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REGULAR INTEGERS MODULO n

L. T6th (Pécs, Hungary)

Dedicated to Professor Imre Kdtai on his 70th birthday

Abstract. Let n = p]*---p{” > 1 be an integer. An integer a is called
regular (mod n) if there is an integer « such that a’z = a (mod n). Let
o(n) denote the number of regular integers a (mod n) such that 1 < a <n.
Here o(n) = (¢(p7!) +1) - (¢(py") + 1), where ¢(n) is the Euler function.
In this paper we first summarize some basic properties of regular integers
(mod n). Then in order to compare the rates of growth of the functions
o(n) and ¢(n) we investigate the average orders and the extremal orders
of the functions o(n)/¢(n), #(n)/e(n) and 1/o(n).

Mathematics Subject Classification: 11A25, 11N37

1. Introduction

Let » > 1 be an integer. Consider the integers a for which there exists an
integer = such that a?z = a (mod n). In the background of this property is
that an element a of a ring R is said to be regular (following J. von Neumann)
if there is an z € R such that a = aza. In case of the ring Z,, this is exactly
the condition above.

Properties of these integers were investigated by J. Morgado [7], [$], who
called them regular (mod n). In a recent paper O. Alkam and E.A. Osba [1]
using ring theoretic considerations rediscovered some of the statements proved
elementarily by J. Morgado. It was observed in [7], [8] that a > 1 is regular
(mod n) if and only if the gcd (a,n) is a unitary divisor of n. We recall that d
is said to be a unitary divisor of n if d | n and ged (d, n/d) = 1, notation d || n.
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These integers occur in the literature also in an other context. It is said that
an integer a possesses a weak order (mod n) if there exists an integer k > 1
such that a**! = a (mod n). Then the weak order of a is the smallest k with
this property, see [4], [2]. It turns out that a is regular (mod n) if and only if
a possesses a weak order (mod n).

Let Reg, = {a : 1 < a < n, a is regular (mod n)} and let o(n) = # Reg,
denote the number of regular integers a (mod n) such that 1 < a < n. This
function is multiplicative and o(p”) = ¢(p”)+1 = p¥ —p”~! + 1 for every prime
power p¥ (v > 1), where ¢ is the Euler function. Consequently, o(n) = Z #(d)

dl|n
for every n > 1, also ¢(n) < g(n) < n for every n > 1, and o(n) = n if and
only if n is squarefree, see [7], [4], [1].

Let us compare the functions g(n) and ¢(n). The first few values of p(n)
and ¢(n) are given by the next tables (o(n) is sequence A055653 in Sloane’s
On-Line Encyclopedia of Integer Sequences [1t}]). Note that o(n) is even iff
n =2 (mod 4), and v/n < g(n) < n for every n > 1, see [1].
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Figure 1 is a plot of the function ¢(n) for 1 < n < 10000.
For the Euler ¢-function

Jim — Z $(n) = = ~0.3039.

n<lzx

The average order of the function o(n) was considered in [4], [2]. One has

Jim m— > on) = —A ~ 0.4407,
n<lz

where
1 1 1
4= H( e =<(2)1:,I<1"F ~pe ) oS

is the so called quadratic class-number constant. For its numerical evaluation
see [9].
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More exactly,
1
> on) = §Az2 + R(z),
n<z
where R(z) = O(xlog® z), given in [{] using elementary arguments. This was
improved into R(z) = O(zlog®z) in [12], and into R(z) = O(zlogz) in [3),
using analytic methods. Also, R(z) = Q4 (z+/loglog ), see [3].

In this paper we first summarize some basic properties of regular integers
(mod n). We give also their direct proofs, because the proofs of [7], [&] are
lengthy and those of [1] are ring theoretical.

Then in order to compare the rates of growth of the functions o(n) and
¢(n) we investigate the average orders and the extremal orders of the functions

o(n)/d(n), (n)/o(n) and 1/o(n). The study of the minimal order of g(n) was
initiated in [1].

2. Characterization of regular integers (mod n)

The integer a = 0 and those coprime to n are regular (mod n) for each
n > 1. If a = b (mod n), then a and b are regular (mod n) simultaneously. If
a and b are regular (mod n), then ab is also regular (mod n).

In what follows let n > 1 be of the canonical form n = p{* ---p¥ .
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Theorem 1. For an integer a > 1 the following assertions are equivalent:

i) a is regular (mod n),

i) for every i € {1,...,1} either p;{a or p}* | a,

i) (a,n) = (a?,n),

w) (a,n) || n,

v) a®™* = a (mod n),

vi) there ezists an integer k > 1 such that a**! = a (mod n).

Proof. i) = ii). If a?z = a (mod n) for an integer z, then a(az — 1) = 0
(mod py*) for every i. We have two cases: p; { a and p; | a. In the second case,
since (a,az — 1) = 1, we obtain that a = 0 (mod p;*).

ii) = i). If p* | a, then a’z = a (mod p}*) for any z. If p; { a, then the
linear congruence az = 1 (mod p;*) has solutions in z and obtain also a?z = a
(mod p;*).

i) < iii). Follows at once by the property of the ged.

ii) « iv) Follows at once by the definition of the unitary divisors (the unitary
divisors of a prime power p” are 1 and p¥).

i) = v) ([1]) If p* | a, then a?™+! = o (mod p¥*). If p; { a, then using
Euler’s theorem, a®™+1 = q(a®®:"))¢(n)/¢®") = g (mod p?*). Therefore
a®™+1 = g (mod pY*) for every i and a®™+! = a (mod n).

v) = i) ([1]) If a®™+! = ¢ (mod n), then a?a?™~! = a (mod 7), hence
a’z = a (mod n) is verified for z = a®(™~! (which is the von Neumann inverse
of ain Z,).

v) = vi) Immediate by taking k = ¢(n).

vi) = i) If a**! = a (mod n) for an integer k > 1, then a%z = a (mod n)
holds for = a*~!, finishing the proof.

2

Note that the proof of i) < v) given in [¥] uses Dirichlet’s theorem on
arithmetic progressions, which is unnecessary.

Theorem 2. The function o(n) is multiplicative and o(p*) =p” —p*~ ! +1
for every prime power p* (v >1). For everyn > 1,

oln) = 3" ¢(d).

d||n

Proof. By Theorem 1, a is regular (mod n) iff for every ¢ € {1, ...,r} either
pitaorp|a.

Let a € Reg,,. If p; { a for every i, then (a,n) = 1, the number of these
integers a is ¢(n). Suppose that p;* | a for exactly one value i and that for all
J #1, (pj,a) = 1. Then a = bp;*, where 1 < b < n/p}* and (b,n/p}*) = 1.
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&

The number of such integers a is ¢(n/p;*). Now suppose that p}* | a, p;"' | a,
i < j, and for all k # 4,k # j, (pi,a) = (pj,a) = 1. Thena = cp"‘p;‘, where
1<c< n/(p;“p;"') and (c,n/(p}" pj’)) = 1. The number of such integers a is
o(n/(p;*p;’)), etc. We obtain

o) =d(n)+ D dn/pf)+ Y /D) + ot B/ (B ).

1<ilr 1<i<j<r
Let y; = ¢(p*), 1 <i<r,and y = ¢ -- - y,. Then ¢(n) =y and

o(n) —y+z Z _y‘+...+ y =

1<'L<1 1<i<j<r YilYj Y1 Yr
=W+ (yr+1)= (o) + 1) ((pf) + 1).

The given representation of o(n) now follows at once taking into account
that the unitary convolution preserves the multiplicativity of functions, see for
example [3].

Another method, see [7]: Group the integers a € {1,2,...,n} according to
the value (a,n). Here (a,n) = d if and only if (j,n/d) = 1, where a = jd,
1 < j < n/d, hence the number of integers a with (a,n) = d is ¢(n/d).
According to Theorem 1, a is regular (mod n) if and only if d = (a,n) || n, and

obtain that
o(n) = ¢(n/d) =Y $(d).

dl|n di|n

Now the multiplicativity of g(n) is a direct consequence of this representa-
tion.

Let S(n) denote the sum of regular integers a € Reg,,. We give a simple
formula for S(n), not considered in the cited papers, which is analogous to

Y a=ngm)/2  (n>1).

1<a<n,(a,n)=1

Theorem 3. For everyn > 1,

Sy = M4 D).

Proof. Similar to the counting procedure above or by grouping the integers
a € {1,2,...,n} according to the value (a,n):

n/d

Sty= 3 a=d 3 e=>d ) =

€ERegyp
a€Reg,, di|n “a’n;i d||n (J,ﬂ/d)::l
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n+y d"¢("/d Z é(n/d) = M)’“_l)‘
dj|n d||n
d<n d<n

3. Average orders

Theorem 4. For the quotient o(n)/d(n) we have

Z = Bz + O(log2 x),

n<z

where B = 1%/6 ~ 1.6449.

Proof. By Theorem 2, o(p¥)/$(p") = 1+ 1/¢(p¥) for every prime power p”
(v > 1). Hence, taking into account the multiplicativity, for every n > 1,

Q(n)
d(n =250 ¢(d)

df|n

Using this representation (given also in [1]) we obtain

g(n)
Z Z ¢(d) Z ¢(d) 21

'n<x e<z/d
(d (e,d)=1

B 1 (¢(d)z w(d) 2¢(d)
;¢(d)( +0(2 )) Ty % +O<d5ac¢(d) ,

d<:1:

where w(d) denotes, as usual, the number of distinct prime factors of d. Fur-
thermore, let 7(n) and o(n) denote the number and the sum of divisors of n,
respectively. Using that ¢(n)a(n) > n?, we have 2¢(9)/¢(d) < 7(d)o(d)/d>.

Here Y 7(d)o(d) < z%logz, according to a result of Ramanujan, and obtain
d<z

by partial summation that the error term is O(log? z).
Figure 2 is a plot of the error termn Y o(n)/¢(n) — Bz for 1 < z < 1000.
n<z
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Figure_2

Consider now the quotient f(n) = ¢(n)/o(n), where f(n) < 1. According
to a well-known result of H. Delange, f(n) has a mean value given by

-3 (- () )

v=1

Here C' = 0.6875, which can be obtained using that for every k > 1,
k

1 1 1 1
C= 1—=){1+({1-= + ,
1}( p) ( ( p)zp”—p"—lﬂ p’%,,)

v=1
where p — 1 < r, < p for each prime p.
We prove an asymptotic formula.

Theorem 5.

> %% = Cz + O((logz)*/*(log log )*/*).

n<z
Proof. For f(n) = ¢(n)/o(n) let
7y = 3 M (nja),

dn
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that is, in terms of the Dirichlet convolution, f = ¢/E xv, f = p/E x I * v,
v = f*I/Exp, where p(n) is the Mobius function, E(n) =n, I(n) =1 (n > 1).

The function v(n) is multiplicative, for every prime power p* (v > 1),

o) = 16 = (1= 5) (F60 7 + S 4t 1)+ ).

and v(p) = 0, |v(p?)| < 1/p for every prime p. Also,

N p"——pu_l _ 1_1/p —
flp )—p,,_pu—1+1 T 1-(Q/p-1/p¥)

1 11 1 1)\
=(1-=){1+{=-=)+(=-5) +.] =
p p P p p
1 11 11 1
=<1_‘)(1+_+_2+"'+—u“7+0<u+1)>’
p p P PP P

and obtain that for every fixed v > 3,

pL/
consequently,
1 1 1 1 1 v—1 1
Yy =1-— — (1= {1+ — - —
v(p”) =1 py+0(pu+1> (1 p)( +p+ +pu_1 o +O<pu)>
v—1 1
* v(p”) = +O<—;).
(%) (®") P p

It follows that there exists zo such that for every prime p > z¢ and for every
v >3,

(%) ()l < =7

Now we show that

Zv(n) = O(log z), Z %n) =0 (bﬂ) .

n<z n>z z

We deduce the first estimate, the second one will follow by partial summa-
tion. Let My ={n: p|n = p<zo}, Mo={n: pln = p3|n,p> 0},
Mz={n:p|n = p?|n,p>tn,p>z0}. If v(n) #0, then n can be written
uniquely as n = njyngong, where n; € Mj, no € My, ng € M3z. We have the
following estimates.
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If n3 € M3, then ng = m*? with |u(m)| = 1. Using |v(p?)| < 1/p we have
|v(n3)| < 1/m, and

— AN
L v(ng) < Z MT)I < logz.
A

By (**), for z sufficiently large,

Z v(ng) < H (1+ [w@®)] + Y] +...) <

ny<z p>Tn
ng€M;
1 2
< ] (1+ =73 9/5 o ) < II (1 + =% 75 ) < oo
p>z0 p>xo0

Using (*) we also have

S o) [T (142 1069+ )+ ) <o

ni1<z P<zo
ni1€M;,

Hence

doem)y = Y )l ()l v(ns)| =

n<x ningan3<T
= > b))l Y |v(ns)] < loga.
ninz <z ny<z/nins
Now applying the following well-known result of Walfisz,
o(n 6
E —(’;l =T+ O((log z)*/3(loglog z)*/?)
n<z

we have

Y=Y Y 4=

n<z d<z e<z/d

= 532 "D 4 0(ogz)/* loglog ) Y o(@) =

d<z d<z
v(d) 5/3 4/3
ﬂ.z Z + O((log z)*"*(loglog z)*/*),

ending the proof of Theorem 5.
Figure 3 is a plot of the error term > ¢(n)/o(n) — Cz for 1 < = < 1000.
n<z
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Figure_3

Theorem 6.

1 log®
L :Dlogz+E+o(M),

n T
where D and E are constants,

_ ¢(2)<B3) -1 & 1
T 1;[<1 PZ—PHZp”(p"—p"-lH))

v=1

Proof. Write
y D)
(25(61) ’

de=n
(d.e)=1

1 —_—
o(n)
where h is multiplicative and for every prime power p¥ (v > 1),

1 1 1
—— =h(@")+ —, hP")=-——F—rr—,
o " ey M e v
therefore h(n) < 1/¢%(n). We need the following known result (cf. for example
[6], p. 43)

Z LI Ka(k) (logz + v + b(k)) + O (Qw(k)k’—gf) :
= é(n) T
(n,k)=1



Regular integers modulo n 273

where « is Euler’s constant,

2B P #(k)
K="¢® ’a(k)_HO P —p+1) k-’

) 1 k)logk
b(k) = Zpofzi —Zpg fiﬂl < ¢(¢)(kc;g , with $(k) =k[] (1 + %) :

plk ptk plk

We have

> o = D Y g =

n<zx d<z e<z/d
(e,d)=1

=K ((log:l: +7) Y _ h(d)a(d) + Y h(d)a(d)(b(d) — log d)) +

d<z d<z

log x w(d)
+o( x > dik(d)[2 ,

d<z

and we obtain the given result with the constants

D=K Z h(n)a(n), E = K'yi h(n)a(n) + K Z h(n)a(n)(b(n) — logn),

n=1 n=1 n=1

these series being convergent taking into account the estimates above. For the
error terms,

Z|h(n la(n) < Z ¢( < Z cr(n) << = Z|h(n)|a n)logn €« —— lo ga:

n>z n>z n>x n>v

3 Ihmatm(n)] <« 3 “IIoBn Lo

T
n>x n>zc

using that 3 73(n) <« zlog” z (Ramanujan), and

n<lz

anh(n)]?‘”(n) < Z << log® z.

n<z n<z
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4. Extremal orders

Since g(n) < nfor every n > 1 and g(p) = p for every prime p, it is immediate
that limsup ¢(n)/n = 1. The minimal order of o(n) is also the same as that of
n—

o0
¢(n), namely,

Theorem 7.
liminf ____g(n) log log n =e .
n—oo n

Proof. We apply the following result ([1i], Corollary 1): If f is a nonneg-
ative real-valued multiplicative arithmetic function such that for each prime
P

i) p(p) := ig%f(p”) <(1-1/p)~!, and

ii) there is an exponent e, = p°1) € NN satisfying f(p°?) > 1+ 1/p,

then f() )
lim sup EEANDR—. 1- =) p(p).
e-5)

n—oo loglogn

Take f(n) = n/o(n), where f(p*) = (1-1/p+1/p")~" < (1-1/p)~" = p(p),
and for e, = 3,
2
3 p -1 1
Sl+ 0 >14-
f(?) +p3—p2-|—l +3
for every prime p.
It is immediate that liminf g(n)/#(n) = 1. The maximal order of g(n)/$(n)
n—00
is given by
Theorem 8. )
i A _
e Sy oglogn ~ ¢
Proof. Now let f(n) = o(n)/#(n) in the result given above. Here
1 1 1\ 7!
YY) = 1 + — S 1 + — = 1-- = )
1) =14 o <1 = (1-1) =00
and for e, =1, f(p) > 1+ 1/(p—1) > 1+ 1/p for every prime p.

5. The plots were produced using Maple. The function g(n) was generated
by the following procedure:

rho:= proc(n) local x, i: x:= 1:
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(V]
3
ot

for i from 1 to nops(ifactors(n){ 2 ]) do
p-i:=ifactors(n) [2][i][1]: a_i:=ifactors(mn)[2][i][2];
x := xx(p_ita_i-p_i"“(a_i-1)+1): od: RETURN(x) end;
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