative values in the code-saving percentages column (Figure
9) is exactly the same. Unfortunately, even if an algorithm optimizes the source
tree, it might be possible that it messes up the input for another one which could
do better optimization for the same tree. These differences do not mean that the
corresponding algorithms are not effective methods, but these usually mean that
later passes could optimize the same input source better.

In the table of compilation times (Table 3), two algorithms surpass the oth-
ers. These are the RTL and Tree sequence abstractions because the current
implementation is realized with a running time of about O(n2). Nevertheless,
these algorithms can be implemented with O(n log n) length of duration and this
can result in a relative growth of compilation time similar to the interprocedural
abstraction, which is already developed for O(n log n) running time.

We have to note that the sequence abstraction algorithms have an effect on
the running time as well, because these methods may add new calls to the CFG.
As local factoring does not change the number of executed instructions, these
optimizations do not change the execution time of the optimized binaries. We
measured on our testing system with CSiBE that the average growth of running
time compared to ‘-Os’ flag was about 0.26% for tree abstraction, 0.18% for
interprocedural abstraction and 2.49% for the execution of all the algorithms
together.

Code factoring in GCC on different intermediate languages 93

Figure 9. Detailed results for selected CSiBE projects.

flags
i686-elf arm-elf sh-elf

absolute relative absolute relative absolute relative
-Os 259.17 1.0000 285.97 1.0000 311.73 1.0000
-Os -ftree-lfact -frtl-lfact 262.73 1.0137 288.93 1.0104 333.64 1.0703

-Os -frtl-lfact 264.33 1.0199 303.27 1.0605 321.45 1.0312
-Os -ftree-lfact 259.90 1.0028 343.06 1.1996 321.97 1.0328

-Os -ftree-seqabstr -frtl-seqabstr 455.53 1.7576 464.00 1.6225 609.11 1.9540
-Os -frtl-seqabstr 315.75 1.2183 521.80 1.8247 651.13 2.0888
-Os -ftree-seqabstr 303.25 1.1701 325.76 1.1391 360.41 1.1562

-Os -fipa-procabstr 284.31 1.0970 298.79 1.0448 337.98 1.0842
all 342.69 1.3223 393.36 1.3755 489.69 1.5709

Table 3. Compilation time results. (absolute is in second (s) and relative means
the multiplication factor of the compilation time with ’-Os’)

6. Conclusion

As a conclusion of the results above, the sequence abstraction algorithms
produced the best results for us. However, the percentages show that these algo-
rithms did not work as well on higher level abstraction languages as we expected.
The reason for this is that in earlier passes our methods could easily mess up the
code for later passes which could better deal with the same optimization cases.
Perhaps, these situations should be eliminated by compiling in two passes, where

94 Cs. Nagy, G. Lóki, Á. Beszédes and T. Gyimóthy

in the first pass we recover these problematic situations, and in the second one
we optimize only the cases which would not set back later passes.

About local code motion we have to notice that these algorithms yielded
smaller percentages, but collaborated better with later passes. The reason for
this is that these methods do transformations on local parts of the source tree and
do not do global changes on it. Another benefit is that local factoring should deal
with very small or usually no overhead, and the accuracy of cost computation
does not affect the optimization too much.

Another conclusion is about the running time of the algorithms. The sequence
abstraction brought us the best results, but with a quite slow running time. Since
this time affects the compilation, we evolve the deduction that if the duration of
the compilation is really important, we suggest using local code motion as a fast
and effective algorithm. Otherwise, when compilation time does not matter, we
can use all the algorithms together for better results.

Finally, as an acknowledgment, this work was realized thanks to the cfo-
branch of GCC. Developers interested in our work are always welcome to help us
improve the code factoring algorithms introduced in this paper.

References

[1] Free Software Foundation, GCC, GNU Compiler Collection,
http://gcc.gnu.org/; accessed March, 2007.

[2] Debray S., Evans W., Bosschere K. D. and Sutter B. D., The
Squeeze Project: Executable Code Compression,
http://www.cs.arizona.edu/projects/squeeze/, accessed March, 2007.

[3] AbsInt (Angevandte Informatik), aiPop - Automatic Code Compaction,
http://www.absint.com/aipop/, accessed March, 2007.

[4] Lóki G., Kiss A., Jász J. and Beszédes A., Code factoring in GCC,
Proceedings of the 2004 GCC Developers’ Summit, 2004, 79–84.

[5] Beszédes A., Ferenc R., Gergely T., Gyimóthy T., Lóki G. and
Vidács L., CSiBE benchmark: One year perspective and plans, Proceedings
of the 2004 GCC Developers’ Summit, June 2004, 7–15.

[6] Free Software Foundation, GNU Compiler Collection (GCC) internals,
http://gcc.gnu.org/onlinedocs/gccint, accessed March, 2007.

[7] Novillo D., Tree SSA a new optimization infrastructure for GCC, Proceed-
ings of the 2003 GCC Developers’ Summit, 2003, 181–193.

Code factoring in GCC on different intermediate languages 95

[8] Novillo D., Design and implementation of Tree SSA, Proceedings of the
2004 GCC Developers’ Summit, 2004, 119–130.

[9] Cytron R., Ferrante J., Rosen B. K., Wegman M. N. and Zadeck
F. K., Efficiently computing static single assignment form and the con-
trol dependence graph, ACM Transactions on Programming Languages and
Systems, 13 (4) (1991), 451–490.

[10] Cooper K.D. and McIntosh N., Enhanced code compression for embed-
ded RISC processors, Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation, 1999, 139–149.

[11] Debray S. K., Evans W., Muth R. and de Sutter B., Compiler tech-
niques for code compaction. ACM Transactions on Programming Languages
and Systems, 22 (2) (2000), 378–415.

[12] Hubička J., The GCC call graph module, a framework for interprocedural
optimization, Proceedings of the 2004 GCC Developers’ Summit, 2004, 65–
75.

[13] Lóki G., cfo-branch - GCC development branch,
http://gcc.gnu.org/projects/cfo.html, accessed March, 2007.

[14] Department of Software Engineering, University of Szeged, GCC
Code-Size Benchmark Environment (CSiBE),
http://www.csibe.org/, accessed March, 2007.

Cs. Nagy, G. Lóki, Á. Beszédes and T. Gyimóthy
Department of Software Engineering
University of Szeged
Dugonics tér 13.
H-6720 Szeged, Hungary
{ncsaba,loki,beszedes,gyimi}@inf.u-szeged.hu

