Annales Univ. Sci. Budapest., Sect. Comp. 30 (2009) 21-39

TOWARDS DETAILED TRACE GENERATION USING
THE PROFILER IN THE .NET FRAMEWORK!

K. Pécza, M. Bicz6 and Z. Porkolab
(Budapest, Hungary)

Abstract. Effective runtime trace generation is vital for understand-
ing, analyzing and maintaining large-scale applications. In this paper an
effective detailed runtime trace generation approach is introduced for the
.NET platform. The non-intrusive method is based on the .NET Profiler;
consequently, neither additional development tools, nor the .NET Frame-
work SDK is required to be installed on the target system. The method is
applied to a test set of real-size executables and compared by performance
and applicability to the original program.

1. Introduction

Runtime trace generation of applications and analyzing runtime traces is a
worthwhile task to investigate the cause of arising malfunctions and accidental
crashes.

In order to produce reliable applications, for a program developer it is im-
portant to investigate programs using a debugger, so that erroneous parts of
the program, instructions and variables getting incorrect values can be detected.
However, there are many situations where a simple debugger fails to fulfill this
task or we are not allowed to use a debugger [6]. Furthermore, multithreaded
applications or applications producing incorrect behavior only under heavy load
often may not be debugged correctly on development machines.

LSupported by GVOP-3.2.2.-2004-07-0005/3.0

22 K. Pécza, M. Biczé and Z. Porkolab

The most common research area where detailed runtime traces can be used
is dynamic program slicing [1, 3, 8, 10, 11]. Besides being widely studied in the
academic field, dynamic program slicing has industrial applications as well. The
original goal of program slicing was to map mental abstractions made by pro-
grammers during debugging to a reduced set of statements in source code. With
the help of program slicing, the programmers can identify bugs more precisely
and at a much earlier stage.

In this article we show a method for generating source code statement level
runtime traces for applications hosted by the Microsoft .NET Framework 2.0.
The method does not require the modification of the original source code nor
the .NET Runtime. Consequently, these solutions do not depend on either Rotor
[12] (the Shared Source implementation of the .NET Framework) or Mono [13]
(open source, multiplatform implementation of the .NET Framework and the C#
compiler under GPL sponsored by Novell).

The method does not require the installation of any development tools. A
further benefit of the proposed solution is language independence: since .NET is
a cross-language programming environment, it can be used to generate traces for
programs written in any .NET-compliant programming language like C#, Visual
Basic, etc.

The trace generating method exploits the capabilities of the .NET Profiling
APT and intermediate language (IL) code rewriting. The basics of this approach
were presented in [9]. This paper complements our solution with the ability of
tracing variable reads and writes, and gives a clearer overview of the solution.

The structure of the paper is the following: in the next section we describe
the main concepts and the architecture of the .NET Debugging and Profiling
Infrastructure. In Section 3 the basic functionalities of the solution like utilizing
the Profiler API, IL code rewriting and sequence point level trace generation will
be presented. In Section 4 variable level tracing capabilities and our implemen-
tation will be shown. In Section 5 we analyze the performance of the method
and present performance figures with different applications. In the last section
we examine how the prepared solution can be extended to identify reference and
output parameters, pointers, etc.

2. The .NET Debugging and Profiling Infrastructure

There are over 40 .NET languages, all of whom can be compiled to an inter-
mediate language code called Common Intermediate Language (CIL) or simply
Intermediate Language (IL). The compiled code is organized into assemblies.

Towards detailed trace generation using the Profiler in the .NET Framework 23

Assemblies are portable executables — similar to dll’s — with the important dif-
ference that assemblies are populated with .NET metadata and IL code instead
of normal native code. The .NET metadata holds information about the defined
and referenced assemblies, types, methods, class member variables and attributes
[5]. IL is a machine-independent, programming language-independent, low-level
assembly-like language using a stack to transfer data among IL instructions. The
IL code is just-in-time compiled by the NET CLR (Common Language Runtime)
to machine-dependent instructions at runtime.

.NET CLR supports two types of debugging modes: out-of-process and in-
process. Out-of-process debuggers run in a separate process providing common
debugger functionality, while in-process debuggers can be applied for inspecting
the run-time state of an application and for collecting profiling information.

The CLR Debugging Services are implemented as a set of more than 70 COM
(Component Object Model) interfaces, which include the design-time interface,
the symbol manager, the publisher and the profiler.

Symbol Manager

\i \i \

Profiler CLR Publisher

Figure 1. CLR Debugging Infrastructure

Figure 1 shows the architecture of the CLR debugging infrastructure, different
modules and the connections between them.

The design-time interface is responsible for handling debugging events. It is
implemented separated from the CLR, while the host application must reside in
a different process. The application has a separate thread for receiving debugger
events that run in the context of the debugged application. When a debug
event occurs (assembly loaded, thread started, breakpoint reached, etc.), the
application halts and the debugger thread notifies the debugging service through
callback functions.

The symbol manager is responsible for interpreting the program database
(PDB) files that contain data used to describe code for the modules being ex-
ecuted. The debugger also uses the assembly metadata that also holds useful

24 K. Pocza, M. Bicz6 and Z. Porkolab

information described earlier. The PDB files contain debugging information and
are generated only when the compiler is explicitly forced to do so. Besides en-
abling the unique identification of program elements like classes, methods, vari-
ables and statements, the metadata and the program database can also be used
to retrieve their original position in the source code.

The publisher is responsible for enumerating all running managed processes
in the system.

The profiler tracks application performance and resources used by running
managed processes. The profiler runs in-process of the inspected application and
can be used to handle events like module and class loading/unloading, "jitting”
(just-in-time compilation), method calls, and events related to exceptions and
garbage collection performance.

3. Sequence point level runtime trace generation

In this section we will recall our method of sequence point level runtime trace
generation that was previously described in [9]. A sequence point is a point in
time during the execution of a program. At each sequence point it is guaranteed
that all of the previous operations have been performed and their side effects
are visible to operations to be executed afterwards, however, no operation after
the sequence point has been called when execution reaches the sequence point.
In other words side effects of operations performed prior to the sequence point
are guaranteed to be visible to operations performed after it. Often ; and |,
characters sign sequence points. We will shortly introduce the internal IL and
metadata representation of methods compiled into .NET assemblies, and show
how we can insert new IL Code sequences to create detailed runtime trace.

Basically, this approach employs the .NET profiler and explores all sequence
points in all methods of all classes and all modules of the application being
profiled and inserts trace method calls defined in an outer assembly at every
sequence point at IL code level [7].

The .NET Profiler provides a COM interface called ICorProfilerCallback?2
exposing a set of callbacks (events) which can be implemented.

We have used some other COM interfaces to dig into assemblies. From the
70+ Profiler events provided by the ICorProfilerCallback?2 interface only two
had to be employed: ModuleLoadFinished and ClassLoadFinished.

Towards detailed trace generation using the Profiler in the .NET Framework 25

3.1. Tracing methods: implementation and referencing

In this section we discuss the tracing methods we are using, how they log and
the way we reference them.

We created an outer assembly called TracerModule and added a static class
called Tracer containing only static methods.

public static void DoFunc(uint startLine, uint startColumn,
uint endLine, uint endColumn, uint functionID, uint action)
{
try
{
lock (lockObj)
{
char act = ’E?;
if (action == 2)
act = 'L?;
sw.WriteLine("{63}T{5}{4}{0}:{1}-{2}:{3}",
startLine, startColumn, endLine, endColumn,
act, functionID, Thread.CurrentThread.ManagedThreadId);
}
}
catch { }
}

Listing 1. Tracing method

The above source code illustrates the trace method executed at every method
entry (first sequence point executed) and leave (last sequence point, which is
always executed unless an exception has been thrown).

The WriteLine method writes out the trace lines. The first parameter of
WriteLine contains a formatting expression where {q} references to the ¢th pa-
rameter indexed from zero after the formatting expression. The first four pa-
rameters represent the position of the sequence point in the source code, the
functionID parameter represents the unique function identifier, and the act pa-
rameter gives the action code (1 for E(unter), 2 for L(eave)). Since the tracer is
prepared for multithreaded applications, we lock on a static object and output
the unique managed thread identifier at every step using the last parameter. At
intra-function sequence points the trace method gets only the first four param-
eters and the thread identifier, and does not output any function identifier or
action code.

26 K. Pécza, M. Biczé and Z. Porkolab

If we intend to call a method placed in an outer module, we have to reference
the assembly containing that method, the class, and the method itself. We
decided not to modify the original program in any way so we have to add these
references to the in-memory metadata of every assembly at runtime. The best
place to do this is the ModuleLoadFinished Profiler event.

3.2. Internal representation of native .NET primitives

In this section we will give a general overview of the internal representation
of .NET methods, IL instructions and Exception Handling Clauses [7].

Internal representation of .NET methods. Every .NET method has a
header, IL code and may have extra padding bytes to maintain DWORD align-
ment. Optionally, it may have a SEH (Structured Exception Handling) header
and Exception Handling Clause.

Tiny method Fat method

Header

IL Code

SEH Header

Ex. Hand. Clauses
Padding byte

Figure 2. Internal representation of .NET methods

A NET method can be in Tiny and in Fat format. A Tiny method is smaller
than 64 bytes, its stack depth does not exceed & slots, contains no local variables,
SEH header and exception handlers. Fat methods overrun one or more of these
criterions.

IL instruction types. IL instructions can be divided into several categories
based on the number and type of parameters they use:

e instructions with no parameter (e.g. dup: duplicates the element on top
of the stack; 1dc.i4.-1, ... , 1ldc.i4.8: load an integer on stack (-1,

8)).

Towards detailed trace generation using the Profiler in the .NET Framework 27

e instructions with an integer parameter (8, 16, 32, 64 bits long) param-
eter (e.g. 1ldc.i4 <int>: load the integer specified by <int> on stack;
br <param>, br.s <reloff>: long or short jump to the relative address
specified by <reloff>)

e instructions with a token parameter (e.g. call <token>: calls the method
specified by <token>; box <token>: box a value type with type <token>
into an object; 1df1d <token>: load the field specified by <token> of the
stack-top class on the stack)

e multi-parameter instructions (e.g. switch <count> <reloffl> ...
<reloffcount>: based on the stack-top value representing the relative off-
set parameter index jumps to the chosen relative offset).

Exception handling clauses. Every Fat method can have one or more
exception handlers. Every EHC (Exception Handling Clause) has a header and
specifies its try and handler starting (absolute) offset and length. An EHC can be
also in Tiny and Fat format based on the number of bytes the offset and length
properties are used to describe. Obviously each EHC offset and length specifies
a sequence point beginning and ending position in the IL code-flow.

3.3. IL code rewriting

Our goal is to change the IL code of methods before they are "jitted” to
native code. We have chosen the ClassLoadFinished Profiler event to perform
this operation because in this early stage we are able to enumerate all methods
of the class just loaded and rewrite the IL code of a whole bunch of methods.
The binary data of a method can be retrieved by a single call. After IL code
rewriting, necessary space for the new binary data has to be allocated and the
newly generated binary data have to be loaded.

Single-method binary data operations and IL code rewriting can be divided
into five steps:

Parsing binary data and storing it in custom data structures.
Upgrading method and instruction format.

Insertion of instrumentation code to the IL code-flow.
Recalculating offsets and lengths.

DA iR o

Storing new representation in binary format.

Parsing binary method data. Firstly, we determine the IL- and original
source code-level start and end offsets of every sequence point of the method
being parsed. The first byte of the header describes whether the method is in
Tiny or Fat format, the function is parsed using this information.

28 K. Pécza, M. Biczé and Z. Porkolab

The IL-level offsets of sequence points were determined previously, now the bi-
nary data has to be assigned to them and the IL instructions have to be identified
based on the binary data at every sequence point.

Consider the simple method in Listing 2.

static bool IsFirstLess(int valuel, int value2)

{

if (valuel < value2)

{
Console.WriteLine("Yes, first is less");
return true;

}

return false;

}

Listing 2. Simple C# method

In Table 1 the sequence points of the source code in Listing 2 are identified
by their IL offset, the start and end offsets by line and column numbers.

’ Index \ IL offset \ Start offset \ End offset ‘

0 0 25,1 25,2
1 1 26,3 26,23
2 9 Oxfeefee,0 | Oxfeefee,0
3 12 27.3 27,4
4 13 28,7 28,47
5 24 29,7 29,19
6 28 31,3 31,16
7 32 32,1 32,2

Table 1. Sequence point offsets

Sequence point at index 2 petted "FeeFee” does not have a real source code
level offset; it is needed by the Framework.

The IL code in the Listing 3 illustrates the internal representation of method
in Listing 2. The numbering on the left indicates the IL offsets while numbers to
the right of the branch instructions (brtrue.s, br.s) represent absolute target
offset, relative target offset, target sequence point(tsp) and target instruction
index(til) in the target sequence point. Parameters of ldstr and call instructions
are of type string and functions tokens, respectively. The absolute target offset of
branch instructions identified by target IL instruction has to be calculated from

Towards detailed trace generation using the Profiler in the .NET Framework 29

0: nop 18: call 167772181

1: 1ldarg 23: nop

2: 1ldarg 1 24: 1dc.id 1

3: clt 25: stloc O

5: 1dc.i4 O 26: br.s 32 (4)[tsp: 7,til: 0]
6: ceq 28: 1dc.i4 O

8: stloc 1 29: stloc O

9: 1dloc 1 30: br.s 32 (4)[tsp: 7,til: 0]
10: brtrue.s 28 (16) [tsp: 6,til: O]

12: nop 32. 1ldloc 0O

13: ldstr 1879048193 33: ret

Listing 3. IL code of method in listing 1

the instruction offset and the relative target offset.
If EHCs exist, they are also parsed [7].

Upgrading method and instruction format. In case of Tiny method
format the header is upgraded to represent a Fat format because we can easily
overrun the limitations of Tiny format. The short branch instructions (brtrue.s,
br.s, bge.un.s, etc.) are converted to their long pairs (brtrue, br, bge.un,
etc.) because we cannot guarantee that the relative branch lengths will remain
within the numeric representation barriers after inserting some instrumentation
instructions between the branch instructions and their targets.

Tiny exception handling clauses are also upgraded to store offset and length
values in DWORD format because the limitation of original WORD (offset) and BYTE
(length) can be easily overrun after instrumentation code insertion.

Instrumentation code insertion. Now we have the Token IDs of Trace
methods, queried the IL and source code level offsets and lengths of sequence
points and converted the binary data to IL instruction flow where branch in-
structions are converted to their long pairs. We examine how the instrumentation
methods can be parameterized and called. While DoFunc (Listing 1) is intended
to be used at method enter and leave, another method is needed which handles
intra-function sequence points. First we create a BYTE array to store binary
data of IL instructions intended to do instrumentation method parameterization
and call, which can be easily integrated into our current representation format 4.

The parameters of the method to be called are loaded on the stack using the
ldc.i4 instruction (opcode 0x20) in the order of parameters, and the Token ID
of the method is given as the parameter of the call instruction (opcode 0x28).
The possible instruction (1dc.i4.1, or ldc.i4.2) at index 25 surely having a
one byte opcode (0x17 or 0x18) loads 1 for enter or 2 for leave on the stack,
respectively.

30 K. Pocza, M. Bicz6 and Z. Porkolab

BYTE insertFuncInst[31];

insertFuncInst[0] = 0x20; //1ldc.id4, start line
insertFuncInst[5] = 0x20; // ldc.i4d,startcolumn
insertFuncInst[10] = 0x20; // 1ldc.id4, end line
insertFuncInst[15]= 0x20; // 1ldc.i4, end column
insertFuncInst[20] = 0x20; // ldc.i4, func. Id
insertFuncInst[25] = 0x0; // ldc.i4.1 or ldc.i4.2

insertFuncInst [26] 0x28; // call
* ((DWORD *) (insertFuncInst+27)) = tracerDoFuncMethodTokenID;

Listing 4. Code inserting instrumentation IL instructions

The above parameters are dynamically substituted depending on the data
of the current sequence point and a unique function ID (generated by an own
counter). In the intra-function sequence points only the data of sequence points
is substituted and the thread ID is queried at each step, the function ID and
other information are irrelevant here. The substituted binary data is parsed
and converted to IL instructions and inserted into the beginning of the IL code
container of every sequence point.

Recalculating offsets and lengths. Since the IL instruction flow is altered
by inserting extra instructions, the target offsets of branch instructions and the
start offset and length properties of exception handling clauses have to be recal-
culated. The target offset of a branch instruction can point to the first instruction
of a sequence point and can point to other than the first instruction. If the origi-
nal branch target offset pointed to the first instruction of a sequence point, then
we change the target offset to the newly created first instruction in order to run
instrumentation after jumps also. If the original branch target pointed to other
than the first instruction, then we leave it to target to the same instruction as
before.

Any IL instruction in our representation can calculate its length, so we can
easily recalculate the new offsets of IL instructions and sequence points for the
branch targets also.

The offset and length properties of exception handling clauses can be calcu-
lated similarly.

Listing 5 shows the altered IL instruction sequence that performs runtime
trace generation presented in Listing 3.

The original IL code of the method shown in Listing 3 started with a nop
instruction. Now this instruction is preceded with some constant loading and
method call instructions. The constants store the source code level starting and
ending column and line numbers of the entry point of the method and indicate
method enter explained in 3.3.3. From index 32 to 52, from index 71 to 91, etc.

Towards detailed trace generation using the Profiler in the .NET Framework 31

0: 1dc.i4 25 59: clt 112: 1ldc.i4 47

5: 1dc.i4 1 61: 1ldc.i4 O 117: call 167772194
10: 1ldc.id4 25 62: ceq 122: 1dstr879048193
15: 1ldc.i4 2 64: stloc 1 127: call 167772181
20: 1dc.i4 3 65: 1ldloc 1 132: nop

25: 1ldc.i4 1 66: brtrue 165(94) 133: 1ldc.i4 29

26: call 167772195 71: 1ldc.id 27 138: 1ldc.id 7

31: nop 76: ldc.id 3 143: 1ldc.i4 29

32: 1ldc.id 26 81: 1ldc.id 27 148: 1ldc.i4 19

37: 1ldc.id4 3 86: ldc.id 4 153: call 167772194
42: ldc.id 26 91: call 167772194 1568: 1ldc.i4 1

47: ldc.i4 23 96: nop 159: stloc O

52: call 167772194 97: 1ldc.id 28 160: br 197 (32)
57: ldarg O 102: 1dc.i4 7 165: 1ldc.i4 31

58: ldarg 1 107: 1ldc.id4 28 170: 1ldc.i4 3

Listing 5. IL code with instrumentation calls Added

intra-function sequence point tracing instructions can be seen. The instructions
from index 197 to 223 will trace the fact that the method is being left.

Storing the instrumented method. Now we have the instrumented method
represented using our data structures. The challenge here is to convert the data
and IL code back to binary format following the specification. The binary data
can be restored to the CLR by using the method described in Section 3.3.

4. Variable level runtime trace generation

Our aim is to develop a method that generates trace for every variable usage
and definition and can be integrated into our current framework. Consider the
five steps of IL code rewriting introduced in Section 3.3. The trace generation for
variables has to be done between the 3rd and 4th step just before recalculating
branch instructions relative targets.

In this section we categorize variables and variable types using different as-
pects, show some enumeration methods that enumerate and put the variables
into these categories and show the setup and structure of the instrumentation
code generating the trace.

32 K. Pécza, M. Biczé and Z. Porkolab

4.1. Variable categories

Variables can be distinguished based on the following properties:

1. Place of the definition of a variable;
2. Value or Reference variable type;

3. System class of a variable type.

A variable can be defined as a local variable, can be a parameter of a method
and can be a class member field.

The .NET CLR specification divides the variable types into two categories:
value and reference types. Value types are stored on the stack, cannot have
null value, the Garbage Collector (GC) does not take care of them and the
assignment operator creates a copy of the variable. Reference types are stored
on the heap, can have null values, memory deallocation is done by the GC and
the assignment operator does not copy the variable content but only the memory
reference. (There is another subcategory called nullable which are value types
that can have null values.)

Through the system class of a variable type we mean how deep a variable is
integrated in the CLR, i.e. what is its representation method in the metadata.
The elementary types like int, string, boolean, object, etc. are represented in the
metadata as a simple byte, while complex types, like classes and structure are
represented by their metadata token.

4.2. Enumerating variables and variable types

When calling a trace generation method we need to pass the variable being
inspected as a parameter to the trace generation method which accepts the pa-
rameter as an object type which is the base of all types in .NET. In case of
reference type variables the parameter passing is easy because the reference type
variables are automatically cast to an object. In case of value type variables an
explicit boxing is needed which requires us to call the box instruction with the
variable type token parameter. For consistency the type token of reference types
are also enumerated.

The enumeration of variables and their variable types is a two phase process.
The first phase is performed when an assembly module is loaded. In this phase
the defined and referenced types and type members (class and structure fields) are
enumerated. The second phase is performed when a method to be instrumented
is encountered and local and parameter variables and their variable types are
enumerated.

Towards detailed trace generation using the Profiler in the .NET Framework 33

As mentioned earlier the element types are stored in the metadata as a simple
byte, but they are also referenced from the mscorlib system assembly and they
also have an assembly-dependent type token which can be extracted from the
metadata.

The COM interfaces for metadata manipulation do not provide any API for
low level type information inspection (class members, local variable definitions
and parameter definitions). What can be obtained using a built-in API is binary
data called signature blob which has to be parsed using a custom low-level parser.

Visiting David Broman’s CLR Profiling API Blog we can find an implemen-
tation of a signature blob parser which could be integrated into our framework
with some modifications [4].

Now we have all resources to enumerate the variables and variable types. At
module load time (in the ModuleLoadFinished profiler event) the element types
are enumerated and their metadata tokens are identified. The next step is that
all referenced and defined complex types and their members are enumerated.
Now the signature blobs of members and metadata tokens are identified (using
the signature blob parser).

4.3. Inserting variable usage instrumentation code

We have 6 different instrumentation method instances which are also static
members of the same instrumentation class introduced in Section 3.1. The meth-
ods are implemented for the following 6 purposes: local variable usage, local
variable definition, parameter variable usage, parameter variable definition, field
variable usage, field variable definition. We do not have to create more methods
based on other category types, because these methods can accept the variable
as an object type parameter. This parameter can be used to query all necessary
type information including whether the variable is a value type or a reference
type, moreover elementary and also complex types can be passed. The value of
the variable can also be queried.

To determine the exact place where an instrumentation method call has to
be inserted, we have to inspect the IL code and find all instructions which load a
variable (variable usage) on the stack or stores the topmost item on the stack to
a variable (variable definition). These instructions in our current implementation
are: 1dloc and 1dloc.s for local variable usage, stloc and stloc.s for local
variable definition, 1darg and 1darg.s for parameter variable usage, starg and
starg.s for parameter variable definition, 1dfld for field variable usage, and stfld for
field variable definition. The instrumentation method call has to be inserted after
every variable usage instruction and before every variable definition instruction.

Because the instrumentation method call consumes an instance of the variable
just loaded or intended to store on stack, the topmost stack element has to be

34 K. Pocza, M. Bicz6 and Z. Porkolab

duplicated using the dup IL instruction. Value types have to be boxed and
some additional information about the variable has to be also passed to the
instrumentation method like parameter and local variable index or field variable
metadata token.

The following code (Listing 6) illustrates the instructions performing the setup
of a instrumentation method call specialized for local value type variable usage
trace generation:

BYTE insertTracelLocalUseValuelnst[16];

insertTracelocalUseValueInst [0] = 0x25; //dup

insertTraceLocalUseValueInst[1] = 0x8c; //box

insertTracelocalUseValuelnst[6] = 0x20; //ldc.i4d

insertTracelocalUseValuelnst[11] = 0x28; // call

* ((DWORD *) (insertTracelLocalUseValuelnst+12)) =
tracerDolLocalVarUseMethodTokenID;

Listing 6. Local variable usage trace insert

The above parameters are dynamically substituted. At byte index 2 the box
instruction gets the metadata token of the value type variable and at byte index
7 the 1dc.i4 instruction gets the local variable index. The setup code for local
reference type variable usage is almost the same but there is no need of the box
instruction. The other setup codes are almost the same; therefore they are not
presented in detail in this paper.

The instrumentation method contains the code presented in Listing 7.

This method is prepared for multithreaded operations, because there is a lock
statement and a unique thread identifier is sent to the output in every step.
We distinguish not null and null variables. If the variable is not null, then it
is decided whether we deal with a value or a reference type variable. In case
of value types we log some identification information (like local variable index),
the variable type, the output of the ToString method and the managed thread
identifier, while in case of reference types we log the hash code in addition to the
same properties as logged for value types. The GetHashCode function of many
.NET types are overridden so we query the hash code of the variable as it would
be an object using the System.Runtime.CompilerServices.RuntimeHelpers
class. If the variable is null then we only log some identification information and
the managed thread identifier.

Towards detailed trace generation using the Profiler in the .NET Framework 35

public static void DoLocalVarUse(object var, uint index)
{
try
{
lock (lockObj)
{
if(var != null)
{
Type t = var.GetType();
if (t.IsValueType)
sw.WriteLine ("{3}LUV{0}:{1}:{2}", index, t,
var.ToString(), Thread.CurrentThread.ManagedThreadId);
else
sw.WriteLine("{4}LU{2}R{0}:{1}:{3}", index, t,
System.Runtime.CompilerServices.
RuntimeHelpers.GetHashCode(var),
var.ToString(),
Thread.CurrentThread.ManagedThreadId);
}
else
{
sw.WriteLine ("{1}LU{O}NULL", index,
Thread.CurrentThread.ManagedThreadId);

Listing 7. Local variable use trace method

36 K. Pocza, M. Bicz6 and Z. Porkolab

5. The results

We demonstrate the performance of our method that generates sequence point
and variable level runtime trace through four applications. The first two use only
few class library calls, so they are intended to measure the pure performance. The
third application uses much more but very short class library calls, while the last
one uses many and long class library calls.

The characters of the four applications are as follows:

1. Counter is a simple application that calculates the sum of numbers from 1
to 10000 and prints a dot at each step on the screen by implementing the
addition in a separate function and uses only few class library calls, but a
lot of integer operations which are implemented by native IL instructions.

2. ITextSharp is an open source PDF library. In our test we created a basic
PDF document. It uses very few class library calls and a lot of string
operations which are implemented by native IL instructions.

3. DiskReporter recursively walks the directory tree from a previously specified
path and creates an XML report. In our test 3245 directories and 12849
files were enumerated. It uses more, but short library calls (xml node and
attribute operations, file property query).

4. Mohican is a small HT'TP server using multiple threads for serving requests.
In our test Mohican served a 1.3MB HTML document referencing 20 dif-
ferent pictures. It uses many and long class library calls (mainly network
and file access).

Application name | Normal run | Profiler trace | No. of trace items |

Counter 00:00.17 00:22.11 1700 014
ITextSharp 00:01.02 43:24.97 5 364 020
DiskReporter 00:02.56 00:14.60 850 345
Mohican 00:00.52 00:04.63 97 353

Table 2. Test results

Table 2 shows the performance comparison of the normal application run and
the Profiler in mm:ss.ii format. The last column contains the number of lines in
the generated trace.

It can be seen that applications containing few class library calls perform

poor under the control of the Profiler (like ITextSharp which employs many
short string operations), while applications containing many class library calls

Towards detailed trace generation using the Profiler in the .NET Framework 37

(DiskReporter) perform better. Applications containing long class library calls
(Mohican in the measurement and any real world enterprise application) perform
well under the control of the Profiler.

A fragment of the runtime trace generated by our Framework while running
Mohican can be seen in Listing 8.

3FU11429296R67108918:System.String:
3PU9040679R1:System.String:HTTP/1.1 200 OK
3FD19473824R67108918:System.String:HTTP/1.1 200 0K
3T133:4-133:48
3FU19473824R67108918:System.String:HTTP/1.1 200 0K
3LDV1:System.Boolean:True

3T136:4-136:16

3LDVO:System.Boolean:True

3T69L137:3-137:4

: 3LUVO:System.Boolean:True

: 3T45:5-45:63

12: 3T78E425:3-425:4

13: 3T426:4-426:30

14: 3LD62619566R0:System.String:text/plain

15: 3T429:4-429:5

16: 3T430:5-430:41

17: 3PU61646925R1:System.String:C:\Source\Mohican\wwwroot/index.html
18: 3LDV1:System.Int32:37

19: 3T432:5-432:50

20: 3PU61646925R1:System.String:C:\Source\Mohican\wwwroot/index.html
21: 3LUV1:System.Int32:37

W00 ~NO O WN -

=
= O

Listing 8. Generated trace

To make the snippet from the generated runtime trace clearer we explain the
first, the second and the fourth lines. The first number always indicates the
thread number on the instruction was executed (in our case thread number 3).
FU indicates class member field usage. Number 11429296 is the hash code of the
variable. R indicates that it is a reference type variable while number 67108918
is the IL level token value of the variable. The type of the variable is string.
In the second line PU indicates a parameter usage that has hash code value
9040679, moreover the trace shows that we are using the first parameter that is
reference type string variable. The value of the variable is HTTP/1.1 200 OK.
Line 4 indicates that the execution reached a new expression that resides on line
number 738 from column number 4 to column number 48.

38 K. Pocza, M. Bicz6 and Z. Porkolab

6. Conclusion and further work

In this paper we have shown how to utilize the .NET Profiler to generate
runtime execution trace of large applications. We can conclude that the Profiler
is suitable for tracing real-world, multithreaded applications. Therefore, we plan
to advance on this tracing method. The first and most important thing to do with
variables is to extend our framework to better identify method parameters passed
as output and reference, identify memory allocations and array item accesses.

There are some language elements and CLR features which we currently do
not support like exceptions, nested classes, C# anonymous methods, generic
types, generic methods and application domains.

In some cases the current implementation suffers from performance issues,
therefore it is important to optimize the trace generation mechanism [2].

References

[1] Agrawal H. and Horgan J. R., Dynamic program slicing, Proceedings of
the ACM SIGPLAN ’90 Conference on Programming Language Design and
Implementation, White Plains, NY, 1990, 246-256.

[2] Arnold M. and Ryder B. G., A framework for reducing the cost of
instrumented code, Proceedings of the ACM SIGPLAN’01 Conference on
Programming Language Design and Implementation, ACM Press, 2001, 168-
179.

[3] Beszédes A., Gergely T., Szabé Zs. M., Csirik J. and Gyiméthy
T., Dynamic slicing method for maintenance of large C programs, CSMR,
2001, 105-113.

[4] David Broman’s CLR Profiling API Blog, Info about the common
language runtime’s profiling API,
http://blogs.msdn.com/davbr/archive/2005/10/13/480864.aspx

[5] ECMA C# and common language infrastructure standards,
http://msdn.microsoft.com/netframework/ecma/

[6] Maruyama K., Terada M., Timestamp based execution control for C

and Java programs (Automated debugging), Proceedings of the Fifth Inter-
national Workshop of Automated Debugging, AADEBUG, 2003, 87-102.

Towards detailed trace generation using the Profiler in the .NET Framework 39

[7] Mikunov A., Rewrite MSIL Code on the Fly with the .NET Framework
Profiling API. MSDN magazine, 2003,
http://msdn.microsoft.com/en-us/magazine/cc188743.aspx

[8] Pécza K., Biczé6 M. and Porkolab Z., Cross-language program slicing in
the .NET Framework, Proceedings of the 8rd .NET Technologies Conference,
2005, 141-150.

[9] Pocza K., Biczé6 M. and Porkolab Z., Towards effective runtime trace
generation techniques in the NET framework, Short Communication Papers
Proceedings of the 4th .NET Technologies Conference, 2006, 9-16.

[10] Tip F., A survey of program slicing techniques, Journal of Programming
Languages, 3 (3) (1995), 121-189.

[11] Zhang X., Gupta R. and Zhang Y., Precise dynamic slicing algorithms.
Proceedings of International Conference on Software Engineering, 2003, 319-
329.

[12] Shared Source Common Language Infrastructure 2.0 Release,
http://msdn.microsoft.com/net/sscli/

[13] Mono: project,
http://www.mono-project.com/Main_Page

K. P6cza, M. Biczé and Z. Porkolab

Department of Programming Languages

E6tves Lorand University

Pazmany Péter sétany 1/C

H-1117 Budapest, Hungary

kpocza@kpocza.net, mihaly.biczo@t-online.hu, gsd@elte.hu

