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POISSON DISTRIBUTION
FOR A SUM OF ADDITIVE FUNCTIONS

ON ARITHMETIC PROGRESSIONS

J. S̆iaulys and G. Stepanauskas

(Vilnius, Lithuania)

Dedicated to Professor Imre Kátai on his 70th birthday

Abstract. We consider the limit distribution of values of a sum of

additive arithmetic functions the arguments of which run through different

arithmetic progressions. The case of the Poisson limit law is studied. The

functions considered take at most two values on the set of primes, 0 and 1,

and satisfy some additional conditions. Some examples are given.

1. Introduction

A function f defined on positive integers is called additive, if

f(n) =
∑

pk||n
f(pk),

and strongly additive, if
f(n) =

∑

p|n
f(p).

Throughout the paper p, p1, . . . denote primes, m,n, l, k are positive integers.
The additive function depending on real parameter x is denoted by fx.
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In the article [4] the authors considered the weak convergence of the
distributions

νx (n : n ≤ x, fx(n) + gx(n + 1) < u) :=
1
[x]

∑
n≤x

fx(n)+gx(n+1)<u

1,

as x → ∞, to the Poisson law. In this paper we continue this topic and
give a generalization of the result from [4]. We consider more common case,
when arguments of the additive functions fx and gx run through two different
arithmetic progressions. The results given are also related to a paper of I. Kátai
[1].

For more detailed introduction and more full list of literature see [4].

2. Main result and examples

Put
Pf

x := (p : p ≤ ax + b, (a, p) = 1, fx(p) = 1),

Pg
x := (p : p ≤ cx + d, (c, p) = 1, gx(p) = 1).

We consider the additive functions fx and gx on two arithmetic progressions
an+ b and cn+d, n ∈ N, the moduli a, c of which are positive integers and the
values b, d are such that an+b and cn+d take only positive integer values for all
n ∈ N. The values a, b, c, d are fixed, do not depend on x, and the requirement

(1) (a, b) = (c, d) = 1

is fulfilled. Let finally fx and gx be a pair of functions which on primes dividing
ad− bc satisfies the condition

(2) min
p|ad−bc

(fx(p), gx(p)) = 0.

Theorem. Let fx and gx, x ≥ 2, be two sets of strongly additive functions
such that fx(p), gx(p) ∈ {0, 1} for all primes p, and the conditions (1), (2) be
satisfied. Let, in addition,

(3) lim
x→∞

1
log x

∑

p∈Pf
x∪Pg

x

log p

p
= 0.
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The distribution functions

(4) νx (n : n ≤ x, fx(an + b) + gx(cn + d) < u)

converge weakly to the Poisson distribution with a parameter λ if and only if

(5) lim
x→∞

max
p∈Pf

x∪Pg
x

1
p

= 0

and

(6) lim
x→∞


 ∑

p∈Pf
x

1
p

+
∑

p∈Pg
x

1
p


 = λ.

Example 1. Let ψf (x) and ψg(x) be two unboundedly increasing
functions such that log ψf (x)/ log x → 0 and log ψg(x)/ log x → 0, as x → ∞.
Let fx, gx be strongly additive and

fx(p) =





1 if ψf (x) < p ≤ ψα
f (x),

0 otherwise,

gx(p) =





1 if ψg(x) < p ≤ ψβ
g (x),

0 otherwise,

with some α, β > 1. Let, finally, a, b, c, d satisfy the conditions

(a, b) = (c, d) = 1, ad− bc 6= 0.

It follows from Theorem that

lim
x→∞

νx(n : n ≤ x, fx(an + b) + gx(cn + d) = k) =
(log αβ)k

αβ k!

for every fixed k = 0, 1, 2, . . . If k = 0 we have

#





n : n ≤ x,

an + b has no prime factors from
the interval (ψf (x), ψα

f (x)] and
cn + d has no prime factors from

the interval (ψg(x), ψβ
g (x)]




∼ x

αβ log x
,

as x →∞.
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Example 2. Let fx, gx be strongly additive and

fx(p) = gx(p) =

{
1 if log x < p ≤ log2 x,

0 otherwise.

Let a, b, c, d satisfy the conditions

(a, b) = (c, d) = 1, ad− bc 6= 0.

Theorem implies that

lim
x→∞

νx (n : n ≤ x, fx(an + b) + gx(cn + d) = k) =
logk 4
4 k!

for every fixed k = 0, 1, 2, . . . In case k = 0, we get

#
{

n : n ≤ x,
an + b and cn + d have no prime factors

from the interval (log x, log2 x]

}
∼ x

4 log x
,

as x →∞. If k = 1 we have

#
{

n : n ≤ x,
exactly one prime from the interval

(log x, log2 x] divides an + b or cn + d

}
∼ x log 4

4 log x
,

as x →∞.

3. Proof of Theorem. Necessity

Suppose that the conditions of Theorem are satisfied. In this part we prove
step by step that the weak convergence of the distribution functions (4) implies
the relations (5) and (6).

I. First we prove that

(7) max


 ∑f

p≤ax+b

1
p
,

∑g

p≤cx+d

1
p


 ¿λ 1.
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Here and further the superscript f or g by the sign of a sum means that
the summation is extended over primes for which fx(p) = 1 or gx(p) = 1,
respectively. It is evident that the last estimate (7) yields

(8)
∑

p∈Pf
x∪Pg

x

1
p
¿λ 1

and

(9) max


 ∑f

p≤w(x)

1
p
,

∑g

p≤w(x)

1
p


 ¿λ 1,

where w(x) = max(ax + b, cx + d).

The weak convergence of the distributions (4) implies that

lim inf
x→∞

νx (n : n ≤ x, fx(an + b) = 0) ≥
≥ lim inf

x→∞
νx (n : n ≤ x, fx(an + b) + gx(cn + d) = 0) =

=e−λ.

According to the Halász inequality (see [2])

∑
n≤x

fx(an+b)=0

1 ≤
∑

n≤ax+b
fx(n)=0

1 ¿ (ax + b)




∑
p≤ax+b
fx(p) 6=0

1
p




− 1
2

.

Hence
lim sup

x→∞

∑f

p≤ax+b

1
p
¿

¿ lim sup
x→∞

(
ax + b

x

)2 1
ν2

x (n : n ≤ x, fx(an + b) = 0)
¿

¿a2e2λ

and ∑f

p≤ax+b

1
p
¿λ 1

for every x ≥ 2. Similarly ∑g

p≤cx+d

1
p
¿λ 1.
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Therefore the estimate (7) holds.

II. For the positive integer l define

ϕl,x =
1
x

∑

n≤x

(fx(an + b) + gx(cn + d))(fx(an + b) + gx(cn + d)− 1) . . .

× (fx(an + b) + gx(cn + d)− l + 1).

It follows from the known combinatorial equalities that

ϕl,x =
l∑

k=0

(
l

k

)
1
x

∑

n≤x

fx(an + b)(fx(an + b)− 1) . . . (fx(an + b)− k + 1)×

× gx(cn + d)(gx(cn + d)− 1) . . . (gx(cn + d)− (l − k) + 1).

The strong additivity of fx and gx implies that

(10)

ϕl,x =
l∑

k=0

(
l

k

) ∑

p1∈Pf
x

. . .
∑

pk∈P
f
x

pk 6=p1,...,pk−1

∑

pk+1∈Pg
x

. . .
∑

pl∈P
g
x

pl 6=pk+1,...,pl−1

× 1
x

∑
n≤x

p1...pk|an+b

pk+1...pl|cn+d

1.

In this part we prove that

(11) sup
x≥2

ϕl,x ¿l,λ 1

for every positive integer l.
If l = 1, then from (10) we have

ϕ1,x =
∑

p∈Pf
x

1
x

∑
n≤x

p|an+b

1 +
∑

p∈Pg
x

1
x

∑
n≤x

p|cn+d

1.

Since

(12)
∑
n≤x

m|an+b

1 =





x
m + O(1) if (a,m) = 1,

0 if (a,m) 6= 1,
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then

(13) ϕ1,x =
∑

p∈Pf
x

1
p

+
∑

p∈Pg
x

1
p

+ O


 1

x

∑

p≤ax+b

1 +
1
x

∑

p≤cx+d

1


 .

Therefore according to the estimate (8), we have

ϕ1,x ¿λ 1.

If l ≥ 2, then

ϕl,x ≤ 1
x

∑

n≤x

(fx(an + b) + gx(cn + d))l ¿l

¿l
1
x

∑

n≤w(x)

(
f l

x(n) + gl
x(n)

) ¿l

¿l
1
x

∑

n≤w(x)

∣∣∣∣∣∣
fx(n)− 1

x

∑

n≤w(x)

fx(n)

∣∣∣∣∣∣

l

+

+
1
x

∑

n≤w(x)

∣∣∣∣∣∣
gx(n)− 1

x

∑

n≤w(x)

gx(n)

∣∣∣∣∣∣

l

+

+
1
x

∑

n≤w(x)


 1

x

∑

n≤w(x)

fx(n)




l

+

+
1
x

∑

n≤w(x)


 1

x

∑

n≤w(x)

gx(n)




l

.

Using the Ruzsa moments inequality (see [3]) and the estimate (9), we obtain

1
x

∑

n≤w(x)

∣∣∣∣∣∣
fx(n)− 1

x

∑

n≤w(x)

fx(n)

∣∣∣∣∣∣

l

¿

¿ 1
w(x)

∑

n≤w(x)

∣∣∣∣∣∣
fx(n)− 1

x

∑

n≤w(x)

fx(n)

∣∣∣∣∣∣

l

¿l

¿l


 ∑

pk≤w(x)

f2
x(pk)
pk




l/2

+
∑

pk≤w(x)

f l
x(pk)
pk

¿l
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(14) ¿l


 ∑f

p≤w(x)

1
p




l/2

+
∑f

p≤w(x)

1
p
¿l,λ 1.

It is not difficult to understand that

(15)
1
x

∑

n≤w(x)


 1

x

∑

n≤w(x)

fx(n)




l

≤ 1
x

∑

n≤w(x)


w(x)

x

∑f

p≤w(x)

1
p




l

¿l,λ 1.

The last two estimates (14) and (15) are true for the function g in place of f , too.
So, the estimate (11) follows now immediately from the obtained inequalities.

III. In this part we prove that the conditions of Theorem imply that

(16) lim
x→∞

ϕl,x = λl

for every fixed positive integer l.

We have from the weak convergence of the distributions (4) that

lim
x→∞

νx (n : n ≤ x, fx(an + b) + gx(cn + d) = k) =
λk

k!
e−λ

for every fixed positive integer k. Hence, using the estimate (11), for K > l +2
we have

ϕl,x =
K∑

k=l

k(k − 1) . . . (k − l + 1)
1
x

∑
n≤x

fx(an+b)+gx(cn+d)=k

1+

+
1
x

∑
n≤x

fx(an+b)+gx(cn+d)>K

(fx(an + b) + gx(cn + d)) . . .×

× (fx(an + b) + gx(cn + d)− l + 1)
fx(an + b) + gx(cn + d)− l

fx(an + b) + gx(cn + d)− l
=

=
K∑

k=l

k(k − 1) . . . (k − l + 1)
λk

k!
e−λ + oK,l(1) + O

(
ϕl+1,x

K − l

)
=

=λl + oK,l(1) + O

(
λK+1

(K − l + 1)!

)
+ Ol

(
1

K − l

)
.

Taking the upper limit in the last equality, as x tends to infinity and then as
K tends to infinity, we obtain that the relation (16) holds.
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IV. In this part we derive the relations (5) and (6). Because the second
of these relations follows from (13) and (16) immediately, it remains to prove
(5).

From the condition (3) we have that, for every fixed positive δ

lim
x→∞

∑

p>xδ

p∈Pf
x∪P

g
x

1
p

= 0.

Therefore there exist a vanishing function δ(x) such that

(17) lim
x→∞

xδ(x) = ∞
and

(18) lim
x→∞

∑

p>xδ(x)

p∈Pf
x∪P

g
x

1
p

= 0.

Let f∗x and g∗x be two new sets of strongly additive functions defined by the
equalities:

f∗x(p) =





fx(p) if p ≤ xδ(x),

0 if p > xδ(x),

g∗x(p) =





gx(p) if p ≤ xδ(x),

0 if p > xδ(x).

According to the equality (12), for every positive ε we have that
(19)

νx (n : n ≤ x, |fx(an + b) + gx(cn + d)− f∗x(an + b)− g∗x(cn + d)| > ε) ≤
≤νx

(
n : n ≤ x, |fx(an + b)− f∗x(an + b)| > ε

2

)
+

+ νx

(
n : n ≤ x, |gx(cn + d)− f∗x(cn + d)| > ε

2

)
≤

≤νx (n : n ≤ x, ∃p | an + b : fx(p) 6= f∗x(p))+

+ νx (n : n ≤ x, ∃p | cn + d : gx(p) 6= g∗x(p)) ≤

≤
∑

p∈Pf
x

p>xδ(x)

1
[x]

∑
n≤x

p|an+b

1 +
∑

p∈Pg
x

p>xδ(x)

1
[x]

∑
n≤x

p|cn+d

1 ≤

≤
∑

p∈Pf
x

p>xδ(x)

1
p

+
∑

p∈P
g
x

p>xδ(x)

1
p

+
1
[x]

O


 ∑

p≤ax+b

1 +
∑

p≤cx+d

1


 .
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Thus, the weak convergence of distributions (4) and the relation (18) imply
that the distribution functions

(20) νx (n ≤ x, f∗x(an + b) + g∗x(cn + d) < u)

converge also weakly to the Poisson distribution with the same parameter λ.
Hence the new functions f∗x and g∗x satisfy the conditions of Theorem. The
obtained equality (16) implies that

(21) lim
x→∞

ϕ∗l,x = λl,

where
(22)

ϕ∗l,x =
1
x

∑

n≤x

(f∗x(an + b) + g∗x(cn + d))(f∗x(an + b) + g∗x(cn + d)− 1) . . .×

× (f∗x(an + b) + g∗x(cn + d)− l + 1).

If l = 2 it follows from (21) that the quantity
(23)

ϕ∗2,x =
1
x

∑

n≤x

f∗x(an + b)(f∗x(an + b)− 1)+

+
2
x

∑

n≤x

f∗x(an + b)g∗x(cn + d) +
1
x

∑

n≤x

g∗x(cn + d)(g∗x(cn + d)− 1)

tends to λ2, as x tends to infinity. The first term of the last sum is equal to

∑

p1∈Pf
x

p1≤xδ(x)

∑

p2∈Pf
x

p2≤xδ(x)

p2 6=p1

1
x

∑
n≤x

p1p2|an+b

1 =
∑

p1∈Pf
x

p1≤xδ(x)

∑

p2∈Pf
x

p2≤xδ(x)

p2 6=p1

1
p1p2

+ o(1)

according to the relation (12). Analogous equality is true for the third term
of (23) where the function f is replaced by g. It follows from the well known
Chinese residue theorem that
(24)

∑
n≤x

m1|an+b

m2|cn+d

1 =

{ x
[m1,m2]

+ O(1) if (a,m1) = (c,m2) = 1, (m1,m2)|ad− cb,

0 otherwise.

Hence the second therm of (23) is equal to
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2
∑

p1∈Pf
x

p1≤xδ(x)

∑

p2∈Pg
x

p2≤xδ(x)

p2 6=p1

1
x

∑
n≤x

p1|an+b

p2|cn+d

1 + 2
∑

p1∈Pf
x

p1≤xδ(x)

∑

p2∈Pg
x

p2≤xδ(x)
p2=p1

1
x

∑
n≤x

p1|an+b

p2|cn+d

1 =

=2
∑

p1∈Pf
x

p1≤xδ(x)

∑

p2∈Pg
x

p2≤xδ(x)

p2 6=p1

1
p1p2

+ 2
∑

p∈Pf
x∩P

g
x

p|ad−cb

p≤xδ(x)

1
p

+ o(1) =

=2
∑

p1∈P
f
x

p1≤xδ(x)

∑

p2∈Pg
x

p2≤xδ(x)

p2 6=p1

1
p1p2

+ o(1).

Putting the obtained expressions into the relation (23) we have that

(25)

ϕ∗2,x =




∑

p∈Pf
x

p≤xδ(x)

1
p

+
∑

p∈Pg
x

p≤xδ(x)

1
p




2

−

−
∑

p∈Pf
x

p≤xδ(x)

1
p2
−

∑

p∈Pg
x

p≤xδ(x)

1
p2
− 2

∑

p∈Pf
x∩P

g
x

p≤xδ(x)

1
p2

+ o(1).

From (18) and the proved equality (6), it follows that

lim
x→∞




∑

p∈Pf
x

p≤xδ(x)

1
p

+
∑

p∈Pg
x

p≤xδ(x)

1
p


 = λ.

Because the quantity ϕ2,x tends to λ2, then the last relation and the expression
(25) imply the desired equality (5). The necessity of Theorem is proved.

4. Proof of Theorem. Sufficiency

Suppose that the conditions (5), (6) and the additional condition (3) are
satisfied. In this section we derive the weak convergence of distributions (4) to
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the Poisson law. It was shown that the condition (3) implies the existence of the
function δ(x) which satisfies (17) and (18). Let f∗x and g∗x be the sets of strongly
additive functions defined in the last part of the previous section. According
to the estimate (19), it is sufficient to prove that distribution functions (20)
converge weakly to the Poisson law. Let ϕ∗l,x be the factorial moments defined
in (22). Using (10), we have that

ϕ∗l,x =
l∑

k=0

(
l

k

) ∑

p1≤xδ(x)

p1∈Pf
x

. . .
∑

pk≤xδ(x)

pk∈P
f
x

pk 6=p1,...,pk−1

∑

pk+1≤xδ(x)

pk+1∈P
g
x

. . .
∑

pl≤xδ(x)

pl∈P
g
x

pl 6=pk+1,...,pl−1

× 1
x

∑
n≤x

p1...pk|an+b

pk+1...pl|cn+d

1.

By (12) and (24)

ϕ∗l,x =
l∑

k=0

(
l

k

) ∑

p1≤xδ(x)

p1∈Pf
x

. . .
∑

pk≤xδ(x)

pk∈P
f
x

pk 6=p1,...,pk−1

∑

pk+1≤xδ(x)

pk+1∈P
g
x

pk+1 6=p1,...,pk

. . .
∑

pl≤xδ(x)

pl∈P
g
x

pl 6=p1,...,pl−1

×
(

1
p1 . . . pl

+ O

(
1
x

))
.

And after some combinatorial calculations we obtain

ϕ∗l,x =
l∑

k=0

(
l

k

)



∑

p≤xδ(x)

p∈Pf
x

1
p




k 


∑

p≤xδ(x)

p∈Pg
x

1
p




l−k

+

+ Ol


 max

p≤xδ(x)

p∈Pf
x∪P

g
x

1
p


max


1,

∑

p≤xδ(x)

p∈Pf
x∪P

g
x

1
p







l−1
 +

+ Ol


 1

x

∑

p1≤xδ(x)

∑

p2≤xδ(x)

. . .
∑

pl≤xδ(x)

1


 .
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The last equality and the conditions (5), (6), (17), (18) yield that

(26) lim
x→∞

ϕ∗l,x = λl

for every fixed positive integer l.

Let ψ∗x(t) be the almost characteristic function of the distribution (20), i.e.

ψ∗x(t) =
1
x

∑

n≤x

eit(f∗x (an+b)+g∗x(cn+d))

for t ∈ R.
If r and q are positive integers, then

∣∣∣∣∣∣
eitr − 1−

q−1∑

j=1

(
r

j

)
(eit − 1)j

∣∣∣∣∣∣
≤

(
r

q

) ∣∣eit − 1
∣∣q .

Thus, for positive integer L

∣∣∣∣∣ψ
∗
x(t)− 1−

L∑

l=1

(eit − 1)l

l!
ϕ∗l,x

∣∣∣∣∣ ≤
|eit − 1|L+1ϕ∗L+1,x

(L + 1)!
.

According to (26), we obtain

∣∣∣∣∣ψ
∗
x(t)− 1−

L∑

l=1

(eit − 1)l

l!
λl

∣∣∣∣∣ ≤ oL(1) + O

(
(2λ)L+1

(L + 1)!

)

for sufficiently large x. From the last inequality, it follows that

lim
x→∞

1
[x]

∑

n≤x

eit(f∗x (an+b)+g∗x(cn+d)) = eλ(eit−1)

for each real number t. Hence the distribution functions (20) converge weakly
to the Poisson law with parameter λ. Theorem is proved.
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