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Abstract. We prove a relation connecting the Hilbert function of a set

family F ⊆ 2[n] to the Hilbert function of the complementary family G =
= 2[n] \ F . Our argument works over ground rings including all fields and

the rings Zm = Z/mZ. The result gives a min-max characterization of

the smallest degree of a nontrivial polynomial that vanishes on the set of

incidence vectors of F . As an application, we give a new lower bound on

the weak degree over Z6 of the Boolean function ¬MOD6.

1. Introduction

N denotes the set of nonnegative integers, Z the integers. For a positive
integer n let [n] stand for the set {1, 2, . . . , n}. The family of all subsets of [n]
is denoted by 2[n].

Throughout the paper R denotes a commutative ring, whose identity
element is denoted by 1. We shall also assume that R has a finite length
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as an R-module. We denote this length by `. We write `(M) for the length of
an R-module M .

For the main results we need stronger assumptions on R. Let t be a
positive integer and let Rt be the free R-module over R which we identify now
with the set of vectors (α1, . . . , αt), αi ∈ R. Let (, ) : Rt × Rt → R be the
standard bilinear form on Rt: for u = (α1, . . . , αt) and v = (β1, . . . , βt) we set

(u, v) :=
t∑

j=1

αjβj .

For a submodule K ≤ Rt we define the orthogonal K⊥ ≤ Rt in the usual
way:

K⊥ = {u ∈ Rt : (u, v) = 0 for every v ∈ K}.
We call a ring R as above a D-ring, if K⊥⊥ = K holds for every positive integer
t and submodule K ≤ Rt. Our duality theorem will hold over D-rings. Please
note that any field is a D-ring. We will show in Section 3 that the modulo
m residue class rings Zm := Z/mZ (here m is a positive integer) are D-rings
as well. More generally, rings of the form R∗/I are D-rings, where R∗ is a
principal ideal domain and I is a nonzero ideal in R∗.

We denote by S = R[x1, . . . , xn] the ring of polynomials in variables
x1, . . . , xn over R.

For a subset F ⊆ [n] we write xF =
∏

j∈F

xj . In particular, x∅ = 1.

Let
vF = (v1, v2, . . . , vn) ∈ {0, 1}n

denote the characteristic vector of a set F ⊆ [n]. We have vi = 1 iff i ∈ F . For
a family of subsets F ⊆ 2[n], let V (F) = {vF : F ∈ F} ⊆ {0, 1}n ⊆ Rn. A
polynomial f ∈ S = R[x1, . . . , xn] can be considered as a function from V (F)
to R in the straightforward way. Let Tj(F) be the set of functions from V (F)
to R which can be represented as polynomials from S of degree at most j (here
j = 0, 1 . . .). Clearly Tj(F) is an R-module.

The study of polynomial functions from V (F) to R has become an
important approach in extremal combinatorics, in the case when R is a field.
We refer to Babai, Frankl [4] and Alon [1] for results of this type.

We call the numerical sequence `(T0(F)), `(T1(F)), . . . the Hilbert function
of F . We shall write h(F , k) instead of `(Tk(F)). If R = F is a field, then
h(F , k) is just the dimension of Tk(F) over F.

We note next that every function from V (F) to R can be obtained as a
polynomial of degree at most n, hence

(1) Tn(F) = Tn+1(F) = · · · a free module of rank |F|,
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and in particular `(Tn(F)) = |F|`. Indeed, it suffices to observe that the
characteristic function χF of a set F ⊆ [n] (which is 1 on vF and 0 on all other
0-1-vectors) is a polynomial function of degree at most n. If vF = (v1, . . . , vn),
then

χF =
n∏

i=1

xi − v̄i

vi − v̄i
,

where v̄i is defined by v̄i = 1− vi. Note that the denominator is ±1, hence we
have a polynomial over R. We remark that the degree n we obtained for the
polynomial representing χF can not be decreased. This may be proved by an
easy counting argument.

In the combinatorial literature the quantities h(F , k) are usually expressed
in terms of inclusion matrices, at least in the case R = F. For families F ,G ⊆
⊆ 2[n] the inclusion matrix I(F ,G) is a (0,1) matrix of size |F| × |G| whose
rows and columns are indexed by the elements of F and G, respectively. The
entry at position (F, G) is 1 if G ⊆ F and 0 otherwise (F ∈ F , G ∈ G).

Inclusion matrices and their ranks are quite useful in the combinatorics
of finite set families. In Chapter 7 of [4] there is an excellent treatment of
this subject which highlights the importance of inclusion matrices I(F ,G) with
G =

(
[n]
m

)
and G =

(
[n]
≤m

)
(the family of all m-element subsets of [n], and the

collection of all sets H ⊆ [n], where |H| ≤ m, respectively).
It is a simple matter to verify that in the case R = F

(2) h(F , k) = rankF I

(
F ,

(
[n]
≤ k

))
.

We refer to [4], [6], [10], [11], [9] for the computation of the Hilbert
function of interesting set families and applications to discrete mathematics
and computer science.

The main result of the paper is a duality type statement which connects
the Hilbert functions of complementary set families.

Theorem 1.1. Suppose that R is a D-ring, and let F ⊆ 2[n] and G =
= 2[n] \ F . We have

h(2[n], k) = |G|` + h(F , k)− h(G, n− 1− k)

for every k = 0, 1, . . . , n.

Remarks. 1. The statement is valid when F or G is empty, if we agree
to put h(∅, k) = 0 for every k.

2. We set h(F ,−1) = 0.
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3. We shall see (Proposition 2.2 and Lemma 2.4) that h(2[n], k) =
k∑

j=0

(
n
j

)
`.

The statement of Theorem 1.1 was proved by Tadahito Harima for much
more general point sets in the case when R = F is a field. In formula (3.1.5)
of [8] the result is given for two disjoint finite point sets X,Y ⊂ Pn(F) in
the projective n-space over F, instead of V (F) and V (G), such that X ∪ Y
is a complete intersection. The formula was used in his characterization of
the Hilbert functions of Artinian Gorenstein algebras with the weak Stanley
property.

Here we focus on 0,1-vectors only, but over more general ground rings,
including the rings Zm, which are important in some recent applications to
computer science. Also, our approach is quite elementary, it is based on direct
computations with polynomial functions.

Theorem 1.1 allows us to formulate a min-max relation, which, we believe,
may be interesting on its own right. We call a polynomial f ∈ R[x1, . . . , xn]
reduced, if f =

∑
H≤[n]

αHxH with αH ∈ R. Let F ⊂ 2[n] be a family different

from ∅ and 2[n]. Let a(F) stand for the smallest degree of a nonzero reduced
polynomial from S which vanishes on V (F). We have 1 ≤ a(F) ≤ n.

Also, we define b(F) to be the smallest integer k such that h(F , k) = |F|`.
In other words, b(F) is the smallest degree k such that every function from
V (F) to R can be represented by a polynomial from S of degree at most k.
We have 0 ≤ b(F) ≤ n.

Using our earlier remark that the degree of any polynomial from S
representing the characteristic function χv of a point v ∈ {0, 1}n is at least
n, it is immediate that

(3) a(F) + b(2[n] \ F) ≥ n.

Theorem 1.1 implies that, in fact, we have an equality here.

Corollary 1.2. Let F ⊂ 2[n] and G = 2[n] \ F . Assume that both F and
G are nonempty. Then we have

a(F) + b(G) = n.

Theorem 1.1 and Corollary 1.2 are proved in Section 2. In Section 3 we
collected some simple facts for the reader’s convenience, which easily imply
that the rings Zm, where m > 1 is an integer, are actually D-rings. In
Section 4 we give an application related to the complexity of Boolean functions.
Corollary 4.1 presents an improved lower bound on the weak degree of the
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function ¬MOD6 over the ring Z6 (we refer to Subsection 4.1 for the relevant
definitions). This Corollary will follow from the bound b(F) ≤ 5

8n + 2, where
V (F) is the set of vectors from {0, 1}n for which the number of 1 coordinates
is divisible by 6 (Theorem 4.1).

2. The duality theorem

We shall work with graded rings A (which are graded with N)

(4) A = A0 ⊕A1 ⊕ · · · ⊕Ak ⊕ · · ·

such that A0 = R and all the homogeneous components Aj have finite length
as R-modules.

We shall often use the following basic facts (see e.g. pp. 92-93 in Matsu-
mura [13]): if I is an ideal of A generated by homogeneous elements, then I
and A/I are graded as well. We have

I = I0 ⊕ · · · ⊕ Ik ⊕ · · ·

with some R-submodules Ik ≤ Ak, and

A/I = B0 ⊕B1 ⊕ · · · ⊕Bk ⊕ · · · ,

where Bk
∼= Ak/Ik, for k ≥ 0.

Proposition 2.1. Let A be a graded ring as in (4). Suppose that z ∈ A1

is a regular element (in the sense that z is not a zero divisor in A). Let I = zA
be the ideal generated by z in A. Then for

A/I = B0 ⊕B1 ⊕ · · · ⊕Bk ⊕ · · ·

we have `(B0) = `(A0) and `(Bi) = `(Ai) − `(Ai−1) for i > 0. Here `(M)
denotes the length of an R-module M .

Proof. As z is homogeneous of degree 1, clearly we have Bi
∼= Ai/zAi−1

for i > 0 and B0
∼= A0. To conclude, it suffices to note that the map

Ai−1
·z−→Ai which is given by a 7→ a · z

is injective, hence then `(Ai−1) = `(zAi−1). The injectivity of the map is
equivalent to the regularity of z. We have

`(Bi) = `(Ai)− `(zAi−1) = `(Ai)− `(Ai−1)
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whenever i > 0.

Let X denote the set of 0-1-vectors in Rn+1 whose first coordinate is 1.
We have | X |= 2n. We can consider the polynomials from the polynomial ring
S∗ = R[z, x1, . . . , xn] in the n+1 variables z, x1, . . . , xn as functions on X. We
shall also work with the polynomial ring S = R[x1, . . . , xn].

Recall that vF ∈ {0, 1}n ⊆ Rn is the characteristic vector of a set F ⊆ [n].
We shall also need the extended characteristic vector wF ∈ X ⊆ Rn+1, which
is obtained as wF = (1, v1, . . . , vn), where (v1, . . . , vn) = vF .

Let F ⊆ 2[n] be a nonempty set family. In analogy with the notation V (F)
we put

W (F) := {wF : F ∈ F} ⊆ {0, 1}n+1.

We have V (F) ⊆ Rn and W (F) ⊆ Rn+1.
Let Id(F) stand for the ideal of S∗ which is generated by the homogeneous

polynomials that vanish on W (F). We have

Id(F) = I0(F)⊕ I1(F)⊕ · · · ,

and

(5) S∗/Id(F) = U0(F)⊕ U1(F)⊕ · · · ,

where Uj(F) ∼= Sj/Ij(F). Here Sj is the R-submodule of S∗ consisting of the
homogeneous polynomials of degree j and Ij = Id(F) ∩ Sj .

Recall that Tj(F) is the set of functions from V (F) to R which can be
represented as polynomials from S of degree at most j.

Proposition 2.2. As R-modules we have Tj(F) ∼= Uj(F), for j = 0, 1, . . ..

Proof. Let f(z, x1, . . . , xn) ∈ Sj be a homogeneous polynomial of degree
j. We map f to the function from V (F) to R induced by the polynomial
f(1, x1, . . . , xn) ∈ S. Clearly this function is in Tj(F). We defined a
map φ : Sj → Tj(F) which is an R-homomorphism. It is surjective: if a
function g is induced by a polynomial h(x1, . . . , xn) of degree at most j, then
f(z, x1, . . . , xn) := zjh(x1/z, . . . , xn/z) is in Sj and φ(f) = g. Moreover, we
have φ(f) = 0 iff f(1, x1, . . . xn) vanishes on V (F) iff f(z, x1, . . . , xn) vanishes
on W (F), iff f ∈ Ij(F). This completes the proof.

Theorem 2.3. Let F ⊆ 2[n] be a nonempty set family. Then the image y
of z in S∗/Id(F) is regular. For

S∗/(z, Id(F)) = P0 ⊕ P1 ⊕ · · · ⊕ Pn ⊕ · · ·
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we have `(P0) = h(F , 0) and `(Pi) = h(F , i)− h(F , i− 1) for i > 0. Moreover,
`(S∗/(z, Id(F))) = |F|`.

Proof. If a homogeneous polynomial f ∈ S∗ does not vanish on W (F),
then neither does zf , because the value of z is 1 on all vectors from X, hence
y is indeed regular. Next we write just Uj instead of the precise Uj(F). By
Proposition 2.1 we have `(P0) = `(U0) and `(Pi) = `(Ui) − `(Ui−1) for i > 0.
This gives the claim for `(Pi) by Proposition 2.2. In particular by observation
(1) we have `(Pj) = 0 and thus Pj = (0) for j > n. We have therefore

`(S∗/(z, Id(F))) =
n∑

i=0

`(Pi) = `(U0) +
n∑

i=1

(`(Ui)− `(Ui−1)) = `(Un) = |F|`.

We need more details in the case F = 2[n], or in terms of incidence
vectors, W (F) = X. Let I = Id(X) denote the ideal of S∗ generated by
the homogeneous polynomials vanishing on X. We write simply Uj instead of
the more precise Uj(X) (see (5)). Thus,

S∗/I = U0 ⊕ U1 ⊕ · · · ⊕ Uk ⊕ · · · .

Lemma 2.4. We have

I = (x2
1 − x1z, x2

2 − x2z, . . . , x2
n − xnz).

Moreover, Uk is a free R-module with basis {zk−|H|xH : H ⊆ [n], |H| ≤ k},
for k = 0, 1, . . .. (For simplicity, we denote by z and xH the image of z and
xH with respect to the canonical map S∗ → S∗/I.)

Proof. Let J denote the ideal of S∗ generated by the polynomials x2
i−xiz.

These polynomials are homogeneous and obviously vanish on X, hence J ⊆ I.
Let now f ∈ S∗ be a homogeneous polynomial of degree k. After subtracting
from f suitable multiples of the x2

i − xiz we obtain an expression of the form

(6) f = g +
∑

H⊆[n], |H|≤k

αHzk−|H|xH ,

where g ∈ J and αH ∈ R. It suffices to show now, that if f vanishes on X, then
αH = 0 for every H ⊆ [n]. Assume for contradiction, that there is an H with
αH 6= 0. Let H∗ be a minimal such subset of [n] and substitute w = wH∗ into
f . From (6) and f(w) = g(w) = 0 we obtain that αH∗ = 0, a contradiction
which shows that f ∈ J , hence I ⊆ J .
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The very same argument shows that for H ⊆ [n], |H| ≤ k the monomials
zk−|H|xH ∈ S∗/I are linearly independent over R. In view of (6) they span Uk

as an R-module. This completes the proof.

Put

(7) Q = S∗/(z, I) = Q0 ⊕ · · · ⊕Qk ⊕ · · · .

Theorem 2.5. We have Qj = (0) for j > n and `(Q) = `2n. Moreover
Qk is a free R-module with free generators {xH : H ⊆ [n], |H| = k}, hence
`(Qk) =

(
n
k

)
` for 0 ≤ k ≤ n.

Proof. `(Q) = `2n follows from Theorem 2.3 applied to F = X. Also,
Qj = (0) holds for j > n, see the proof of Theorem 2.3. Note next that
Qk

∼= Uk/zUk−1. This holds also for k = 0 if we set U−1 = (0). By Lemma
2.4 we obtain that (the image of) {xH : H ⊆ [n], |H| = k} spans Qk as an
R-module, and then `(Qk) ≤ `

(
n
k

)
.

Comparing lengths gives

`2n = `(Q) =
n∑

k=0

`(Qk) ≤
n∑

k=0

(
n

k

)
` = `2n.

We must have equality here, hence `(Qk) = `
(
n
k

)
for k = 0, 1 . . . , n. Qk has

maximal length compared to the number of R-generators, therefore it is free
and {xH : H ⊆ [n], |H| = k} is a system of free generators.

2.1. Orthogonals and annullators

In this subsection we assume that R is a D-ring: it is a commutative ring
with 1, it has a finite length `, and for any finitely generated free module Rt

and R-submodule M ≤ Rt we have M⊥⊥ = M .

Let M and N be free modules isomorphic to Rt for some positive integer
t. Let m1, . . . ,mt and n1, . . . , nt be fixed R-bases of M and N respectively.

We define the bilinear form (, ) from M ×N to R as follows: for u =
t∑

i=1

αimi

and v =
t∑

i=1

βini we put (u, v) =
t∑

i=1

αiβi.

For a submodule K ≤ M we define the orthogonal K⊥ ≤ N in the usual
way: K⊥ = {v ∈ N : (u, v) = 0 for every u ∈ K}. Similarly we can speak
about the orthogonal L⊥ ≤ M of a submodule of L ≤ N .
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Proposition 2.6. Suppose that R is a D-ring. Then K⊥⊥ = K and
L⊥⊥ = L hold for every submodule K ≤ M and L ≤ N . Moreover, we have
`(K) + `(K⊥) = t` and `(L) + `(L⊥) = t`, whenever K ≤ M and L ≤ N .

Proof. We observe that the maps which send (α1, . . . , αt) to
t∑

i=1

αimi and

(β1, . . . , βt) to
t∑

i=1

βini induce an isomorphism from Rt × Rt to M ×N which

preserves (, ). The first statement is then a direct consequence of the definition
of D-rings.

The second statement follows from the first. The maps K 7→ K⊥ and
L 7→ L⊥ are order reversing isomorphisms among the lattices of submodules of
M and N .

We turn now to the ring Q defined in (7). We know that Q is a free R-
module with basis {xH : H ⊆ [n]}. We define an R-bilinear form on Q. For
q1, q2 ∈ Q we let (q1, q2) be the coefficient of x[n] in the product q1q2.

Proposition 2.7. Let K be an R-submodule of Q.
1. We have `(K) + `(K⊥) = 2n`.
2. Assume that K ≤ Qk for some k. Then `(K) + `(K⊥ ∩Qn−k) =

(
n
k

)
`.

Proof. We apply Proposition 2.6 with M = Q and N = Q. The basis
elements are indexed with subsets of [n]. The basis {mH : H ⊆ [n]} of M is
given by letting mH = xH . A corresponding basis {nH : H ⊆ [n]} of N is
given by nH = x[n]\H . The first statement now follows directly.

Concerning the second statement, we use Proposition 2.6 again, but now
with M = Qk and N = Qn−k.

For a nonempty family F ⊆ 2[n] we denote by J(F) the image of the ideal
Id(F) ≤ S∗ in Q (with respect to the natural map S∗ → Q). We have

(8) Q/J(F) = (S∗/(z, I))/((z, Id(F))/(z, I)) ∼= S∗/(z, Id(F))

by a standard isomorphism, hence by Theorem 2.3 we obtain

(9) `(Q/J(F)) = |F|` and `(J(F)) = ` · (2n − |F|).

We need also the notion of annullator ann(X) of a subset X ⊂ A in a ring
A. Set

ann(X) = {a ∈ A : ax = 0 for every x ∈ X}.



184 D. Pintér and L. Rónyai

Proposition 2.8. Let F ⊆ 2[n] and G = 2[n] \ F . Assume that both F
and G are nonempty. Then in Q we have

ann(J(F)) = J(F)⊥ = J(G).

Proof. It is immediate that ann(J(F)) ⊆ J(F)⊥. We note next that
Id(F)Id(G) ⊆ I, because if a form f ∈ S∗ vanishes on W (F) and a g ∈ S∗

vanishes on W (G), then fg vanishes on X. Therefore in S∗ we have

((z) + Id(F))((z) + Id(G)) ⊆ (z) + Id(F)Id(G) ⊆ (z) + I,

implying that J(F)J(G) = (0) in Q and hence

(10) J(G) ⊆ ann(J(F)) ⊆ J(F)⊥.

Taking lengths, we obtain

(11) ` · (2n − |G|) ≤ `(ann(J(F))) ≤ ` · (2n − (2n − |F|)) = ` · (2n − |G|).

Thus, we must have equalities in (11) and in (10) as well. This finishes the
proof.

Remark. The preceding statement remains valid also in the case F = ∅
or G = ∅ if we agree to set J(∅) = Q.

We are ready to prove the main result of the paper, a relation involving
the Hilbert function of F ⊆ 2[n] and G = 2[n] \ F .

Proof of Theorem 1.1. Suppose that 0 ≤ j ≤ n, and consider the j-th
graded piece of Q/J(F). By Theorems 2.3 and 2.5 and the isomorphism (8)
we have

`(J(F) ∩Qj) =
(

n

j

)
`− h(F , j) + h(F , j − 1).

Similarly, by looking at the n− j-th graded piece of Q/J(G) we obtain

`(J(G) ∩Qn−j) =
(

n

j

)
`− h(G, n− j) + h(G, n− j − 1).

From Propositions 2.6 and 2.8 we infer

`(J(F) ∩Qj) + `(J(G) ∩Qn−j) =
(

n

j

)
`,
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hence

(12)
(

n

j

)
` = h(F , j)− h(F , j − 1) + h(G, n− j)− h(G, n− j − 1),

for every 0 ≤ j ≤ n. Next we add these equations up for j = 0, . . . , k:

h(X, k) = h(F , k) + h(G, n)− h(G, n− k − 1).

The Theorem follows now from h(G, n) = |G|`.
Remark. It was pointed out to us by Bálint Felszeghy, that Theorem

1.1 allows a short and elegant proof in the case ` = 1, i.e. when R is a field.
The approach involves the rudiments of the theory of Gröbner bases (see for
example Subsection 1.1 of [10] for the notions not defined here). In fact let
≺ be an arbitrary degree comaptible term order on S = F[x1, . . . , xn]. Then
one can readily verify that a monomial xA is a standard monomial for I(F)
if and only if xAc is a leading term for I(G). Here A ⊆ [n], Ac stands for the
set [n] \ A, and I(F) (resp. I(G)) is the ideal of polynomials in S that vanish
on V (F) (V (G), resp.). From this statement we immediately obtain equations
(12) and hence Theorem 1.1.

We turn now to the proof of Corollary 1.2. Recall, that a(F) stands for
the smallest degree of a nonzero reduced polynomial from S which vanishes on
V (F). Also, b(F) is the smallest integer k such that h(F , k) = |F|`.

Proof of Corollary 1.2. We intend to apply Theorem 1.1 with k =
= a(F) − 1. Note first, that k ≥ 0 and h(F , k) = h(2[n], k), because the
reduced monomials of degree ≤ k are linearly independent over R, as functions
on V (F).

Theorem 1.1 gives now that h(G, n−k−1) = |G|`, hence b(G) ≤ n−k−1 =
= n− a(F). This, together with (3) proves the assertion.

3. D-rings

Our objective here is to verify that the rings Zm are D-rings. This is known
to follow from Morita’s theory of duality, see e.g. Example 4.4 and Section 7
of [17]. For the reader’s convenience, here we give a simple direct proof. Our
argument is not new, we merely collected some facts which are usually scattered
and treated in greater generality in texts about the duality theory of modules.

Let R be a commutative ring with 1. A module M over a ring R is injective,
if for every pair of R-modules K ≤ L and an R-homomorphism φ : K → M
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there exists a homomorphism ψ : L → M which extends φ. It is a standard fact
(see for example Proposition 18.7 in [3]) that M is injective iff M is a direct
summand of K whenever M ≤ K.

An R-module M is called a cogenerator, if every R-module N can be
embedded into a suitable power MX of M .

Proposition 3.1. Let R be a commutative ring with 1. Suppose that R (as
an R-module) is a cogenerator. Then for every positive integer t and K ≤ Rt

we have K⊥⊥ = K.

Proof. Let t be a positive integer. If φ : Rt → R is an R-homomorphism,
then there exists a v ∈ Rt representing φ in the sense that φ(u) = (u, v) for
every u ∈ Rt. Indeed, if ei ∈ Rt is the row vector with 1 in the i-th coordinate,
and 0 elsewhere, then with βi = φ(ei) and v = (β1, . . . , βt) we have the claim.

Let now K ≤ Rt. It is immediate that K⊥⊥ ≥ K. In the other direction,
let x ∈ Rt \ K be an arbitrary element. R is a cogenerator, hence we have
an injection Rt/K ↪→ RX . Taking a suitable projection RX → R onto a
coordinate, we obtain a map δ : Rt/K → R such that δ(x+K) 6= 0. Composing
δ and the natural map Rt → Rt/K, we obtain an R-homomorphism φ : Rt → R
such that φ(K) = (0) and φ(x) 6= 0. For the element v ∈ Rt representing φ
we have (v,K) = 0 and (v, x) 6= 0, giving that v ∈ K⊥ and x 6∈ K⊥⊥. This
finishes the proof.

We turn to the rings R = Zm, where m > 1 is an integer.

Proposition 3.2. Zm is injective as a Zm-module.

Proof. Let M be a Zm-module with Zm ≤ M . We have to prove that
Zm is a direct summand in M . Let N be a maximal submodule of M which
intersects Zm in (0). By factoring out N we may assume that every submodule
of M intersects Zm in a nonzero submodule. From this we have to conclude that
M = Zm. Assume for contradiction that there exists an element v ∈ M \ Zm.
By replacing v with a suitable integer multiple we may assume, that v 6∈ Zm but
0 6= u = pv ∈ Zm for some prime divisor p of m. We have m

p u = m
p pv = mv = 0,

hence there exists a v∗ ∈ Zm such that pv∗ = u. For y = v − v∗ we have
py = 0, and y 6∈ Zm. The submodule generated by y intersects Zm trivially.
This contradiction proves the claim.

Proposition 3.3. Zm is a cogenerator as a Zm-module.

Proof. For injective modules there is a very convenient cogenerator test:
an injective R-module M is a cogenerator iff HomR(T, M) 6= (0) for every
simple R-module T (Proposition 18.5 in [3]). In fact, Zm is injective, and the
simple Zm-modules are the modules Zp, where p is a prime divisor of m. We
conclude by noting that for primes p|m we have Zp

∼= m
p Zm ≤ Zm.

A combination of the preceding three statements gives the following
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Corollary 3.4. For m > 1 the rings Zm are D-rings.

The same reasoning gives mutatis mutandis, that R∗/I is a D-ring, where
R∗ is a principal ideal domain and I is a nonzero ideal of R∗.

One can in fact characterize the commutative Artinian rings R (rings with
the minimum condition for ideals) for which the conclusion of Proposition 3.1
holds. These are precisely the finite direct sums of Gorenstein Artinian rings.
The sufficiency is outlined in Remark 1.3 of [17]. The necessity is very easy: if
a local Artinian ring is not Gorenstein, then the conslusion of Proposition 3.1
fails even for t = 1.

4. An application: the weak degree of a Boolean function

4.1. Boolean functions and set families

As an application of the preceding results, we give a lower bound on the
weak degree of the Boolean function ¬MOD6 over the ring Z6. Recall that
the Boolean function ¬MOD6 : {0, 1}n → {0, 1} gives 1 on the Boolean vector
v ∈ {0, 1}n if the Hamming weight Ham(v) of v is not divisible by 6, and
¬MOD6(v) = 0 otherwise. Following [5] we say that the polynomial p ∈
∈ R[x1, . . . , xn] weakly represents the Boolean function F : {0, 1}n → {0, 1}
over the ring R if F (v) = 0 holds iff p(v) = 0 for all v ∈ {0, 1}n. The weak degree
δ(F ) of F is the minimal degree of those polynomials that weakly represent F .

We refer to [5] and [16] for a background on and the significance of modular
representations of Boolean functions. In the sequel we do not distinguish F
from V (F), both will be denoted simply by F .

We set

F := {v ∈ {0, 1}n : 6 | Ham(v)} , G := {0, 1}n \ F .

The main result of this section is the following

Theorem 4.1. Assume that R=Z6. Then b(F) ≤ 5
8n+2 and consequently

a(G) ≥ 3
8n− 2. Also b(F) ≥ 1

2n + O(log n) and hence a(G) ≤ 1
2n + O(log n).

We observe that a(G) ≤ δ(¬MOD6). This gives the lower bound below,
which strengthens Theorem 3.2 from [5] and Theorem 4.4 of [16] in the case
m = 6:

Corollary 4.1. We have δ(¬MOD6) ≥ 3
8n− 2.
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Remark. It is easy to compute the weak degree of ¬MODp over the ring
Zp, when p is a prime. Here let F consist of those 0-1 vectors of length n

whose Hamming-weight is divisible by p, and put G = 2[n] \ F as usual. The

polynomial
(

n∑
i=1

xi

)p−1

− 1 shows that a(G) ≤ δ(¬MODp) ≤ p − 1 as this

latter polynomial vanishes on each v ∈ G. On the other hand, suppose that
n > 2p − 4. We show that the degree of the characteristic function (in F) of
any vector v ∈ F is at most n − p + 1 which implies that b(F) ≤ n − p + 1.
To see this, let us fix a vector v ∈ F , Ham(v) := k with p | k. Assume, that
k ≤ n − p + 1 (similar consideration works when n − k ≤ n − p + 1, with
the roles of 0 and 1 reversed). Without loss of generality we suppose that
v1 = . . . = vk = 1, vk+1 = . . . = vn = 0. The polynomial

g =
k∏

i=1

xi ·
n−p+1∏

j=k+1

(1− xj)

has degree n− p + 1 and it gives 1 if we substitute v but g(w) = 0 for w ∈ F ,
w 6= v. We obtain that g is the characteristic function of v (in F). Now
by Corollary 1.2 we have n = a(G) + b(F) ≤ p − 1 + n − p + 1 = n, hence
b(F) = n− p + 1 and a(G) = δ(¬MODp) = p− 1.

4.2. Proof of Theorem 4.1

4.2.1. The inequality b(F) ≤ 5
8n + 2

Our first observation is that it is sufficient to prove a slightly stronger
inequality for 6 | n only. Indeed, let us suppose that we can prove

(13) b(Fn) ≤ 5
8
n for all n such that 6 | n

(henceforth in the notation Fn the subscript n indicates that the vectors in F
have n coordinates). Let v ∈ Fn+i for some i with i ∈ {1, . . . , 5}. Without loss
of generality we may assume that vn+1 = · · · = vn+i = 0. Let w be the vector
obtained from v by deleting the last i coordinates. Let χw be the characteristic
function of w in Fn. Then

χv = χw ·
i∏

j=1

(1− xn+j)
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gives χv. We infer that

b(Fn+i) ≤ 5
8
n + i =

5
8
(n + i) +

3
8
i <

5
8
(n + i) + 2

as i ≤ 5. Indeed it suffices to prove (13).

We assume now that 6|n. We use symmetric polynomials to estimate
b(F). Let σn

i denote the ith elementary symmetric polynomial of the variables
x1, . . . , xn (0 ≤ i ≤ n, i ∈ N),

σn
i :=

∑

1≤j1<...<ji≤n

xj1 . . . xji
for i > 0, σn

0 := 1.

We construct a polynomial χ0 which is the characteristic function in F of the
vector v with v1 = . . . = vn = 0 such that deg(χ0) is small. By the Chinese
Remainder Theorem it is enough to construct χ0 over Z2 [x1, . . . , xn] and over
Z3 [x1, . . . , xn] since by taking a suitable linear combination we obtain χ0 over
Z6 [x1, . . . , xn]. Indeed, if q2 represents χ0 over Z2 [x1, . . . , xn] and q3 over
Z3 [x1, . . . , xn] then 3q2 + 4q3 represents χ0 over Z6 [x1, . . . , xn].

To construct χ0 over Z3 [x1, . . . , xn], we use only those σn
i for which 3 | i,

i ≤ n
2 . In fact, an integer linear combination of σn

0 , σn
3 , . . . , σn

n/2 gives χ0 (mod
3). Similarly, to construct a polynomial representation of χ0 over Z2 [x1, . . . , xn]
it is sufficient to use the σn

i for which 2 | n, i ≤ n
3 , i.e. σn

0 , σn
2 , . . . , σn

n/3 over Z3

will give χ0 (mod 2).

Observe that σn
i (v) =

(
Ham(v)

i

)
holds for any v ∈ {0, 1}n. Since the number

of the possible values of Ham(v) is n
6 +1, the dimension over Z3 of the space of

symmetric functions from F to Z3 is at most n
6 + 1. On the other hand, there

are n
6 + 1 different functions σn

i , where 0 ≤ i ≤ n
2 , with 3 | i.

To show that σn
0 , σn

3 , . . . , σn
n/2 form basis for the symmetric functions over

Z3, it suffices to verify that they are independent (over Z3) as functions on
F . This amounts to proving that 3|/ detA where Aij = σn

i (vj) =
(
6j
3i

)
(i, j =

0, . . . , n/6), and vj ∈ {0, 1}n with Ham(vj) = 6j.

A =




(
0
0

) (
6
0

) (
12
0

)
. . .

(
n
0

)
(
0
3

) (
6
3

) (
12
3

)
. . .

(
n
3

)
(
0
6

) (
6
6

) (
12
6

)
. . .

(
n
6

)
...

...
...

. . .
...(

0
n/2

) (
6

n/2

) (
12

n/2

)
. . .

(
n

n/2

)




We prove a more general statement.
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Lemma 4.2. Let p be a prime and let l,m, α be positive integers. Let B

be the (m + 1) × (m + 1) matrix with Bij =
(
jlpα

ipα

)
(i, j = 0, 1, . . . , m). Then

p|/detB if and only if (p, l) = 1.

B =




(
0
0

) (
lpα

0

) (
2lpα

0

)
. . .

(
mlpα

0

)
(

0
pα

) (
lpα

pα

) (
2lpα

pα

)
. . .

(
mlpα

pα

)
(

0
2pα

) (
lpα

2pα

) (
2lpα

2pα

)
. . .

(
mlpα

2pα

)
...

...
...

. . .
...(

0
mpα

) (
lpα

mpα

) (
2lpα

mpα

)
. . .

(
mlpα

mpα

)




Proof. Lucas’ Theorem ([12], Problem 1.2.6/10e) states that for any prime
p and integers 0 ≤ ai, bi ≤ p− 1 we have

(
akpk + . . . + a1p + a0

bkpk + . . . + b1p + b0

)
≡

(
ak

bk

)
. . .

(
a1

b1

)(
a0

b0

)
(mod p).

We infer that
(

ipα

jpα

) ≡ (
i
j

)
(mod p) for any nonnegative integers i, j. Therefore,

it is sufficient to prove that det C is nonzero (mod p) iff (p, l) = 1, where C

is the (m + 1)× (m + 1) matrix with Cij =
(
jl
i

)
(i, j = 0, 1, . . . ,m).

C =




(
0
0

) (
l
0

) (
2l
0

)
. . .

(
ml
0

)
(
0
1

) (
l
1

) (
2l
1

)
. . .

(
ml
1

)
(
0
2

) (
l
2

) (
2l
2

)
. . .

(
ml
2

)
...

...
...

. . .
...(

0
m

) (
l
m

) (
2l
m

)
. . .

(
ml
m

)




To this end we compute the exact value of det C. Let x be a variable and k be
a positive integer. The binomial expression

(
x
k

)
is a polynomial of degree k and

its leading coefficient is 1
k! . It is obvious that

(
x
0

)
,
(
x
1

)
, . . . ,

(
x
k

)
form a basis of

the subspace of polynomials in Q[x] whose degree is at most k. In particular,
there exist coefficients a0, a1, . . . , ak−1 ∈ Q such that

k−1∑

i=0

ai

(
x

i

)
+

(
x

k

)
=

1
k!

xk.

As a consequence, by adding a suitable linear combination of the first i − 1
rows (of C) to the ith row (i = m+1,m, . . . , 2), we obtain 1

i!0
i, 1

i! l
i, . . . , 1

i! (lm)i

in the ith row. We end up with the following matrix D as i runs through
m + 1,m, . . . , 2:
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Remark. By the Gessel-Viennot theorem ([2], [7]) det B has a combina-
torical interpretation: it is the number of special point disjoint path-systems
on the xy coordinate-plane. From ipα ≤ ilpα (i = 0, 1, . . . , m) we know that
this number is always positive hence det B > 0.

We apply Lemma 4.2 with p = 3, l = 2, α = 1 and m = n/6, to obtain
that the degree of χ0 over Z3[x1, . . . , xn] is at most n/2. Similarly, applying
Lemma 4.2 with p = 2, l = 3, α = 1 and m = n/6 we obtain that the degree of
χ0 over Z2[x1, . . . , xn] is at most n/3. Putting these two facts together, there
is a polynomial of degree at most n/2 that represents χ0 over Z6.

Note also, that if we have a polynomial g representing χ0, then we
automatically have a polynomial g′ representing χ1 with the same degree (here
1 denotes the vector with 1 in each coordinate), if we substitute 1− xi in the
place of xi in g. More generally, from a representation of χv v ∈ F we have a
representation of χ1−v, if in χv we substitute 1− xi for xi.

With χ0 and χ1 at hand, we construct a polynomial for the characteristic
function of a given vector v ∈ F . Let H(v) ⊆ {1, . . . , n} denote the index set
of 1-coordinates in v. We use induction on |H(v)|. If this number is 0 then
v = 0 and we are done. To construct χv for Ham(v) > 0, we employ three
basic steps:

• we find a polynomial p(x) which is 0 on w ∈ {0, 1}n if 6|/|H(v) ∩H(w)|,
and ±1 if H(v) ∩ H(w) = H(v) (i.e. if a coordinate of v is 1, so is the
same coordinate of w),

• we multiply p(x) by χ
1−v
0 (here the superscript 1 − v means that we

consider vectors in {0, 1}n−Ham(v) and variables indexed with the 0-
coordinates of v),

• from the polynomial p(x)χ1−v
0 we subtract suitable scalar multiples of

(already represented) characteristic functions of vectors w ∈ {0, 1}n for
which Ham(w) < Ham(v), such that we obtain χv.

Before going into the details, we need some notation: from now on let
σa..b

i denote the ith elementary symmetric polynomial over the polynomial
ring Z6[xa, xa+1, . . . , xb] (1 ≤ a ≤ b ≤ n integers). Similarly, χa..b

v denotes the
characteristic function of the vector v ∈ {0, 1}b−a+1 over Z6[xa, xa+1, . . . , xb].

Let us suppose first, that Ham(v) = 6. By relabeling the coordinates we

may assume that v1 = . . . = v6 = 1. Our key polynomial is
5∑

i=0

(−1)iσ1...6
i . It

gives 1 on w if w1 = w2 = · · · = w6 = 0, and it is −1 if w1 = . . . w6 = 1, and it
is 0 otherwise. As a consequence,
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g = −
(

5∑

i=0

(−1)iσ1...6
i

)
χ7..n

0 + χ1..n
0

gives a polynomial representation of χ1..n
v . Indeed, as explained above,

5∑

i=0

(−1)iσ1...6
i

gives a nonzero value on w iff w1 = . . . = w6, and if so (this fact ensures that
the number of 1-coordinates among w7, . . . , wn is divisible by 6), then χ7..n

0

gives nonzero substitution value iff w7 = . . . = wn = 0. Hence, the product
of these two polynomials is nonzero iff w = v or w = 0. This latter case is
corrected by the additional term χ1..n

0 .

The idea described above can be used for computing χv if Ham(v) = 12
with only a slight modification. By relabeling the coordinates we assume that
v1 = . . . = v12 = 1. Based on the argument above, the polynomial

p12(x) =

(
5∑

i=0

(−1)iσ1...6
i

)(
5∑

i=0

(−1)iσ7...12
i

)
χ13...n

0

is nonzero (on w) only if w1 = . . . = w6 AND w7 = . . . = w12 AND w13 =
= . . . = wn = 0. Equivalently, p12(x) can be nonzero only if we substitute 0, v, t
or u where t1 = . . . = t6 = 1, t7 = . . . = tn = 0 and u1 = . . . = u6 = 0, u7 =
= . . . = u12 = 1, u13 = . . . = un = 0. As the Hamming-weight of 0, u, t is at
most 6, we already have their characteristic function, therefore we can express
χv with p12(x) and with the already constructed characteristic functions:

χv =

(
5∑

i=0

(−1)iσ1...6
i

)(
5∑

i=0

(−1)iσ7...12
i

)
χ13...n

0 − χn
0 + (χu + χt).

Turning to the general case, let us suppose that Ham(v) = l for some l with
6 | l, and v1 = . . . = vl = 1. Our method is quite similar: we consider the
polynomial

pl(x) =




l/6∏

j=1

5∑

i=0

(−1)iσ6j−5...6j
i


 χl+1..n

0 ,

which is nonzero on w ∈ F if and only if Ham(w) ≤ Ham(v). Using the
induction hypothesis, we can modify pl(x) in order to produce χv.
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Next we determine the degree of our polynomial representative for χv. By
following the inductive procedure above, it can easily be seen that the degree
of χv is the degree of pHam(v) since the ”correcting” polynomials have smaller
degree. Indeed, if Ham(v) = l (l = 0, 6, . . . , n

2 ), then deg(p) = 5
6 l + 1

2 (n− l) =
= 1

2n+ 1
3 l which is strictly increasing in l, therefore the degree of χw is smaller

if Ham(w) < Ham(v). We obtain that the degree for the representation of χv

is 1
2n + 1

3 l. In particular, the degree will be maximal if Ham(v) = 1
2n, when it

is 1
2n + 2 · 1

12n = 2
3n.

By applying a slight modification of the above construction we may
decrease the degree of χv. In fact, the above inductive procedure should not
be carried out completely. At the beginning of the induction, the number of
zero coordinates of v is n and the degree for χv is n/2. While decreasing the
number of zero coordinates (increasing the Hamming weight) the degree of the
representing polynomial increases. An interesting moment occurs when the
number of zero coordinates of v gets smaller or equal to the degree of χv for
the first time. If the Hamming-weight of v is l at this time then

n− l ≤ 1
2
n +

1
3
l

which implies
3
8
n ≤ l.

Without loss of generality we may assume that v1 = . . . = vl = 1. At this point,
for each w ∈ {0, 1}n with Ham(w) < Ham(v) we have n−Ham(w) > deg(χw)
but n−Ham(v) ≤ deg(χv). It is immediate that the polynomial

g =
n∏

i=l+1

(1− xi)−
∑

χw

represents χv, where the summation is for w ∈ F , Ham(w) < Ham(v) and
wl+1 = . . . = wn = 0. Moreover, for the degree we have

deg(g) ≤ max{n− l, max{deg(χw) | Ham(w) < Ham(v)}} ≤ 5
8
n.

For vectors v ∈ F of Hamming weight larger than l, we use induction on
Ham(v). The polynomial

n∏

i=Ham(v)+1

(1− xi)−
∑

χw
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represents χv, where the summation is for all w ∈ F with Ham(w) < Ham(v)
and wHam(v)+1 = . . . = wn = 0. For the degree we obtain

max{n−Ham(v), max{deg(χw) | Ham(w) < Ham(v)}}

which is at most 5
8n.

4.2.2. The inequality b(F) ≥ 1
2n + O(log n)

We give two different arguments. The first one is based on a simple
counting and it is nonconstructive. It is well known (see for example [15,
p.76]) that the size of F is

bn/6c∑

i=0

(
n

6i

)
=

1
6
2n + o(2n),

hence there are 6
1
6 2n+o(2n) functions from F to Z6. On the other hand,

the number of polynomial functions over Z6 which contain only (squarefree)

monomials of degree at most k is not larger than 6

k∑
i=0

(n
i)

. Thus, in order to
have a representing polynomial for each function, an inequality

1
6
2n + o(2n) ≤

k∑

i=0

(
n

i

)

must hold. It is also known [14, Theorem 3, p.156] that the above inequality
implies k ≥ 1

2n−Θ(
√

n). The upper bound on a(G) follows now from Corollary
1.2.

Next we outline an alternative approach which gives a(G) ≤ 1
2n+O(log n)

directly, via a construction. Let us suppose that n = 2 · 3k − 4 for some integer
k > 1. In the ternary number system we have n = 122 . . . 212, and the number
of digits of n is k + 1. Let l = n

2 − 1 = 3k − 3. The shape of l in the ternary
system is l = 2 . . . 20. We consider the polynomial p = σl − σl+1 + σl+2. For
v ∈ {0, 1}n we have

• p(v) = 0 if Ham(v) < l,
• p(v) = 1 if Ham(v) = l,

• p(v) ≡ 0 (mod 3) if Ham(v) = l + 1 as
(
l+1

l

)− (
l+1
l+1

)
= l ≡ 0 (mod 3),

• p(v) ≡ 0 (mod 3) if Ham(v) = l + 2 as
(
l+2

l

) − (
l+2
l+1

)
+

(
l+2
l+2

)
= l2+l

2 ≡ 0
(mod 3), and
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• p(v) ≡ 0 (mod 3) if Ham(v) > l + 2.

It remains to verify the last of these congruences. Let v ∈ {0, 1}n with

l + 2 = 3k − 1 < Ham(v) ≤ 2 · 3k − 4 = n.

Suppose that the ternary representation of Ham(v) is

Ham(v) = ak3k + . . . + a13 + a0.

A comparison to the ternary form of l + 2 and n gives that at least one of the
digits a1, . . . , ak−1 must be 0 or 1. By Lucas’ theorem we have for i = 0, 1, 2

(
Ham(v)

l + i

)
=

(
ak3k + ak−13k−1 . . . + a131 + a030

0 · 3k + 2 · 3k−1 + . . . + 2 · 31 + i

)
≡

(14) ≡
(

ak

0

)(
ak−1

2

)
. . .

(
a1

2

)(
a0

i

)
≡ 0 (mod 3).

We obtain that 2p(v) ≡ 0 (mod 6) iff Ham(v) 6= l = n
2 − 1, i.e. 2p vanishes

on G, but not on {0, 1}n, as 6 | l. From degp = n
2 + 1 we obtain a(G) ≤ n

2 + 1
whenever n = 2 · 3k − 4.

For a general n, we only have to write n as a sum of numbers of the form
2 · 3k − 4, k ∈ N, k > 1. The procedure is similar to computing the ternary
representation of n. First we consider the largest k for which 2 · 3k − 4 ≤ n,
here 2 · 3k − 4 gives the first term of the sum. We then repeat the above step
with n′ = n− (2 · 3k − 4), and so on, as long as we can.

We note first, that 4(2 · 3k − 4) > 2 · 3k+1− 4, hence 2 · 3k − 4 can occur at
most three times in the decomposition of n, for each k > 1. It follows that we
obtain at most 3 log3 n + 1 terms. At the end of the procedure we are left with
an integer 0 ≤ l ≤ 13, because k ≥ 2. For these remaining l coordinates we

consider the polynomial
n∏

i=n−l+1

(1−xi). Taking the product of the polynomials

corresponding to each term, we obtain a polynomial that is not identically zero
on {0, 1}n, and it gives nonzero value on w ∈ {0, 1}n only if 6 | Ham(w), and
its degree is n

2 + O(log n).

For example, for n = 119 we have n = 50 + 50 + 14 + 5, hence

p = 2 · (σ1..50
24 − σ1..50

25 + σ1..50
26

) · (σ51..100
24 − σ51..100

25 + σ51..100
26

) ·
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(15) · (σ101..114
6 − σ101..114

7 + σ101..114
8

) ·
119∏

i=115

(1− xi).

We obtain that a(G) ≤ n
2 + O(log n), and the proof of the theorem is

complete.

Our methods can be used for an arbitrary m with at least two different
prime divisors. For

F := {v ∈ {0, 1}n : m|Ham(v)}

we obtain b(F) ≤ c · n where c < 1 depends only on m. For an arbitrary, non
prime-power m we conjecture the following

Conjecture. b(F) = 1
2n + o(n), and hence a(G) = 1

2n + o(n).
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