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ON INVERSIVE CONGRUENTIAL GENERATOR
FOR PSEUDORANDOM NUMBERS
WITH PRIME POWER MODULUS

S. Varbanets (Odessa, Ukraine)

Dedicated to the 70th birthday of Professor Imre Kdtai

Abstract. Generalization of the inversive congruential generator of
pseudorandom numbers on the prime module is considered and the trigono-
metrical sums on sequence of pseudorandom numbers are estimated.

1. Introduction

A pseudorandom number generator is an important brick of a stochastic
imitation, e.g. the computation of an integral by the Monte-Carlo method or
the construction of the cryptographic keys.

A classical standard method of generating uniform pseudorandom numbers
in the interval [0, 1) is the linear congruential method, which is given as follows:

For a large modulus M, let Zj,; be the group of residue classes modulus
M. A sequence {y,} of integers in Z,, is generated by the linear recursion:

(1) Ynt+1 = ayp + b (mod M), n=0,1,...,

where a,b € Zj,;. The pseudorandom numbers are obtained by the normaliza-
tion

Yn
2 L
(2) T =g

This linear congruential generator is widely used, and has been investigated
by several authors ([1], [13]). However, there is some drawback owing to the



278 S. Varbanets

linearity of the recursion (see [1]). This state affairs provided the motivation for
several recent proposals of nonlinear congruential methods in order to overcome
the deficiencies of the linear congruential method (see [2], [6], [7], [8], [15]).

A particularly promising nonlinear method is the inversive congruential
method where nonlinearity is achieved by employing the operation of multi-
plicative inversion with respect to a given modulus.

Three types of inversive congruential generators can be distinguished,
depending on whether the modulus is a prime (see [2], [3], [4]), an odd prime
power (see [9], [11]), or a power of two (see [7], [15], [17]).

In the works of Chou ([4], [5]), Eichenauer and Lehn ([2]), Flahive and
Niederreiter ([6]), Niederreiter ([3]) has been studied the problem of when the
sequence of pseudorandom numbers (generated by the pseudorandom gener-
ator) has the maximal period. Niederreiter and Shparlinski ([11]) considered
the special exponential sums on inversive congruential pseudorandom numbers
with prime power modulus and obtained nontrivial results concerning the
distribution these numbers in part of the period. For surveys of results and
applications of inversive congruential numbers see [12]-[14].

In the present paper a new inversive congruential method with prime power
modulus is introduced and investigated.

Let p > 3 be prime and m > 2 an integer, and let R,, (accordingly, R})
denote the group of residue classes (accordingly, the group of reduced residue
classes) modulo p™. For a € R%,, b,c € Ry, b = ¢ = 0(mod p), we consider

the maps ¥, r=0,1,2,..., R}, — R,, of the form
(3) U, (w) = %(w) +b+cw, Vo(w)=w

(here and in the following, it will be convenient to write ¥ for the expression
wv~! in a multiplicative abelian group R,).

The condition b = ¢ = 0 (mod p) guarantees that (¥,.(w),p) =1 if (a,p) =
= (wap) =1

The recursion (3) generalizes the inversive congruential generator with
prime power modulus (see [9], [11], [17]). But now for ¢ # 0 (mod p™) we

obtain that ¥ 1 (w) # ¥y (Vg (w)) as in [11]. Therefore the method of proof

of estimate of the discrepancy for the sequence ;’]g} is different.

Fr -1 1 —

Notations. We denote epm(z) = €™#7; w~! means that ww™' =
= 1 (mod p™) for (w,p) = 1; v,(n) means p*»™||n.
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2. Preliminaries

For k € Z, k > 0, we consider a map Uy, given by (3).

Lemma 1. For any integer k, k > 0, we have

AP + AP w4 AR Wi

(4) Tp(w) =
B + B w4 ... 4+ BP ok

moreover,

(4

(10

(59.) 1, 49 = 59 =t

1=1,2,....k+1, 7=0,2,3,...,k, if k is odd integer;

(5)

(B( ),p) A( ) = B(k) = 0(mod p),

1=0,2,3,....k+1, j=1,2,... )k, if k is even integer.

Furthermore, for k=0,1,2,...
(6)
AL (a4 2) A 1 b,
AFTD = opeal®) 4 (a +12) AW + acB(F) + abB),

i=2,3,.. k:+1

AFED = 2peAl) |+ 2AY)

k+2 k41>
A5 o]
B — aBg’“) + bAg’“),
B = aBW 454 1A, j=1,2,. ks
B,g’ff) bA(’“>1+ A(")
B = Al

AW =M~ i>2

B§2>_c, A;=B;=0,i>3,j>2.

AT — QA(’C +2bcA®), + (a+62) AW + acB( ) |+ abB*

A9 0, B =1, 49 =1, BO —0, A® = BO, ;> 1,

AL —a, BY =0, AD —p, BO 1, AP — ¢, B — 0

A(Q) ab, A(Z) (a + ac+ b?), Aéz) = 2bc, Agf) =c? B[()Q) =a, B§2) =,
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Proof. The formula (4) and the relations (6) can be shown by induction
on k from (3). And then (5) follows from (6).

Lemma 2. Let A(k), Bfk) be those as in Lemma 1 and let bc =
0 (mod p™), vp(b) < vp(c). Then we have

AéQk) + A(12k)w

Wop(w) = ,
- Bé%) +B§2k)w+B§2k)w2
. ) Cé2k+1) n C§2k+1)w n C§2k+1)w2
2k+1 = )
+ D(()2k+1) +D£2k+1)w
where

A(()%) kb—i—A( k) A(?k) ko kA(zk

B(()%) +B k)bz B(%) kak— 1b+B(2k B B(Qk — ka*le;
(8) C(2k+1) Ak o C 2k+1) C£2k+1) = (k+ 1)akb+€§2k+l)b3,
O(2k+1) —(k + Da*e;
D(()2k+1) zkakb+ﬁ62k+1)b3, D§2k+1) —ak s kakc+ﬁ(12k+1)b2,

Proof. We denote
(a+b* ab (0 ac
(9) A_< X > B_<C 0).

Since be = 0 (mod p™) and v,(b) < v,(c), we have ¢* = 0 (mod p™). Thus by
Lemma 1 we infer after short computations

(2k+2) (0)
(10) A(2k+2) Ak-‘rl A(()O) :Ak-‘rl 0 :
B! B! 1
(11) <A§2k+2)> . <A§2k)) B (A(2lc 2))
2k+2 - 2k 2k—2
Bk JRER BE—2)

(2) (1) 2
= Ak <A%2)) +kaklc(A(()1)> = AF <a+ac+b ) +kaklc(a> .
B B, b 0
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From (9) we can produce

o _ 1 0 _ alb b — 1 m
A—u(E—!—Al),E—(O 1>’A1_<a1 O),al_ba (mod p™),

(12) AF = g¥ <E+kA1+~~+<J\Ii[>A{M> (mod p™),

AJ =0 (mod ptU—D),

where 1 = v, (b), M = {%}
Now from (3), (10)-(12) the assertion of Lemma 2 easily follows.

Remark. In general case, let bc = 0(mod p™), b*"tc # 0(mod p™),
> 2 v,(b) = p < vp(c). Then we obtain similarly

AT 4 AP w4 AR

Wop(w) =
BP 4+ B w 1. BER W
A(2k+2)> 4@ A(Zz 2) 42i=4)
Ak—i—l—z( Z-)-i—B +C 1—2 a<i</t
(2k+2) (24) k 27, 2 k 2i—4) | Y=t =%
<B B} B B2y Y
where the matrices By, Cy satisfy By = C (mod p*).
Lemma 3. For every k = 1,2,..., the map Vp(w) is a permutation of
R,

Proof. For ¢ = 0 (mod p™) the assertion of lemma is clear. Let v,(c) < m.
From b = ¢ = 0(mod p) it follows (P (w),p) = 1 for every w € R,. Further,
let £k = 1. From the congruence

aw b4 cw; = awy b+ cwp  (mod p™)

it follows that awfl = aw;l and, hence, w1 = wy (mod p). Set wy = wy + pds.
Then wy ' = wi ' (1—pdrw; ) (mod p?) (here wi 'w; = 1 (mod p™)). Therefore

awyt + b+ cwy = a(wyt = pow;?) + b+ c(wr +pd1)  (mod p?) =

:>p51wf2 = 0 (mod p2) = 01 = pdy = wo = wy + p?dy =

= wy ' =wi !t = pPhw?  (mod p?).
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Now from the congruence
1 _ —1 2 -2 2 3
aw; " + b+ cwy = a(w; —p“awy 7)) + b+ clwr +p“d2) (mod p°)

we obtain wy = w; + p3d3 similarly. Through m steps we obtain w, =
= wy (mod p™), i.e. for k=1 the assertion of lemma proved.

Suppose that for £ — 1 we have
Vi—1(w1) = ¥p—1(w2) (mod p™) & w1 =wy (mod p™).

Consider the congruence

a

— 4 btow =
U1 (wr) !

a
—— 4+ b+ cw mod p™).
U1 (w2) 2 )

If w; = wy (mod pm_”P(c)) then we have
Pi-1(wi) = ¥e-1(w2) (mod p™) = w1 =wy (mod p™).

Suppose that w; # wy (mod p™~*»(%)). But we have from

a a
+b4+aw=————+b+cw mod p*r(9)) =
Up_1(wr) ! U1 (ws) 2 P
a a
= mod p7(9) = w; = wy (mod p*r(?9) =
Upq(wi)  Wroi(we) ( P ! 2 ( P
a
+btcew = ———+b+cwy (mod p?r9) =
Up_1(wr) ! Up_1(ws) 2 ( P )

= w; =wy (mod p?»()),

Through [VL(C)} steps we obtain the contradiction with supposition wi #
# wy (mod p™~¥»(9)). The proof of Lemma 3 is complete.

Lemma 4. Let Au + pBu? + p*(du® + - ) be a polynomial with integer
coefficients, (B,p) = 1. Then

0 if (A,p) =1,

Z epm (Au+ pBu? + p*(du® + -+ )| < it
u€ERm pz Zf (A7p) =D

Proof. This assertion can be obtained by a substitution

uzv—!—p[%]z, u:O,l,...,pm_[%] -1,
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and by the estimation of the Gaussian sum.

Lemma 5. Let f(w) = Bw+ Cw? 4+ p(Dw? + - -+) be polynomial over Z,
and let (C,p) = 1. Then for any A € Z we have

T=|> em(Awt fw )| <4p?

weR},

Proof. We put w™! =u+p™ 1z, w=u"t—p™tu=22 (mod p™), w2 =
=42 4 2p™ 'uz. Hence, we infer

Aw+ flw™h) =

= (Au™ '+ Bu+Cu? +p(Dud+-- ) +p™ Y (—u"2A+ B +2Cu)z (mod p™).

Therefore by Lemma 4

T= Z epm (Au™t + Bu + Cu® + p(Du® + ...))-

uERY
. Z ep((—Au™2 + B +20u)2)| <
z€ERy
<p Z epm (Aug ™t + Bug + Cud + p(Du® + - - ) x
ug€ERY

—1 —
Aug "t —Bug —2cug =0(mod p)

XY epmea(Arw+ Agv® 4 p(Age® + 1)) < 4pF,

VER—2

-1
(here, A = 210 PXZOW ¢ 7 Ay = O, Aj €L, j=3,4,...).

Consider the sequence w,,, n = 0,1, 2, ..., defined by the recurrence relation
a *
(13) Wy, = +b+ cw, wo=w € R},
Wn—1

ie. w, =¥, (w).
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From Lemmas 1 and 3 it follows that this sequence is purely periodic
with least period length 7 < p™~!(p — 1), 7 is even integer. In the case
¢ =0(mod p™) W.-S. Chou [5] investigated dependence T on a,b,w. Below we
shall study 7 as function of a, b, c and w.

For positive integer h we put

(14) Trp(hp™) = ok = Y epm(A(Tp(w) — Wy(w))).

*
™m

Lemma 6. Let k,/ are non-negative integers of different parity and let
heZ, (h,p™) =p°, § <m. Then we have

(15) o] < 2p™F°

Proof. Without loss of generality we can account that (h,p™) = 1 and
k =2ky, £ =201 + 1. From Lemma 1 we easy infer

v (w) B klaklb—i— (akl —&—p“Al)w +pM(A1w2 +pA3w3 4. )
s (a*r + prBy) + (ka¥1b + pt Bs)w + pt(Bow? + - - +)

)

(16) Vo, 41(w) =

= [(@" P 4-Cop*) + (L1 4+1) albcr p T O (41) al e p e T O Oy ) 4. - ]
[(ra’ b + Dob®) + (a'* 4 p™in @r(@2e ) D Yoy 4 preFV() (Do 4. )7L,
where 1 = min (v, (b), vp(c)).

We multiply the numerator and denominator of Way, (w) on (a** +p*By)~*
(mod p™), and similarly multiply numerator and denominator of ¥oy, 11 (w) on
((a®r + p™in p().25 (1)) ) =1 (mod p™). Since

A+plAw+--)) "t =1—plAw +--) + p*(Aw +-- )% 4+ -+ (mod p™),

(1+pBw ™t +pBw+--)7 1=
=1-pBu'+Bw+--)+p*Bw ' +Bw+--)2+--- (mod p™)
we obtain, after short computations

(17) Wy, (w) — Wop, 41 (w) = By + BEyw + E_jw ™ + p"G(w,w™ ") (mod p™),

where Fy = 1 (mod p*), E_1 = a (mod p*), G(z,y) is a polynomial on x, y.
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We denote E(w) = Way, (w) — Uop, 11 (w). Put w =u+pm 1z, ue R;,_,
z=0,1,...,p— 1. Then

w=u +ipm T 2, wl = u T — p™ T 2 (mod p™).
Hence, we have after simple computations
p—1
Oko = Z Z epm (Biu+ E_ju™" + p*(Bhu? + B ju™ + -+ )+
u€Ry, 4 2=0
(18) +p" By — E_ju?)z) =
=p Z epm (Bru+ E_ju™ + pH(Eju® + E yu™2 4 --2)).

ueRm n

uQEE1 E_ 41 (mod p)

Let w1, us be two solutions of the congruence
u?=FE_ By (mod p™7Y), i=1,2.
Put v =u; + pv, v € R,,,_2. Then we obtain

F )+ (0)

(19) Ths _pz Z 27'r1h7m £ 7

i=1 VERy_2
where

By — E_qu;?

O _
! p

+2(=Eru; + E_qu;®)  (mod p™?),

F{7(v) = Byv® + p(Esv® + ), By = E_; (mod p), (Ea,p) = 1.
By virtue of Lemma 4 the inner sum on v in equation (19) estimates as me_2
Hence, |0y 0| < 2p%.

Corollary. The least period of the sequence ¥i(w) cannot be an odd
integer.

Lemma 7. Let k,¢ be non-negative integers of identical parity, h € Z,
vp(h,p™) =0, vp(k —b) = k and let be = 0 (mod p™), 1 < vp(b) < vp(c) < m.
Then

pm if m—90—rk—pu<o,
oo (h)] < {

m+S+rtp

2p~ =z if m—0—k—pu>0,
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where v, (b) = p.

Proof. First we suppose that b*> = 0 (mod p™). Since b and ¢ satisfy the
condition bc = 0 (mod p™), we have by Lemma 1 for k =2,3,...

ka*b 4 (a* + ka*c)w

(20) s a::; ka*=1bw + kak—lcw?’
Uopt1(w) = a* '+ (k+1)a*b+ (k + l)akcw2.
ka*b + (a* + kakc)w
Hence,
1) Wak(w) — War(w) = 2 +Fff£fiw;;u2EMB7
where
Ey = (k — £)a"b,
Ey = (k- 0)a" e,
(22) By = (k — 0)ak+1p,

Es = —(k — 0"t 1¢,
FO = ak"'g, F1 = (k’ +€)ak+€_1b, F2 = (k —i—f)ak"'z_lc.

Similarly, we infer

E)+ E'w+ E\w? 4+ Eiw?
93 " v _ o 1 2 3
(23) 2k+1(w) 21(w) F} + Flw + Fjw? ’

where

E) = (k—0)a**1b, B = —(k — £)a" T ¢,
(24) EY = (k= 0)a***b, B = (k — £)a** e,

F,=0, F| = (k+0)a"*%, F) = a*** (1 + (k + 0)c).
Now, by analogy with proof of Lemma 6, we have modulo p™

Uop(w) — Wop(w) = (K — £)(b+ cw + a 1bw? — a=tew?),

(25) Uopy1(w) = Voppa(w) =
=k —-0OwW21—(k+£0)c)(atb—a tew + bw? + cw?)-
(1= (k+0bw™t)) =
=k —-0O(cw+b—atew ™t +athw2).
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In general case b = ¢ = 0 (mod p), bc = 0 (mod p™), b*> # 0 (mod p™), we have
for k=2,3,...

(26)

Vo (w) = (ka*b + Apa®v?®) + (a* + ka*c + Bra*~1b?)w

2k = (ak 4+ Crab=1b2) + (ka*=1b + Dya*—10%)w + ka*—1cw?’

s (o) = (aF 1 + Crakv?) + ((k + 1)akb + Dy 107 16%)w + (k + 1)a* cw?

k1) = (kakb + Apakb3) + (aF + kakc + Bra*—1b?)w ’
where

k(k+1)(k+2 k(k+1
= MEEVEED) oy pepay, =MD ),
k— 1k k(k%2 -1

(27) Cr = % —|—p2“FC(/€), Dy = % +p2”FD(k)7

Fa(k), Fp(k), Fo(k), Fp(k) € Z[k].

Thus, as in (25) we derive

Uok (W) = Uor(w) = (k = O)[fo + fiw + fow® + f30° + p?w'Go(w)] (mod p™),

(28) Vokt1(w) = Vo (w) =

=k —0Oeiw+eo+ew e w2+ p?w 3G (wh)] (mod p™),

where
fO = ba fl =g, f2 = ailba f3 = 7ailc (HlOd pQH)v

1

e1=c¢, e0=b, ey =—a"'c, e.a=a"'b (mod p**),

Go(w), Gi(w) € Z|w].
Denote vp(c) =v, mo=m—pu—0—K,cg=cp ¥, bp=bp™", h+0 = hp=°.

If u < v then from (25) or (28), by using Lemmas 4 and 5 obtain for k, ¢ even
numbers we obtain

|loke(h)| < pPtrte Z epmo (ho(cop” Hw + a” 'bow? + pGo(w)))| <
weRy
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m+dtrtp
2

ifd+rk+p<m,
(29)

IN

pm ifd+k+pu>m,
and if k, ¢ are odd numbers, then

lok,e(R)] <

< potrth Z epmo (ho(cop” Hw —a™legp” ™" + a tbow ™% + pG(w™)))| <
weR},

mo

m+d+rtp
2

2p ifd+r+pu<m,

(30) <
p™ ifd+k+pu>m.

Applying Lemmas 4 and 5 we obtain the assertion of lemma.

Remark. The estimate of |0y, ¢| remains correct in a general case b = ¢ =
= 0 (mod p), b # 0(mod p™). In this case the representations for ¥y (w)
become cumbersome.

Lemma 8. Let b = ¢ = 0(mod p), bc = 0(mod p™) and let T be a
least period length of the sequence ¥i(w), k = 0,1,2,..., modulo p™. Then
T = 2p™H0 where po = min (u, v), if ab+ acw + bw? — cw? # 0 (mod ptotl).

Proof. If ab + acw + bw? — cw® = 0(mod pHo*!) then the sequence
{¢r(w)} has the maximal period length among all inversive congruential
pseudorandom generators (3) with modulus p™. Moreover, 7 = 2p™~#0 where

fio = min (p1, v).
This assertion follows from (22)-(28) and the condition

wop —wor =0 (mod p™).
Here we take into account that
By, — By, DpBy — Dy¢By, A — Ag, ArCp— AyCy, LCy — kCy, Cp —Cy

divide on k& — £. Since a least period length 7 is even integer, we have 7 =
2p™m ko where po = min (v,(b), vp(c)).
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3. The estimates for exponential sums

Let h, N be integers, (h,p™) = p°, 0 < § < m, and let 7 be a least period
length of the sequence Ui (w), k =0,1,2,... (see (3)). We denote

N-1
(31) Sy (h,w) := Z epm (h¥g(w)) (weRy).
k=0

We shall construct the estimates for Sy (h,w). From (4), after short computa-
tions, we obtain

Vo (w) =w + (b(1 — a™'w) + cw + b2g; (w))k +
+ (a7 2w?b? + bt ga(w)k? + b (gaw)k® + - -+) (mod p™),
(32) Vo1 (w) =(aw™ ' + b4 cw + b fo(w,w™)) +
+ [ ((w — a)b — awe + b* f1 (w))] k +
+ (072w + 0 fo(w))k® + 62 (fa(w)k® + - ) (mod p™),

where g;(w), fo(w,w™), fj(w) are polynomials over Z. Wy (w) and Woy41(w),
as polynomials on k, have the coefficients at k? dividing on p?* exactly, where
= vp(b).

Theorem 1. Let N =7, a = ,((a —w)b+ac), (a,p) =1, b =c
= 0(mod p™). Then the following estimate

(33)
0 ifa<2u, m—90—pu>a,
T—1 2p"H ifm—p—a<0
1Sz (h,w)] = | epm (hU4(w))| < orm—3—p>0
k=0 and o > 2, m—0 —2u <0,
m+3 .
p 2 ifa>2u, m—90—2u>0
holds.

Proof. First let 2u > m. Then from (32) we have

\Ifgk(w) = Ao(
Wory1(w) = Bo(

EE
+ +
Ty
EE
> =

where
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Ap(w) =b(1 —a W) + cw = pH[bo(1 — a™ w) + epFw] = pl‘Ago) (w),
Bo(w) = aw™ + b+ cw, B1(w) = w™?((w — a)b — awc) = p“Bgo) (w).

Since 7 = 2p™~#, we obtain

m—p__q (0) m—p_q )
? oi Aolw)h o P omi Bo()h gy BL ()0
|5+ (h,w)] < Z: € e e e e N =
k=0 k=0

2pmHE it > m — p,
(34) =<0 ifd <m—p, vp((w—a)by —awep™) <m —p—94,
M S <m—p, vp((w—a)bp —awep™) >m —p—4.
Now let 2p4 < m. The relation (32) gives

o (w) = Ag(w) + p" Ay (w)k + p* Ag(w)k? + p** Fy (),
Wopy1(w) = Bo(w) + p" By (w)k + p* Ba(w)k? + p* Fy(k),

Aj(w) = bo(1—a'w) +pHw (mod p*),
Bi(w) = w™2((w — a)bo — acp™w) (mod p),
Ay =By = a2W?b3p*  (mod p**),
Fy(k), Fi(k) € Z[k].
So that we have

pmil epms (A1 (@) + Aa(@)k + p* Fo(k) ) ho)
k=0

pmifl e ((Br(@)k + Ba(@)k? + p™ Fi (k) ho)
k=0

|7 (h,w)| <p’ +

(36)

+p°

)

where m; =m — p — 0.
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The last sums in (36) we can estimate by Lemma 4. Consequently,
(37)

2pmF ifa>2u, m—0—-2u<0ora<2u,a>m-—pu—>J4,

|S-(h,w) << 0 ifa<2u,a<m-—p—20,
2me+5 if a >2u, m—90—2u >0,

where a = vp((a — w)b + ac).

Moreover, it is obvious that for m —p—§ < 0 we have |S; (h,w)| = 2p™ *.
This completes the proof Theorem 1.

Theorem 2. Let a, b, ¢, a and pu be those in Theorem 1. Then for N,
1< N <7, we have

N always,

(38) |Sn(h,w)| <

op Tt (% n lpﬁ) ifm—8—2u>0.

Proof. We shall estimate Sy (h,w) using an estimate of uncomplete sums
through an estimate of complete sum. We have

N-1, 7—17—
S (h,w)| TZZep (hWk(w)) - er(x(k = 0))| <
£=0 =0 2=0
39 < N = hU ! o Z(h\Ilk(w) )
39 < 2T i)+ Y s Z <
k=0 x=1
—1 1 7—1
N 1 omi i)
< . S‘f‘ h7 pm—H
- 7" ( w)|+zmln(x,7—x) Z c
z=1 Jj=0 k=0
where
(k) =AVk+ AV + AV + ... j=0,1;

A(10) = h(bo(1 — a™'w) + cp *w) — K (mod p**?),
A = hw 2 (bo(w — @) — acwp™) — & (mod p*+?),
Agj) = —a_Qb(Q)p‘LH, Agj) =0 (mod p**°), i=3,4,... .

(40)



292 S. Varbanets

From (40) and Lemma 4 we conclude that the sums

it N 1)
ST (j=0,1)
k=0

allow nontrivial estimate only in the case

(41) hw™2(bo(w — a) — acwp™) =k (mod p***?9).

It is possible only if

(42) k=0 (mod p°).

Therefore, from (39)-(41), Lemma 5 and Theorem 1 we derive for m < ¢ + p
(13) S ()| = N

and for m >0+ p

1 m+4d+p

2
1 L |

M vz

(44) 1S (hyw)] < g\ST(hM) 4

x

The proof of Theorem 2 is complete.

Theorem 3. For almost all w € R}, and every N, 1 < N < 7, we

have
—5—p

Sn(h,w) < 3Np~ "4

Proof. Consider the sum

(45 — o & S,

wER*

m

By the Cauchy-Schwarz inequality we obtain

(46)
— 1 N i PO (@) Wy ()
ISn|= < S Z 1Sn (h,w)[? Z Z m =
wERS, (=0wERS,

1 m N—1
< |ok,e(h)].

¢(pm); st

k=¢ (mod p?)
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Hence, by Lemma 6 we have

(47)
g 2 < 1 m2_1 77L+(5;»;L+n 1 i m 1 <
1 DOt SERTS SICHD YRR
p k=0 k,£<N K=my k.t
k=0 (mod p~) k=¢ (mod p~)

N2 m+étpu—r i _ N2 m+o+p
> T | S am (0 ).

(™) \ S )

From this we obtain for any N <7
m—8—u

|Sy| < 2N (pimifw +p7mi§w) <3Np 1

(48)

This implies immediately Theorem 3.

4. The discrepancy bound

In this section we study the pseudorandom numbers x,,, which are obtained
by the normalization
W,
n=01,...,

where a sequence w,, of integers in R}, is generated by the nonlinear recursion
Wnt1 = aw, ' +b+cwy, wo=w € RS, n=01,2...,
=0 (mod p™).

(a,p) =1, b=c=0 (mod p), bc

For a sequence of N points (1 < N < 1),

Zo;L1y--+ 3 TN-1

we denote by Dy (w) its discrepancy which is defined by

.,ZN—1, which hit the

where An(A) is the number of elements of xg,x1,
interval A, |A| is the length of A, and the supremum is extended over
subintervals A C I, I = [0,1). The discrepancy can be considered as
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a characterization of uniform distribution of the pseudorandomness of the
sequence wp,wi,...,wy—1. We shall say that Dy(w) is the discrepancy of
inversive congruential pseudorandom numbers with modulus p™

Theorem 4. Let p > 3 be a prime number and m > 2 an integer, and let
a,b,c€Z, (a,p) =1, b=c=0(mod p), bc =0 (mod p™), 1 < v,(b) < 1,(c) <
< m. The following estimate

18
(49) Dy (w )<—p N~ log p™ + 5p~ (M2 Jog p™

holds for any w € R}, and m > 2u.

Proof. For any integer H > 1 the Erdés-Turdn inequality ([18], p.214)
gives

(50) Dn(w) <

H
2
NZ( H+1)|SN(h,w) for we R,

where Sy (h,w) is defined in (31).
If m — 2p > 0, we obtain, by Theorem 2, for H <7

h=1
m—2p—1 H m—1 H
mts (N logT 1 1
< E 2p2 (+5> E E+N E E Eg
=0 T p h=1 d=m—2u h=1
(h,p™)=p% POk

-1
(51) <2p% (1 — ) ( + logT) log H + 2Np ™1 1og H <
T

m 2 pt .
< 8p2 log”7T+2N— logT;
7'

H
m N
S < (8p%1 i) H.
(52) |Sn(h,w)| < <8p ogT—&—QTp) H

We put H = 7. So that we have for m — 2u > 0

DN(UJ) <
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<

(53)

18

m 18 m
ZpT N og? 7+ 5ptr togT < —pT N~ 'log? p™ + 5p~ ("2 Jog p™.
7r T

For ¢ = 0 this result is better than the estimate of Dy (w) in [11].

Theorem 5. For almost all w € R}, and every N < T we have

Dy(w) < 19N~ % log 7.

Proof. In (50) set H = p% and apply Theorem 3. Then we easily infer

N9

AL 1
Onl) = H+1+62p “ 3 (gt )7 <

h=1

< 19p~ T logp™ " < 19N~ i log 7.
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