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POISSON DISTRIBUTION
FOR A SUM OF ADDITIVE FUNCTIONS
ON ARITHMETIC PROGRESSIONS

J. éiaulys and G. Stepanauskas
(Vilnius, Lithuania)

Dedicated to Professor Imre Kdtai on his 70th birthday

Abstract. We consider the limit distribution of values of a sum of
additive arithmetic functions the arguments of which run through different
arithmetic progressions. The case of the Poisson limit law is studied. The
functions considered take at most two values on the set of primes, 0 and 1,
and satisfy some additional conditions. Some examples are given.

1. Introduction

A function f defined on positive integers is called additive, if

fn) =Y f*),

p*In

and strongly additive, if

fn)=>" )

pln

Throughout the paper p,pi,... denote primes, m,n,l, k are positive integers.
The additive function depending on real parameter z is denoted by f,.
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In the article [4] the authors considered the weak convergence of the
distributions

ve(n:n <z fo(n)+gz(n+1) <u) ::% Z 1,

n<x
fz(n)+gz(ntl)<u

as * — oo, to the Poisson law. In this paper we continue this topic and
give a generalization of the result from [4]. We consider more common case,
when arguments of the additive functions f, and g, run through two different
arithmetic progressions. The results given are also related to a paper of I. Katai

[1].

For more detailed introduction and more full list of literature see [4].
2. Main result and examples

Put
Pli=@:p<az+b, (a,p)=1, fo(p) =1),
=1).

Pl:=(p:p<cx+d, (¢,p) =1, g.(p) )

We consider the additive functions f, and g, on two arithmetic progressions
an+b and cn+d, n € N, the moduli a, ¢ of which are positive integers and the
values b, d are such that an—+b and cn+d take only positive integer values for all
n € N. The values a, b, ¢, d are fixed, do not depend on z, and the requirement

(1) (a.0) = (e.d) = 1

is fulfilled. Let finally f, and g, be a pair of functions which on primes dividing
ad — be satisfies the condition

(2) min (fz(p), g=(p)) = 0.

plad—bc

Theorem. Let f, and g,, © > 2, be two sets of strongly additive functions
such that f;(p),g.(p) € {0,1} for all primes p, and the conditions (1), (2) be
satisfied. Let, in addition,

. 1 log p
1 =0.
(3) oo log Z 0
pePiuPy
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The distribution functions
(4) vy (n:n <z, folan+b) + gz (ecn +d) < u)

converge weakly to the Poisson distribution with a parameter X if and only if

(5) lim max —-=0
=00 peplUPy P

(6) lim 21+Z% =\

p
pePl peEPY

Example 1. Let t¢f(xz) and 94(x) be two unboundedly increasing
functions such that log ¢ ¢(z)/logz — 0 and log¢,(x)/logx — 0, as x — oo.
Let f:, g, be strongly additive and

1 if y(x) <p < Yf(a),
fo(p) =

0 otherwise,

1 if ¢y(x) <p§w§(m),
gm(p) =
0 otherwise,

with some «, 8 > 1. Let, finally, a, b, ¢, d satisfy the conditions
(a,b) = (¢,d) =1, ad—bc#0.

It follows from Theorem that

mlin;o ve(n:n <z, fezlan—+b)+ g,(ecn+d)=k) = (looigﬁa],j)k
for every fixed £k =0,1,2,... If £ =0 we have
an + b has no prime factors from
s, cflhj— i;tlf;;fﬂo(ﬁfi(rfli’ fl’/;i‘gc:le ?i)(in ~ af f(j)g:z: ’

the interval (v(z), 2 (z)]

as r — OQ.
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Example 2. Let f,, g, be strongly additive and

1 iflogz < p <log’z,
fx(p) = 92(p) =

0 otherwise.

Let a, b, ¢, d satisfy the conditions
(a,b) = (¢,d) =1, ad—bc#0.

Theorem implies that

. log" 4
lim v, (n:n <z, filan+b)+ gz(cn+d)=k)= e
for every fixed £k =0,1,2,... In case k = 0, we get
adnin<a an + b and cn + d have no prime factors L_Z
= from the interval (log z, log? x] 4logz’

as x — oo. If kK =1 we have

exactly one prime from the interval } zlog4

n < ~
#* {n n=% (log z,log? x] divides an + b or cn +d 4logz’

as & — 0.
3. Proof of Theorem. Necessity

Suppose that the conditions of Theorem are satisfied. In this part we prove
step by step that the weak convergence of the distribution functions (4) implies
the relations (5) and (6).

I. First we prove that

(7) max Zf 17 Zgl <y 1

p<aztb?  p<catd?
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Here and further the superscript f or g by the sign of a sum means that
the summation is extended over primes for which f,(p) = 1 or g,(p) = 1,
respectively. Tt is evident that the last estimate (7) yields

(8) Z 1<<)\1

pePlupd

9) max [ 3 %, Zg% <1,

p<w(z) ©  p<w(z)

where w(z) = max(az + b, cx + d).

The weak convergence of the distributions (4) implies that

liminfv, (n:n <z, fy(an+b)=0)>

>liminfv, (n:n <z, fo(an+b) + gz(ecn+d) =0) =

=e .

According to the Haldsz inequality (see [2])

Nl

1
Z 1< Z 1< (az + ) Z -
n<z n<ax+b p<axz+b p
Fa(an+b)=0 fa(n)=0 Fz (P)#0
Hence
. 1
lim sup Z - <K
e péax-s-bp
<l azr +b\> 1 <
imsu
P x vZ(n:n <z, fz(an+b) =0)
<a2e??
and

Zf 1<<)\1

p<ax+b

for every x > 2. Similarly

Zg 1<<>\ 1.

p<cz+d p
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Therefore the estimate (7) holds.
II. For the positive integer [ define

1

ra == (falan+b) + go(en+d))(fo(an +b) + galen+d) —1)...

X (fz(an +b) + gz(en+d) — 1+ 1).
It follows from the known combinatorial equalities that

l
Pra=> (li)ingg(an—&-b)(fx(an—&—b)—1)...(fx(an+b)—k—|—1)><

k=0 n<x

X gz(en+d)(gz(en+d) —1) ... (gz(en +d) — (1 — k) + 1).

The strong additivity of f, and g, implies that

preP’ prePd Pr+1€PY PIEPY
PRFAPL s Pl—1 PIFPk41:Pl—1
(10) )
X — E 1.
T
n<z
p1...pplantb
pk+1.,.pl\cn+d
In this part we prove that
(11) Sup @1, <y 1
r>2

for every positive integer [.
If I =1, then from (10) we have

1 1
Pra= L 2 1+ 2L
ezpf z n<z pE'PQ z n<x
p T plan+b T plen+d

Since

L 4+ 0(1) if (a,m) =1,

m

(12) Y 1=

n<x 0 lf (a,m) # 1,

mlan+b
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then
D S A IS FID DT O
’ T T
pE'Pf pepg p<az+b p<cz+d
Therefore according to the estimate (8), we have
P12 KA 1.

If I > 2, then

Pra <y Y (folan +0) + gulen+d)' <

n<lz
1
<= Y (fin) +dh(n) <
xngw(ac)
l
1
<= Z - Z fa: +
wngw(z) n<w(m
l
F2 e - Y )| +
z - T
n<w(x) n<w(x)

LD Dl LI DI A0 IS

n<w(x) v n<w(x)
1 1

D DRl ) ()
n<w(x) n<w(x)

Using the Ruzsa moments inequality (see [3]) and the estimate (9), we obtain

l

=D N DR SEFA]

n<w(x) n<w (z)
l
1
b Y -t Y )
w n<w(z) n<w(x)
/2

2.k l k
<| X fw}ifj) + Y fﬁ? ) «,
)

pF<w(w) pF<w(z
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1/2
51
(14) < Z - +Z *<<l)\1
p<w(z) p<w(z) P
It is not difficult to understand that

l l

(15) % Z Z fa(n S% wix) Zf 1 < L

n<w(z) n<w(:v n<w(x) p<w(x)

The last two estimates (14) and (15) are true for the function g in place of f, too.
So, the estimate (11) follows now immediately from the obtained inequalities.

III. In this part we prove that the conditions of Theorem imply that
(16) lim ¢, = A
xTr— 00
for every fixed positive integer [.

We have from the weak convergence of the distributions (4) that

k
lim v, (n:n <z, fa(an+b) + g (cn+d) =k) = A e

T—00 kl

for every fixed positive integer k. Hence, using the estimate (11), for K > [+ 2
we have

K
1
Wl,zzz:k(k—l)...(k—l—i—l); > 1+
k=t fo(an+6) san(entd)—k
1
- : b) + ga d). ..
+x Z (fe(an4+b) + g.(ecn+d))... %

n<x
fa(an+b)+gz (cntd)>K

s(an+0b) + gz(ecn+d) —1

><(fx(an+b)+gx(cn+d)—l+1);z(cm+b)+gz(cn+d)_l =

k

K
— _ _ A" Pliale ) _
—;k(k Do (b =1+ 1)57e” +0K,l(1)+O(KZ>—

=\ 4ok (1)+ 0 ((KAK;U') + 0 <K1l> .

Taking the upper limit in the last equality, as = tends to infinity and then as
K tends to infinity, we obtain that the relation (16) holds.
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IV. In this part we derive the relations (5) and (6). Because the second
of these relations follows from (13) and (16) immediately, it remains to prove

(5)-
From the condition (3) we have that, for every fixed positive §

tm 3 =0

p>z5
fup9
PEPLUP,

Therefore there exist a vanishing function §(z) such that

(17) lim %) = oo
and
. 1
(18) Jim Zé;w) ;_0.
P>z
perfupd

Let fX and g} be two new sets of strongly additive functions defined by the
equalities:

fm(p) it p< Ié(m)a

fa(p) =
0 if p> 0@,
g:(p) if p< 2@,
92(p) =
0 if p> 20,

According to the equality (12), for every positive € we have that
(19)
ve(n:n <z, |folan+0)+ gz(ecn+d) — fi(an+b) — gi(ecn+d)| > ¢) <

<v, (n:ngm, |fo(an +b) — fr(an + b)| > g)-l—

+ vy (nzngan7 |gz(en + d) — fi(en + d)| > %) <
<vy,(n:n<z Iplan+b: fi(p) # fulp))+
+vz(n:n<w dplen+d:g.(p) # g:(p) <

1 1
SZH;HZQEZK

f n<ax
PEP,

p>7_,6(.7:) p|a71+b p>m6(‘z’) plen+d
1 1 1
<> S+ Y ol > 1+ Y 1.
peP] p pepP? p [Z‘] p<az+b p<cx+d

p>x9(@) p>z5(®)
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Thus, the weak convergence of distributions (4) and the relation (18) imply
that the distribution functions

(20) vy (n <z, filan+Db)+ gi(ecn+d) <u)
converge also weakly to the Poisson distribution with the same parameter .

Hence the new functions f; and g satisfy the conditions of Theorem. The
obtained equality (16) implies that

(21) lim 7, = A
where
(22)
1
o= > (filan +b) + gi(en + d))(fi(an +b) + gi(en +d) — 1) ...
n<z

X (folan+b) +gi(en+d) —1+1).

If I = 2 it follows from (21) that the quantity

(23)
Zf an+b)(fr(an+b) — 1)+
+= Zf (an +b)g;(cn +d) + ng en +d)(gi(en+d) — 1)
n<r n<T

tends to A2, as z tends to infinity. The first term of the last sum is equal to

1
)IEED DD DEE LD DEDD +o(1)
p1€77f p2€77f n<w plepf pge'pf p1p2
5(x) 5(z) p1p2lantb () ()
p1<z p2<z p1<z p2<z
P27#P1 P2#P1

according to the relation (12). Analogous equality is true for the third term
of (23) where the function f is replaced by g. It follows from the well known
Chinese residue theorem that

(24)
Z { [m1$72]+0(1) it (a’ml) = (C’mQ) = 1a(m17m2)|ad76ba
1 =
o 0 otherwise.
mo|en+d

Hence the second therm of (23) is equal to
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I M S VD VD MR

I ePd n<a ¥ P9 n<w
P p » »
plesér) i () p1lantb T’leé(wﬂ 2< 560 p1lantb
p1 <z pi;i?l polen+d py <z?(® p%gipl polentd
Z Z 1 Z 1
b1ip2 p
perf  p2ePd perd A9
pr<ad(@) pp<ad(@) plad—cb
P2#P1 p<azd(@)
1
=2 > X +o(1).
f ¢ DP1D2
p1EP] po€PY
pr<ad(@®) pp<ad(®)
B P2#P1

Putting the obtained expressions into the relation (23) we have that

2
. 1 1
b=l T 1+ 5 1] -
T P e P
pEP], PEP
(25) p<ad() p<zd(®)
1 1 1
- poie > poi > oz +ol).
peP) pEPY pePlnpg
p<ad(@) p<ad(®@) p<ad(@)

From (18) and the proved equality (6), it follows that

lim > %+ > % =\

pep] pePy

p<ad(®) p<zd(@)

Because the quantity ¢, tends to A%, then the last relation and the expression
(25) imply the desired equality (5). The necessity of Theorem is proved.

4. Proof of Theorem. Sufficiency

Suppose that the conditions (5), (6) and the additional condition (3) are
satisfied. In this section we derive the weak convergence of distributions (4) to
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the Poisson law. It was shown that the condition (3) implies the existence of the
function é(x) which satisfies (17) and (18). Let f* and g be the sets of strongly
additive functions defined in the last part of the previous section. According
to the estimate (19), it is sufficient to prove that distribution functions (20)
converge weakly to the Poisson law. Let ¢}, be the factorial moments defined

n (22). Using (10), we have that

w?,w=§(li) oY > Y

pq <z¥(@) pp <2%(@) Prtq <z9(®) py <zd(@)
g
p1€7’£ p;ﬁ?’ﬁ Pry1€PY PIEP,
PRp#PLl s Pr—1 PIFPR410- Pl—1

1
x; Z 1.

n<a
p1...plantd
Ph41---pylentd

By (12) and (24)

ey sy v ooy

p1<z8(®) pp <ad(@) Pk+1§9ﬂ6(z) py<xd(®)
p1eP] preP] PR41€P PLEPS
PlFEPLs s Pk—1 Pk+17P1ls> Pl PLFPLs s Pl—1

Graro))

And after some combinatorial calculations we obtain

k I-k
l
l 1 1
(pl,x = E k E = § : - +
k=0 5( p J p
= p<azd(@) p<azd(@)
per] pePd
-1
1 1
+ O max — | max |1, E - +
p<af(® P 5(x) p
fup9 p<adl®
pePluPd iy

NN D DD DR S

pléré(”") pQSZE‘;(”—') pl§x5(¢’~')
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The last equality and the conditions (5), (6), (17), (18) yield that

(26) lim ¢}, = A\

Tr—00

for every fixed positive integer .

Let 9% () be the almost characteristic function of the distribution (20), i.e.

1 - .
(1) — LN it (antb) gl (enta))
V() =~ d e

T
n<z

for t € R.
If r and ¢ are positive integers, then

q—1
Qi _ 1 _ <Tj>eit1j<<7ﬂ> et 117
5 (e v« () e
=
Thus, for positive integer L

(eit it 1|L+1 *

" -t le PrLil,z
ETUREE UL Pt
=1

According to (26), we obtain

2\ L+1
<o +0 ()

for sufficiently large . From the last inequality, it follows that

lim ﬁ 3 U antbgz(entd)) _ Me-)
Tr—0o0 |
n<x

for each real number ¢. Hence the distribution functions (20) converge weakly
to the Poisson law with parameter A\. Theorem is proved.
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