
Annales Univ. Sci. Budapest., Sect. Comp. 30 (2009) 3-19

OBFUSCATING C++ PROGRAMS VIA CONTROL
FLOW FLATTENING

T. László and Á. Kiss

(Szeged, Hungary)

Abstract. Protecting a software from unauthorized access is an ever de-
manding task. Thus, in this paper, we focus on the protection of source
code by means of obfuscation and discuss the adaptation of a control flow
transformation technique called control flow flattening to the C++ lan-
guage. In addition to the problems of adaptation and the solutions pro-
posed for them, a formal algorithm of the technique is given as well. A
prototype implementation of the algorithm presents that the complexity of
a program can show an increase as high as 5-fold due to the obfuscation.

1. Introduction

Protecting a software from unauthorized access is an ever demanding task.
Unfortunately, it is impossible to guarantee complete safety, since with enough
time given, there is no unbreakable code. Thus, the goal is usually to make the
job of the attacker as difficult as possible.

Systems can be protected at several levels, e.g., hardware, operating system
or source code. In this paper, we focus on the protection of source code by means
of obfuscation. Several code obfuscation techniques exist. Their common feature
is that they change programs to make their comprehension difficult, while keep-
ing their original behaviour. The simplest technique is layout transformation [1],
which scrambles identifiers in the code, removes comments and debug informa-
tion. Another technique is data obfuscation [2], which changes data structures,



4 T. László and Á. Kiss

e.g., by changing variable visibilities or by reordering and restructuring arrays.
The third group is composed of control flow transformation algorithms, where
the goal is to hide the control flow of a program from analyzers. These algorithms
change the predicates of control structures to an equivalent, but more complex
code, insert irrelevant statements, or “flatten” the control flow [3, 4].

Although nowadays several large software systems are written in C++, both
open source and commercial obfuscator tools are mostly targeted for Java [5, 6].
Only a few tools are specialized for the C++ language [7, 8], and they only use
trivial layout transformations. Since the importance of protecting C++ programs
is not negligible, we have set out the goal to develop non-trivial obfuscation
techniques for C++.

In this paper, we discuss the adaptation of a control flow transformation
technique called control flow flattening to the C++ language. Although the
general idea has been defined informally in [3], no paper has been published on
the adaptation of the technique to a given programming language. The main
contributions of this paper are the following:

• we have identified the problems of adapting the technique to C++ and we
give solutions to them,

• we give the complete formal algorithm of the technique, and
• using a prototype implementation, we show the effect of the algorithm on

test programs.

The remaining part of the paper is structured as follows. In Section 2 we
give a detailed description of the problems that occured during the adaptation
of the technique to C++ and we offer solutions to them. Moreover, we also give
the complete formal algorithm of the proposed technique. Next, in Section 3,
we present our experimental results. In Section 4 we present an overview of the
related works, and finally, in Section 5 we summarize our results and conclude
the paper.

2. Flattening the control flow of C++ programs

In the case of most real life programs, branches and their targets are eas-
ily identifiable due to high level programming language constructs and coding
guidelines. In such cases, the complexity of determining the control flow of a
function is linear with respect to the number of its basic blocks [9]. The idea
behind control flow flattening is to transform the structure of the source code in
such a way that the targets of branches cannot be easily determined by static
analysis, thus hindering the comprehension of the program.



Obfuscating C++ programs via control flow flattening 5

The basic method for flattening a function is the following. First, we break
up the body of the function to basic blocks, and then we put all these blocks,
which were originally at different nesting levels, next to each other. The now
equal-leveled basic blocks are encapsulated in a selective structure (a switch
statement in the C++ language) with each block in a separate case, and the
selection is encapsulated in turn in a loop. Finally, the correct flow of control is
ensured by a control variable representing the state of the program, which is set
at the end of each basic block and is used in the predicates of the enclosing loop
and selection. An example of this method is given in Figure 1. The control flow
graphs of the original and the obfuscated code show the change in the structure
of the program, i.e., all the original blocks are at the same level, thus concealing
the loop structure of the original program.

2.1. Difficulties in C++

According to the above description, the task of flattening a function seems
to be quite simple. However, if it comes to the application of the idea to a
real programming language, then we come across some problems. Below we will
discuss the difficulties we faced during the adaptation of control flow flattening
to the C++ language.

As the example in Figure 1 already presented, breaking loops to basic blocks
is not equal to simply splitting the head of the loop from its body. Retaining the
same language construct, i.e., while, do or for, in the flattened code would lead
to incorrect results, since a single loop head with its body detached definitely
cannot reproduce the original behaviour. Thus, for loops, the head of these
structures has to be replaced with an if statement where the predicate is retained
from the original contruct and the branches ensure the correct flow of control by
assigning appropriate values to the control variable.

Another compound statement that is not trivial to handle is the switch
construct. The cause of the problem in this case is the relaxed specification of
the switch statement, which only requires that the controlled statement of the
switch is a syntactically valid (compound) statement, within which case labels
can appear prefixing any sub-statement. An interesting example which exploits
this lazy specification is Duff’s device [10], where loop unrolling is implemented
by interlacing the structures of a switch and a loop. A slightly modified version
of the device and its possible flattened version are given in Figure 2.

When it comes to loops and switch statements, we cannot omit to discuss
unstructured control transfers either. If left unchanged in the flattened code,
break and continue statements could cause problems, since instead of terminat-
ing or restarting the loop or switch they were intended to do, they would restart
the control loop of the flattened code. To avoid this, such instructions have to



6 T. László and Á. Kiss

int swVar = 1;
while (swVar != 0) {

switch (swVar) {
case 1: {

i = 1; i = 1;
s = 0; s = 0;

swVar = 2;
break;

}
case 2: {

while (i <= 100) { if (i <= 100)
swVar = 3;

else
swVar = 0;

break;
}
case 3: {

s += i; s += i;
i++; i++;

swVar = 2;
break;

} }
}

}

(a) (b)

Start

?
i = 1;

s = 0;

?
while (i <= 100)

?

¾

s += i;

i++;

-

Stop

Start

?
int swVar = 1;

?
while (swVar != 0)

?

¾

switch (swVar)

?? ?
case 1: {

i = 1;

s = 0;

swVar = 2;

break;

}

-

case 2: {
if (i <= 100)

swVar = 3;

else
swVar = 0;

break;

}
?

case 3: {
s += i;

i++;

swVar = 2;

break;

}

¾

-

Stop

(c) (d)

Figure 1. The effect of control flow flattening on the source code (a: original,
b: flattened) and on the control flow graph (c: original, d: flattened).



Obfuscating C++ programs via control flow flattening 7

int swVar = 1;
while (swVar != 0) {

switch (swVar) {
case 1: {

switch (cnt % 4) { switch (cnt % 4) {
case 0: do { *to++ = *from++; case 0: goto L1;
case 3: *to++ = *from++; case 3: goto L2;
case 2: *to++ = *from++; case 2: goto L3;
case 1: *to++ = *from++; case 1: goto L4;

} while ((cnt -= 4) > 0); }
} swVar = 0;

break;
}
case 2: {

L1: *to++ = *from++;
L2: *to++ = *from++;
L3: *to++ = *from++;
L4: *to++ = *from++;

swVar = 3;
break;

}
case 3: {

if ((cnt -= 4) > 0)
swVar = 2;

else
swVar = 0;

break;
}

}
}

(a) (b)

Figure 2. Duff’s device (a: original code, b: flattened version)

be replaced in the flattened program by assignments to the control variable in a
way that the correct order of execution is ensured. Figure 3 gives an example of
this replacement.

Compared to C, C++ introduced an additional control structure, the try-
catch construct for exception handling. By simply applying the basic idea of
control flow flattening to a try block, i.e., determining the basic blocks and
placing them in the cases of the controlling switch would violate the logic of
exception handling. In such a case, the instructions that would be moved out
of the body of the try would not be protected anymore by the exception han-
dling mechanism, and thrown exceptions could not be caught by the originally
intended handlers. To keep the original behaviour of the program in the flattened
version, try blocks have to be flattened independently from the other parts of
the program resulting in a new while-switch control structure, which remains
under the control of the try construct. Thus, the flattening of try constructs
produces multiple levels of flattened blocks. This causes problems again when an
unstructured control transfer has to jump across different levels.

Figure 4 shows an example of the multiple levels of flattened blocks yielded



8 T. László and Á. Kiss

int swVar = 1;
while (swVar != 0) {

switch (swVar) {
case 1: {

while (1) { if (1)
swVar = 2;

else
swVar = 0;

break;
}
case 2: {

break; swVar = 0;
break;

}
} }

}

(a) (b)

Figure 3. Transformation of a loop with unstructured control transfer (a: original
code, b: flattened code).

by the transformation of a try construct, as well as a solution for jumping across
levels when it is required by a break statement. Although using goto statements
is usually discouraged by coding guidelines, there are cases when their use is
justified [11].

2.2. The algorithm of control flow flattening

In the following, we will propose an algorithm for flattening the control flow
of C++ functions, which solves the problems presented in the previous sub-
section. The algorithm expects that the abstract syntax tree of the function-to-
be-flattened is available, and after a preprocessing phase, it traverses the tree in
one pass, along which the obfuscated version of the function is generated.

In the formal description of the algorithm, see Figures 5, 6, and 7, the bold
words mark the keywords of the used pseudo-language, the formalized parts are
typeset in roman font, while the parts which are easier to explain in free text are
in italic. The output of the algorithm is a C++ code, for which typewriter font
and double quotes are used. Throughout the algorithm, two symbols are used
additionally: ⊕ denotes string concatenation, while ⇒ outputs the result of the
algorithm, e.g., to the console or to a file.

The algorithm starts at the control flow flattening procedure, see Figure 5,
which first performs a preprocessing on the function. In this step, all the variable
declarations that are not at the beginning of the function, i.e., the ones that
are preceeded by other statements, are eliminated to avoid visibility problems,
that would result from the change in the scope of such declarations. So, the



Obfuscating C++ programs via control flow flattening 9

int swVar1 = 1;
L: while (swVar1 != 0) {

switch (swVar1) {
case 1: {

while (1) { if (1)
swVar1 = 2;

else
swVar1 = 0;

break;
}
case 2: {

try { try {
int swVar2 = 1;
while (swVar2 != 0) {

switch (swVar2) {
case 1: {

buf = new char[512]; buf = new char[512];
break; swVar1 = 0;

goto L;
}

}
}
swVar1 = 1;

} catch (...) { } catch (...) {
swVar1 = 3;

}
break;

}
case 3: {

cerr << "exception" << endl; cerr << "exception" << endl;
swVar1 = 1;
break;

} }
} }

}

(a) (b)

Figure 4. Exception handling with unstructured control transfer (a: original code,
b: flattened code).

declaration of these variables is moved to the beginning of the function, and only
their initialization is left in place, i.e., converted to an assignment. Possible name
collisions are resolved by variable renaming.

Although moving variable declarations to the beginning of the function is an
important topic, its complexity [12] and the limits of the paper make it impos-
sible to give a formal solution for this problem here. Thus, in the following, we
assume that the preprocessing step has already been performed and the variable
declarations are separated from the rest of the function body.

The actual flattening starts at the procedure flatten block, where the construct
controlling the control flow is generated. As Figure 4 presented in the previous
subsection, sometimes it is necessary to jump across different levels of flattened
blocks. To aid this, the controlling loop is annotated with a label, and this label



10 T. László and Á. Kiss

levels : stack of 〈variable, label〉
breaks : stack of 〈level, entry〉
continues : stack of 〈level, entry〉
procedure control flow flattening (block)
begin

separate variable declarations from the rest
of block and output them before all other
statements

flatten block(block)
end

procedure flatten block (block)
begin

while label := unique identifier()
switch variable := unique identifier()
entry := unique number()
exit := unique number()
⇒ "int" ⊕ switch variable ⊕ "=" ⊕ entry ⊕

";"
⇒ while label ⊕ ":"
⇒ "while (" ⊕ switch variable ⊕ " != " ⊕

exit ⊕ ") {"
⇒ " switch (" ⊕ switch variable ⊕ ") {"
push(levels, 〈switch variable, while label〉)
transform block(block, entry, exit)
pop(levels)
⇒ " }"
⇒ "}"

end

procedure transform block (block, entry, exit)
begin

block parts[] := split block to parts so that
each part is either a compound statement
or a sequence of non-compound statements

for each part in block parts do
part exit := part is the last ? exit :

unique number()
case type of part of

block : transform block(part, entry,
part exit)

if : transform if(part, entry, part exit)
switch: transform switch(part, entry,

part exit)
while: transform while(part, entry,

part exit)
do: transform do(part, entry, part exit)
for : transform for(part, entry, part exit)
try: transform try(part, entry, part exit)
sequence: transform sequence(part, entry,

part exit)
endcase
entry := part exit

endfor
end

Figure 5. The algorithm of control flow flattening, part one.

together with the name of the control variable is pushed to a stack (levels) every
time a new level is created.

The procedure transform block, called from the flatten block, is responsible for
breaking up a block to compound statements and sequences of non-compound
statements, while the other transform procedures do the obfuscation of these
block parts according to their type. The procedure transform if in Figure 6
is a good example of how compound statements are obfuscated: a new case
is generated in the controlling switch for the head of the selection, while the
branches are handled by calling transform block recursively on them. The proce-
dure transform while works quite similarly, except that before recursively calling
transform block, the case labels where the execution shall continue on a break
or continue statement are pushed to two stacks, breaks and continues, respec-
tively. Along with the case labels, the depth of the actual level of flattening, i.e.,
the number of entries in the levels stack, is pushed to both stacks as well. The
same approach is used to transform do and for statements, too. The procedure
transform switch also uses stacking to deal with unstructured control transfer,
however only the breaks stack is used, since continue statements have no effect
on a switch.



Obfuscating C++ programs via control flow flattening 11

procedure transform if (if stmt, entry, exit)
begin

switch variable := top(levels).variable
then entry := unique number()
else entry := if stmt has an else branch ?

unique number() : exit
⇒ "case " ⊕ entry ⊕ ": {"
for each label in labels of if stmt do
⇒ label ⊕ ":"

endfor
⇒ " if (" ⊕ predicate of if stmt ⊕ ")"
⇒ " " ⊕ switch variable ⊕ " = " ⊕

then entry ⊕ ";"
⇒ " else"
⇒ " " ⊕ switch variable ⊕ " = " ⊕

else entry ⊕ ";"
⇒ " break;"
⇒ "}"
transform block(true branch of if stmt,

then entry, exit)
if if stmt has an else branch then

transform block(else branch of if stmt,
else entry, exit)

endif
end

procedure transform while (while stmt, entry,
exit)

begin
switch variable := top(levels).variable
body entry := unique number()
⇒ "case " ⊕ entry ⊕ ": {"
for each label in labels of while stmt do
⇒ label ⊕ ":"

endfor
⇒ " if (" ⊕ predicate of while stmt ⊕ ")"
⇒ " " ⊕ switch variable ⊕ " = " ⊕

body entry ⊕ ";"
⇒ " else"
⇒ " " ⊕ switch variable ⊕ " = " ⊕ exit ⊕

";"
⇒ " break;"
⇒ "}"
push(breaks, 〈size(levels), exit〉)
push(continues, 〈size(levels), entry〉)
transform block(body of while stmt,

body entry, entry)
pop(breaks)
pop(continues)

end

procedure transform switch (switch stmt, entry,
exit)

begin
switch variable := top(levels).variable
⇒ "case " ⊕ entry ⊕ ": {"
for each label in labels of switch stmt do
⇒ label ⊕ ":"

endfor
⇒ " switch (" ⊕ predicate of switch stmt ⊕

") {"
for each case label in cases of switch stmt do

goto label := unique identifier()
⇒ " " ⊕ case label ⊕ ”:”
⇒ " goto " ⊕ goto label ⊕ ";"
add a label named goto label to the

statement referenced by case label
endfor
⇒ " }"
⇒ " " ⊕ switch variable ⊕ " = " ⊕ exit ⊕ ";"
⇒ " break;"
⇒ "}"
push(breaks, 〈size(levels), exit〉)
transform block(body of switch stmt,

unique number(), exit)
pop(breaks)

end

procedure transform do (do stmt, entry, exit)
begin

switch variable := top(levels).variable
test entry := unique number()
body entry := unique number()
⇒ "case " ⊕ test entry ⊕ ": {"
⇒ " if (" ⊕ predicate of do stmt ⊕ ")"
⇒ " " ⊕ switch variable ⊕ " = " ⊕

body entry ⊕ ";"
⇒ " else"
⇒ " " ⊕ switch variable ⊕ " = " ⊕ exit ⊕

";"
⇒ " break;"
⇒ "}"
⇒ "case " ⊕ entry ⊕ ": {"
for each label in labels of do stmt do
⇒ label ⊕ ":"

endfor
⇒ " " ⊕ switch variable ⊕ " = " ⊕

body entry ⊕ ";"
⇒ " break;"
⇒ "}"
push(breaks, 〈size(levels), exit〉)
push(continues, 〈size(levels), test entry〉)
transform block(body of do stmt, body entry,

test entry)
pop(breaks)
pop(continues)

end

Figure 6. The algorithm, part two.



12 T. László and Á. Kiss

procedure transform for (for stmt, entry, exit)
begin

switch variable := top(levels).variable
test entry := unique number()
inc entry := unique number()
body entry := unique number()
⇒ "case " ⊕ entry ⊕ ": {"
for each label in labels of for stmt do
⇒ label ⊕ ":"

endfor
⇒ " " ⊕ initialization part of for stmt
⇒ " " ⊕ switch variable ⊕ " = " ⊕ test entry
⊕ ";"

⇒ " break;"
⇒ "}"
⇒ "case " ⊕ test entry ⊕ ": {"
⇒ " if (" ⊕ predicate of for stmt ⊕ ")"
⇒ " " ⊕ switch variable ⊕ " = " ⊕

body entry ⊕ ";"
⇒ " else"
⇒ " " ⊕ switch variable ⊕ " = " ⊕ exit ⊕

";"
⇒ " break;"
⇒ "}"
⇒ "case " ⊕ inc entry ⊕ ": {"
⇒ " " ⊕ increment part of for stmt
⇒ " " ⊕ switch variable ⊕ " = " ⊕ test entry
⊕ ";"

⇒ " break;"
⇒ "}"
push(breaks, 〈size(levels), exit〉)
push(continues, 〈size(levels), inc entry〉)
transform block(body of for stmt, body entry,

inc entry)
pop(breaks)
pop(continues)

end

procedure transform try (try stmt, entry, exit)
begin

switch variable := top(levels).variable
⇒ "case " ⊕ entry ⊕ ": {"
for each label in labels of try stmt do
⇒ label ⊕ ":"

endfor
⇒ " try {"
flatten block(body of try stmt)
⇒ " }"
for each handler in catch handlers of

try stmt do
⇒ " catch (" ⊕ parameter of handler ⊕

") {"
flatten block(body of handler)
⇒ " }"

endfor
⇒ " " ⊕ switch variable ⊕ " = " ⊕ exit ⊕ ";"
⇒ " break;"
⇒ "}"

end

procedure transform sequence (sequence, entry,
exit)

begin
⇒ "case " ⊕ entry ⊕ ": {"
for each stmt in sequence do

for each label in labels of stmt do
⇒ label ⊕ ":"

endfor
case type of stmt of

continue:
⇒ levels[top(continues).level].variable ⊕

" = " ⊕ top(continues).entry ⊕ ";"
if top(continues).level <> size(levels)

then
⇒ "goto " ⊕

levels[top(continues).level].label ⊕
";"

else
⇒ "break;"

endif
break :
⇒ levels[top(breaks).level].variable ⊕

" = " ⊕ top(breaks).entry ⊕ ";"
if top(breaks).level <> size(levels) then
⇒ "goto " ⊕

levels[top(breaks).level].label ⊕ ";"
else
⇒ "break;"

endif
otherwise:
⇒ stmt

endcase
endfor
⇒ top(levels).variable ⊕ " = " ⊕ exit ⊕ ";"
⇒ "break;"
⇒ "}"

end

Figure 7. The algorithm, part three.



Obfuscating C++ programs via control flow flattening 13

The last type of compound statements to be transformed is try. As discussed
in the previous subsection, this construct requires the use of multiple levels of
flattened blocks. Thus, contrary to the previous procedures, transform try in
Figure 7 calls flatten block recursively instead of transform block.

Finally, the procedure transform sequence is the one that handles simple
statements, and this is where the stacks managed in flatten block (levels) and
in some of the transform procedures (breaks, continues) are utilized. All break
and continue statements are rewritten to an assignment to the control variable,
more precisely, to the appropriate control variable. The levels stack together
with either the breaks or the continues stack determine which variable is to be
used. Additionally, if the stacks indicate that the control has to cross levels of
flattening, a goto instruction is inserted, as presented in the example in Figure 4.

3. Experimental results

We implemented a prototype version of the algorithm discussed in the previ-
ous section using the CAN C++ analyzer of the Columbus framework [13]. To
evaluate the effects, we executed the prototype on a benchmark, which consisted
of 23 functions selected from the Java-is-faster-than-C++ Benchmark [14], the
C version of the LINPACK Benchmark [15] and LDA-C [16].

To measure the effect of control flow flattening on comprehendability, we
computed McCabe’s cyclomatic complexity metric [17] for each function before
and after applying the transformation to them. The results show a significant,
3.95-fold increase in complexity, on average, with a maximum multiplier of 5 and
a minimum of 2, see Tab. 1. As Figure 8 displays, the effect of the algorithm
scales linearly as the original complexity increases.

In addition to the effect on complexity, we measured the effect of control flow
flattening on resource consumption as well. We examined two attributes of the
functions: their size and their runtime. The size of the functions was measured
by counting the number of nodes in the abstract syntax tree (AST), while the
runtime data was computed by compiling the benchmark programs using GCC
for x86 target and extracting information from profiles gathered on a Linux-based
PC running at 3 GHz. The results, listed in Tab. 2, show that on average, both
size and runtime doubled. However, if flattening is not applied to the whole
program but only to some selected functions, as expected from real applications,
the effect on total size and runtime can be much smaller.



14 T. László and Á. Kiss

Table 1. The effect of control flow flattening on complexity

Function Complexity (McCabe)
main (sumcol.cpp) 3 → 15 (5.00×)
mmult (matrix.cpp) 4 → 20 (5.00×)
main (almabench.cpp) 4 → 20 (5.00×)
save lda model (lda-model.c) 3 → 15 (5.00×)
new lda model (lda-model.c) 3 → 15 (5.00×)
log sum (utils.c) 2 → 9 (4.50×)
read data (lda-data.c) 4 → 17 (4.25×)
matgen (linpack.cpp) 7 → 28 (4.00×)
deep (penta.cpp) 5 → 20 (4.00×)
gen random (random.cpp) 1 → 4 (4.00×)
radecdist (almabench.cpp) 2 → 8 (4.00×)
digamma (utils.c) 1 → 4 (4.00×)
argmax (utils.c) 3 → 12 (4.00×)
dgefa (linpack.cpp) 16 → 62 (3.88×)
main (moments.cpp) 5 → 19 (3.80×)
lda mle (lda-model.c) 5 → 19 (3.80×)
main (nestedloop.cpp) 9 → 34 (3.78×)
main (matrix.cpp) 3 → 11 (3.67×)
main (sieve.cpp) 8 → 27 (3.38×)
main (random.cpp) 3 → 9 (3.00×)
anpm (almabench.cpp) 3 → 9 (3.00×)
main (wc.cpp) 9 → 25 (2.78×)
ack (ackermann.cpp) 3 → 6 (2.00×)

0 5 10 15 20

original

0

10

20

30

40

50

60

70

ob
fu

sc
at

ed

Figure 8. Relationship between the complexities of the original and the flattened
code.



Obfuscating C++ programs via control flow flattening 15

Table 2. The effect of control flow flattening on program size and runtime.

Function Size (AST) Runtime (s)
main (sumcol.cpp) 94 → 154 (1.64×) 1.53 → 1.58 (1.03×)
mmult (matrix.cpp) 61 → 162 (2.66×) 50.51 → 111.65 (2.21×)
main (almabench.cpp) 90 → 187 (2.08×) 0.12 → 0.56 (4.67×)
save lda model (lda-model.c) 103 → 181 (1.76×) 0.00 → 0.00 (1.00×)
new lda model (lda-model.c) 77 → 150 (1.95×) 0.01 → 0.01 (1.00×)
log sum (utils.c) 39 → 77 (1.97×) 6.19 → 9.39 (1.52×)
read data (lda-data.c) 198 → 285 (1.44×) 0.01 → 0.02 (2.22×)
matgen (linpack.cpp) 126 → 263 (2.09×) 0.72 → 1.19 (1.65×)
deep (penta.cpp) 79 → 177 (2.24×) 16.58 → 33.33 (2.01×)
gen random (random.cpp) 18 → 30 (1.67×) 29.16 → 33.59 (1.15×)
radecdist (almabench.cpp) 92 → 127 (1.38×) 1.10 → 1.28 (1.16×)
digamma (utils.c) 81 → 92 (1.14×) 53.64 → 52.32 (0.98×)
argmax (utils.c) 34 → 91 (2.68×) 0.05 → 0.29 (5.80×)
dgefa (linpack.cpp) 494 → 810 (1.64×) 0.64 → 0.67 (1.05×)
main (moments.cpp) 105 → 197 (1.88×) 0.59 → 0.59 (1.00×)
lda mle (lda-model.c) 101 → 195 (1.93×) 0.02 → 0.03 (1.50×)
main (nestedloop.cpp) 89 → 268 (3.01×) 96.87 → 377.48 (3.90×)
main (matrix.cpp) 112 → 166 (1.48×) 0.01 → 0.01 (1.00×)
main (sieve.cpp) 93 → 228 (2.45×) 45.39 → 98.20 (2.16×)
main (random.cpp) 56 → 93 (1.66×) 2.70 → 8.29 (3.07×)
anpm (almabench.cpp) 27 → 60 (2.22×) 0.64 → 1.24 (1.94×)
main (wc.cpp) 99 → 224 (2.26×) 39.51 → 43.08 (1.09×)
ack (ackermann.cpp) 24 → 34 (1.42×) 77.52 → 111.43 (1.44×)

4. Related works

The scientific literature on program obfuscation is about ten years old. A sig-
nificant paper is written by Collberg, Thomborson and Low [18], which describes
the importance of obfuscation, and summarizes the most important techniques,
mainly for the Java language. They give a classification of the described tech-
niques and define a formal method to measure their quality. In a later work [19],
they focus on the obfuscation of the control flow of Java systems by inserting
irrelevant, but opaque predicates in the code. In their paper they prove that
this method can give effective protection from automatic deobfuscators, while it
does not increase code size and runtime significantly. In another paper [2], they
describe a way of transforming data structures in Java programs. A summary
of their results is given in [1] by Low, and a Java-targeted implementation is
presented as well.

Similarly to Collberg et al., Sarmenta studies parameterized obfuscators in [20].
The parameters can select the parts of the program where transformation will
be applied, or even the transformations that will be applied. Additionally, the
transformations themselves can have parameters, too. Sarmenta investigates the
combination of encryption and obfuscation as well. E.g., encrypted functions can
be obfuscated or encryption can be performed during obfuscation.



16 T. László and Á. Kiss

In his PhD thesis, Wroblewski discusses low (assembly) level obfuscation tech-
niques [21]. In his work, he analyzes and compares the main algorithms of the
field, and based on the results, he gives the description of a new algorithm.
Zhuang et al. developed a hardware-assisted technique [22], which obfuscates the
control flow information dynamically by on-the-fly changing memory accesses
thus concealing recurrent instruction sequences from being identified. Ge et al.
present another dynamic approach [23] where control flow obfuscation is based
on a two-process model: the control flow information is stripped out of the ob-
fuscated program and a concurrent monitor process is created to contain this in-
formation. During the execution of the program process, it continuously queries
the monitor process thus following the original path of control.

Wang et al. describe an obfuscation technique [3] which combines several al-
gorithms, e.g., data flow transformation and control flow flattening. They show
that the problem of analyzing and reverse engineering the code obfuscated using
their technique is NP-complete. Unfortunately, neither do they give the descrip-
tion of the algorithm for control flow flattening nor discuss how to adapt it to a
specific language. Chow et al. investigate control flow flattening in [4], too, but
they claim that they approach works for programs containing simple variables
and operators and labelled statements only.

Code obfuscation is not only discussed in scientific papers, but is utilized
in several open source and commercial tools. Most of these tools are targeted
for Java, and work on byte code, e.g., Zelix Klassmaster [5], yGuard [6] and
Smokescreen [24]. These tools perform name obfuscation (renaming of classes,
methods and fields), encode string constants, and transform loops using gotos.
The renaming technique is used by the Thicket tool family [8] and COBF [7] as
well. Thicket supports several programming languages, while COBF is the only
C/C++ obfuscator freely available.

The later tool was the only one we could compare to our prototype imple-
mentation. Even though it transforms the names of classes, functions and vari-
ables, and removes spaces and comments from the source thus making the code
unreadable for a human analyzer, this gives no protection against automatic de-
obfuscators. We evaluated COBF on the benchmark functions but, as expected,
we observed no change in the McCabe metric after obfuscation. What is more,
in some cases the renamings that COBF applied caused compile time errors.

5. Summary and future work

We realized the need for the obfuscation of C++ programs, and thus we
adapted a technique called control flow flattening. As the main contribution of



Obfuscating C++ programs via control flow flattening 17

this paper, we identified the problems that occured during the adaptation and
proposed solutions for them. Moreover, we also gave the formal description of an
algorithm that performed control flow flattening based on these solutions. The
algorithm shows how to transform general control structures and how to deal
with unstructured control transfers. Additionally, the technique flattens excep-
tion handling constructs as well. Since the transformed control structures are
quite similar in other widespread languages as well, the algorithm can be used
as a starting point when control flow flattening has to be adapted. Finally, we
implemented a working prototype of the algorithm. The results of its evalua-
tion were presented, which showed that the complexity of programs increased
significantly due to the obfuscation.

During the development of the algorithm and its implementation we identified
several possibilities for future work. First of all, we realized that moving variable
declarations to the beginning of functions is important for the correctness of the
technique. However, the limits of the current paper does not allow to elaborate
on this topic in full detail. Thus, we discuss it only informally, and focus on the
formalization of the transformation of the control flow. Still, in a future work,
we would like to take a closer look at the problem.

In addition to the above, there are other ways, too, to enhance control flow
flattening. A simple but effective approach is to permute the order of the flattened
blocks, thus moving related blocks away from each other. Moreover, using gotos
and labels only instead of the while-switch construct we can further harden
the comprehension of the obfuscated code. Another method is to obfuscate the
values assigned to the control variable, in a way that they are not compile time
constants anymore, or to use alias variables to make static analysis more difficult.
In the future, we plan to extend our current implementation with these features
since, as proven in [3], control flow flattening combined with aliasing can render
the determining of the precise control flow NP-hard. Finally, we also plan to
evaluate the runtime implications of the algorithm in a real case study and look
for enhancements if needed.

References

[1] Low D., Java control flow obfuscation, Master’s thesis, Department of
Computer Science, University of Auckland, 1998.

[2] Collberg C., Thomborson C. and Low D., Breaking abstractions and
unstructuring data structures, Proceedings of the IEEE International Con-
ference on Computer Languages (ICCL’98), Chicago, IL, 1998., 28–38.



18 T. László and Á. Kiss

[3] Wang C., Hill J., Knight J. and Davidson J., Software tamper
resistance: Obstructing static analysis of programs, Technical Report CS-
2000-12, University of Virginia, 2000.

[4] Chow S., Gu Y., Johnson H. and Zakharov V. A., An approach to
the obfuscation of control-flow of sequential computer programs, ISC ’01:
Proceedings of the 4th International Conference on Information Security,
London, UK, Springer Verlag, 2001, 144–155.

[5] Zelix Pty Ltd., Zelix klassmaster,
http://www.zelix.com/klassmaster/index.html.

[6] yWorks GmbH., yGuard,
http://www.yworks.com/en/products yguard about.html.

[7] Baier B., COBF, http://home.arcor.de/bernhard.baier/cobf/.
[8] Semantic Designs, Thicket family of source code obfuscators,

http://www.semdesigns.com/Products/Obfuscators/index.html.
[9] Muchnick S. S., Approaches to control-flow analysis, Advanced Compiler

Design & Implementation, Morgan Kaufmann Publishers, 1997, 172–177.
[10] Stroustrup B., Expressions and statements, The C++ programming lan-

guage., 3rd edn., Addison-Wesley, 1997, 141.
[11] Eckel B., The C in C++. Thinking in C++. 2nd edn., Vol. 1., Prentice

Hall, 2000, 125–126.
[12] ISO/IEC, International Standard – Programming languages – C++, 2nd

edn., 2003, ISO/IEC 14882.
[13] Ferenc R., Beszédes A., Tarkiainen M. and Gyimóthy T., Columbus

– reverse engineering tool and schema for C++, Proceedings of the 18th In-
ternational Conference on Software Maintenance (ICSM 2002), IEEE Com-
puter Society, 2002, 172–181.

[14] Lea K., Java is faster than C++ benchmark
http://www.kano.net/javabench.

[15] Netlib, Linpack benchmark, http://www.netlib.org/benchmark.
[16] Blei D. M., LDA-C, http://www.cs.princeton.edu/∼blei/lda-c/.
[17] McCabe T. J., Watson A. H., Software complexity, Crosstalk, Journal

of Defense Software Engineering, 7 (1994), 5–9.
[18] Collberg C., Thomborson C. and Low D., A taxonomy of obfuscating

transformations, Technical Report 148, Department of Computer Science,
The University of Auckland, 1997.

[19] Collberg C., Thomborson C. and Low D., Manufacturing cheap, re-
silient and stealthy opaque constructs, Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL98),
San Diego, CA, 1998, 184–196.

[20] Sarmenta L. F. G., Protecting programs from hostile environments : en-
crypted computation, obfuscation and other techniques, PhD thesis, MIT,
Department of Electrical Engineering and Computer Science, 1999.



Obfuscating C++ programs via control flow flattening 19

[21] Wroblewski G., General method of program code obfuscation, PhD the-
sis, Institute of Engineering Cybernetics, Wroclaw University of Technology,
2002.

[22] Zhuang X., Zhang T., Lee H. H. S. and Pande S., Hardware assisted
control flow obfuscation for embedded processors. CASES ’04: Proceed-
ings of the 2004 International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, New York, NY, USA, ACM Press, 2004,
292–302.

[23] Ge J., Chaudhuri S. and Tyagi A., Control flow based obfuscation.
DRM ’05: Proceedings of the 5th ACM Workshop on Digital Rights Man-
agement, New York, NY, USA, ACM Press, 2005, 83–92.

[24] Lee Software: Smokescreen,
http://www.leesw.com/smokescreen/obfuscation.html

T. László and Á. Kiss
University of Szeged
Department of Software Engineering
Árpád tér 2.
H-6720 Szeged, Hungary
laszlo.timea@stud.u-szeged.hu, akiss@inf.u-szeged.hu






