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THE VOICE TRANSFORM
ON THE BLASCHKE GROUP II.
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Dedicated to Professor Imre Kátai on his 70th birthday

Abstract. In this paper we present results connected to the voice

transform of the Blaschke group generated by a representation of the group.

Sections 1 and 2 contain the basic notations, definitions and results.

In Section 3 the matrix elements of the representation are computed. It

is showed that they can be given by the Zernike functions which play

an important role in expressing the wavefront data in optical tests. An

important consequence of this connection is the addition formulae for

Zernike functions.

Theorem 2 shows that the voice transform can be expressed as a sum

of infinite series. This permits the reconstruction of the function from its

voice transform. A consequence of this result is the injectivity of the voice

transform. If the parameter function is a trigonometric polynomial, then

the voice transform can be represented as a differential operator and using

this result admissibility conditions for the parameter can be given.

Sections 4 contains the proofs.

1. The voice transform

In signal processing and image reconstruction the wavelet-, Gábor-trans-
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forms play an important role. There exists a common generalization of these
transforms, the so-called voice-transform. In this section we summarize the
basic notations and notions used in the definition of voice-transform, we also
present the definition and the most important properties of this transform.

In construction of voice-transform the starting point will be a locally
compact topological group (G, ·). It is known that every locally compact
topological group has nontrivial left- and right-translation invariant Borel-
measures, called left invariant and right invariant Haar measures. Let m be
a left-invariant Haar measure of G. Let f : G → C be a Borel-measurable
function which is integrable with respect to the left invariant Haar measure
m, the integral of f will be denoted by

∫
G

f dm =
∫
G

f(x) dm(x). Because of

left-translation invariance of the measure m it follows that
∫

G

f(x) dm(x) =
∫

G

f(a−1 · x) dm(x) (a ∈ G).

There exist groups whose left invariant Haar measure is not right invariant. If
the left invariant Haar measure of G is at the same time right invariant then we
say that G is unimodular . Such measure will be called Haar measure of G. On a
given group, Haar measure is unique only up to constant multiples. It is trivial
that the commutative groups are unimodular. Furthermore it can be proved
that if the left Haar measure is invariant under the inverse transformation
G 3 x → x−1 ∈ G, then G is also unimodular.

In the definition of voice-transform a unitary representation of the group
(G, ·) is used. Let us consider a Hilbert-space (H, 〈·, ·〉) and let U denote the
set of unitary bijections U : H → H. Namely, the elements of U are bounded
linear operators which satisfy 〈Uf, Ug〉 = 〈f, g〉 (f, g ∈ H). The set U with
the composition operation (U ◦ V )f := U(V f) (f ∈ H) is a group, the neutral
element of which is I, the identity operator on H and the inverse element of
U ∈ U is the operator U−1, which is equal to the adjoint of U : U−1 = U∗.
The homomorphism U of the group (G, ·) on the group (U , ◦) satisfying

i) Ux·y = Ux ◦ Uy (x, y ∈ G),

(1.1) ii) G 3 x → Uxf ∈ H is continuous for all f ∈ H,

is called unitary representation of (G, ·) on H.
The voice transform of f ∈ H generated by the representation U and by

the parameter ρ ∈ H is the (complex-valued) function on G defined by

(1.2) (Vρf)(x) := 〈f, Uxρ〉 (x ∈ G, f, ρ ∈ H).
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For any representation U : G → U and for each f, ρ ∈ H the voice transform
Vρf is a continuous and bounded function on G.

The set of continuous bounded functions defined on the group G with the
supremum norm form a Banach space and Vρ : H → C(G) is a bounded linear
operator. From the unitarity of Ux : H → H follows that, for all x ∈ G,

|(Vρf)(x)| = |〈f, Uxρ〉| ≤ ‖f‖‖Uxρ‖ = ‖f‖‖ρ‖,

consequently ‖Vρ‖ ≤ ‖ρ‖.
Taking as starting point (not necessarily commutative) locally compact

groups we can construct in this way important transformations in signal
processing and control theory. For example the affine wavelet transform and
the Gábor-transform are all special voice transforms (see [6], [10]).

2. The voice transform of the Blaschke group

The affine wavelet transform is a voice transform of the affine group
which is a subgroup of the Möbius group (i.e. the group of linear fractional
transformations with the composition operation). In this section we will study
the voice transform of another subgroup of the Möbius group, namely the voice
transform of the Blaschke group.

2.1. The Blaschke group

Let us denote by

(2.1) Ba(z) := ε
z − b

1− b̄z
(z ∈ C, a = (b, ε) ∈ B := D× T, bz 6= 1)

the so called Blaschke functions, where
(2.2)
D+ := D := {z ∈ C : |z| < 1}, T := {z ∈ C : |z| = 1}, D− := {z ∈ C : |z| > 1}.

If a ∈ B, then Ba is an 1-1 map on T, D and D−, respectively. The restrictions of
the Blaschke functions on the set D or on T with the operation (Ba1 ◦Ba2)(z) :=
:= Ba1(Ba2(z)) form a group. In the set of the parameters B := D × T let
us define the operation induced by the function composition in the following
way: Ba1 ◦ Ba2 = Ba1◦a2 . The group (B, ◦) will be isomorphic with the group
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({Ba, a ∈ B}, ◦). If we use the notations aj := (bj , εj), j ∈ {1, 2} and a :=
:= (b, ε) =: a1 ◦ a2 then

(2.3) b =
b1ε2 + b2

1 + b1b2ε2
= B(−b2,1)(b1ε2), ε = ε1

ε2 + b1b2

1 + ε2b1b2

= B(−b1b2,ε1)
(ε2).

The neutral element of the group (B, ◦) is e := (0, 1) ∈ B and the inverse
element of a = (b, ε) ∈ B is a−1 = (−bε, ε).

Because of Ba : T → T is bijection it follows the existence of a function
βa : R→ R such that Ba(eit) = eiβa(t) (t ∈ R), where βa can be expressed in
an explicit form. Namely, let us introduce the function

(2.4) γr(t) :=

t∫

0

1− r2

1− 2r cos s + r2
ds (t ∈ R, 0 ≤ r ≤ 1).

Then
(2.5)
βa(t) := θ + ϕ + γr(t− ϕ), (a = (reiϕ, eiθ) ∈ B, t ∈ R, θ, ϕ ∈ I := [−π, π)).

The integral of the function f : B → C, with respect to the left invariant
Haar-measure m of the group (B, ◦), is given by

(2.6)
∫

B

f(a) dm(a) =
1
2π

∫

I

∫

D

f(b, eit)
(1− |b|2)2 db1db2dt,

where a = (b, eit) = (b1 + ib2, e
it) ∈ D× T.

It can be shown that this integral is invariant with respect to the left
translation a → a0 ◦ a and under the inverse transformation a → a−1, so this
group is unimodular.

We will study the voice transform of the Blaschke group. In the construc-
tion it will be used a class of unitary representations of the Blaschke group on
the Hilbert space H = L2(T).

2.2. The voice transform on L2(T)

In this section we summarize the results obtained in [9]. In this paper the
voice transform on the Hilbert space H = L2(T) was constructed, where the
inner product is given by

〈f, g〉 :=
1
2π

∫

I

f(eit)g(eit) dt (f, g ∈ H).
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The trigonometric system εn(t) = eint(t ∈ I, n ∈ Z) is orthonormal and
complete with respect to this scalar product.

It was proved that

(2.7) (Uaf)(eit) := f(eiβa−1 (t))(β′a−1(t))1/2ei(βa−1 (t)−t)/2 (a ∈ B)

is a unitary representation of the Blaschke group on L2(T) .
Denote by H2(T) the closure in L2(T)-norm of the set

span{εn, n ∈ N}.

The functions which belong to H2(T) can be obtained as boundary limits of
the functions from Hardy space H2(D) (see [15]).

The restriction of this representation to H2(T) can be expressed in the
following form:
(2.8)

(Ua−1f)(z) :=

√
eiθ(1− |b|2)
(1− bz)

f

(
eiθ(z − b)

1− bz

) (
z = eit ∈ T, a = (b, eiθ) ∈ B)

.

The voice transform generated by Ua (a ∈ B) is given by

(2.9) (Vρf)(a−1) := 〈f, Ua−1ρ〉 (f, ρ ∈ H2(T)).

Let consider the shift operator

(Sϕ)(z) = zϕ(z), ϕ ∈ H2(T),

and let be ϕ = 1 ∈ H2(T) . Then the discrete Laguerre functions can be
generated by the shift operator and by the representation operator in the
following way:

(2.10) (Ua−1Smϕ)(z) =

√
ε(1− |b|2)
(1− bz)

(
ε(z − b)
1− bz

)m

(z ∈ T).

Thus the discrete Laguerre functions can be considered as a wavelet generated
by the mother wavelet ϕ = 1. It is known that ((Ua−1Smϕ)(z), m ∈ N) forms
an orthogonal basis in H2(T), for all a ∈ B. Extending the functions in (2.10)
to D let define ϕa,m(z) by (2.10) for z ∈ D.

Let Vεmf(a−1) = 〈f, Ua−1εm〉 and let define the following projection
operator

(2.11) Pf(a, z) :=
∞∑

m=0

(Vεmf)(a−1)ϕa,m(z) (a ∈ B, z ∈ D),
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where the infinite series is absolute convergent for z ∈ D.

Theorem 1. For every f ∈ H2(T), for every z = r1e
it ∈ D and for every

a ∈ B

(2.12) lim
r1→1

Pf(a, z) = f(eit),

a.e. t ∈ I and in H2 norm. If f ∈ C(T), then the convergence is uniform.

If a = e = (0, 1) then Vεmf(e) = 〈f, εm〉 and Ue−1εm(z) = zm, conse-
quently in this special case (2.12) is the Abel summation for the trigonometric
series.

3. New results

3.1. The matrix of the representation U

In this section we compute the matrix elements of the representation U
given by formulae (2.8). It is showed that they can be expressed by the Zernike
functions which play an important role in expressing the wavefront data in
optical tests. An important consequence of this connection is the addition
formulae for Zernike functions.

The matrix elements vmn(a−1) := 〈εn, Ua−1εm〉 of representation U with
respect to the basis {εn : n ∈ N} can be expressed using the trigonometric
system εn(ϕ) := einϕ (n ∈ Z, ϕ ∈ I) and using the associated Legendre
polynomials:
(3.1)

P `
n(x) :=

x−`

n!
[(1− x)nxn+`](n), P−`

n (x) := (−1)`P `
n(x) (x ∈ [0, 1], n, ` ∈ N),

which are orthogonal on [0, 1] with respect to the weight function x` for a fix
`:

(3.2)

1∫

0

P `
m(x)P `

n(x)x` dx = δmn
1

2n + |`|+ 1
(n,m ∈ N, ` ∈ Z).

From (2.8) it follows that for a = (reiϕ, eiψ)

vmn(a−1) := 〈εn, Ua−1εm〉 =
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(3.3) =
e−i(m+1/2)ψ

√
1− r2

2π

π∫

−π

(e−it − re−iϕ)m

(1− rei(−t+ϕ))m+1
eint dt.

Making the change of variables t = s + ϕ, we obtain that

vmn(a−1) =
e−i(m+1/2)ψei(n−m)ϕ

√
1− r2

2π

π∫

−π

eins(e−is − r)m

(1− re−is)m+1
dt =

(3.4) =
√

1− r2e−i(m+1/2)ψei(n−m)ϕαmn(r),

where
(3.5)

αmn(r) :=
1
2π

π∫

−π

(e−is − r)m

(1− re−is)m+1
eins ds =

1
2π

π∫

−π

(1− reis)m

(eis − r)m+1
ei(n+1)s ds.

In this last integral making the change of variables ζ = eis and applying the
Cauchy integral formula we get that

αmn(r) :=
1

2πi

∫

T

(1− rζ)m

(ζ − r)m+1
ζn dζ =

(3.6) =
r−n

m!
dm

dzm
[(1− rz)m(rz)n]z=r =

r−n+m

m!
dm

dxm
[(1− x)mxn]x=r2 .

If n ≥ m let us denote n = m + `, then αmn(r) can be expressed by the
associated Legendre polynomials, namely

(3.7) αmn(r) = P `
m(r2) = (−1)mr`P (0,`)

m (2r2 − 1).

Consequently

vmn(a−1) =
√

1− r2e−i(m+1/2)ψei(n−m)ϕ(−1)mr`P (0,`)
m (2r2 − 1) =

=
√

1− r2

√
m + n + 1

e−i(m+1/2)ψ(−1)mY n−m
m (r, ϕ),
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where Y n−m
m (r, ϕ) are the complex Zernike polynomials (see [8]). If n < m,

then

vmn(a−1) := 〈εn, Ua−1εm〉 = 〈Uaεn, εm〉 = 〈εm, Uaεn〉 = vnm(a) =

=
√

1− r2

√
m + n + 1

e−i(m+1/2)ψ(−1)mY m−n
n (r, ϕ).

Consequently

(3.8) vmn(a−1) =
√

1− r2

√
m + n + 1

e−i(m+1/2)ψ(−1)mY
|m−n|
min{n,m}(r, ϕ).

It is known that the matrix elements of the representations satisfy the following
so called addition formula

vmn(a1 ◦ a2) =
∑

k

vmk(a1)vkn(a2) (a1, a2 ∈ B).

From this relation we obtain the following addition formulae for Zernike
functions:

(3.9)
√

1− r2

√
(n + m + 1)(1− r2

1)(1− r2
2)

e−i(m+1/2)ψY
|n−m|
min{m,n}(r, ϕ) =

=
∑

k

(−1)ke−i(m+1/2)ψ1e−i(k+1/2)ψ2

√
(m + k + 1)(n + k + 1)

Y
|k−m|
min{m,k}(r1, ϕ1)Y

|n−k|
min{k,n}(r2, ϕ2),

where aj := (rje
iϕj , eiψj ), j ∈ {1, 2} and a := (reiϕ, eiψ) = a1 ◦ a2.

Another way to determine vmn(a) occurs from the definition. We observe
that they are equal by the m-th Fourier coefficients of the function ϕa−1,n(z)
in (2.10), namely

vmn(a) =
1
m!

dm

dmz
(Ua(z))z=0 =

=
1
m!

e−iψ(1/2+n)
√

(1− |b|2) dm

dmz

[
(z + beiψ)n(1 + be−iψz)−(n+1)

]
z=0

.

Using the Leibniz formulae we obtain that

vmn(a) =
1
m!

e−iψ(1/2+n)
√

(1− |b|2)×
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×
min{m,n}∑

k=0

Ck
m(−1)m−k(n + 1)(n + 2)...(n + m− k)(be−iψ)m−k·

·n(n− 1)...(n− k + 1)(beiψ)n−k =

= e−iψ(1/2+m)
√

(1− |b|2)
min{m,n}∑

k=0

Ck
m(−1)m−kCn−k

n+m−k(b)m−kbn−k =

(3.10)

= e−iψ(1/2+m)eiϕ(n−m)
√

(1− r2)
min{m,n}∑

k=0

(−1)m−kCk
mCn−k

n+m−krn+m−2k.

Comparing this with (3.4) we deduce that the radial part of complex Zernike
functions (see [1]) can be expressed in the following form

(3.11) αmn(r) =
min{m,n}∑

k=0

(−1)m−kCk
mCn−k

n+m−krn+m−2k.

For the special case when b ∈ (−1, 1) the expression of vmn(a) was obtained in
[4].

3.2. The representation of voice transform as a sum of infinite series
and differential operator

In what follows we show that the voice transform can be expressed as a
sum of infinite series which is absolutely convergent and is convergent in norm,
induced by the following inner product

(3.12)
〈〈F,G〉〉 :=

1
2π

1∫

0

∫

I

rF (reiϕ)G(reiϕ)
1− r2

dϕdr.

We also give a representation of the voice transform as differential operator,
which is easy to handel. This representation can be used in the construction
of the so called admissible functions.

Theorem 2. Let us consider ρ ∈ H2(T), let us denote bn := 〈ρ, εn〉 and

suppose that
∞∑

n=0
|bn| < ∞, then for all f ∈ H2(T) and a = (reiϕ, 1) ∈ B

(3.13) Vρf(a−1) = (Vρf)(reiϕ) =
√

1− r2

∞∑

`=−∞
r|`|e−i`ϕ

∞∑
n=0

c`
nP `

n(r2),
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where the infinite series is absolute convergent and convergent in norm induced
by (3.12) and the coefficients c`

n can be expressed using the trigonometric
Fourier coefficients of f and ρ :

(3.14) c`
n := 〈f, εn〉〈ρ, εn+`〉 (` ≥ 0), c`

n := 〈f, εn−`〉〈ρ, εn〉 (` < 0),

furthermore

(3.15)
〈〈Vρf, Vρf〉

〉
=

1
2

∞∑
m=0

∞∑
n=0

|〈f, εn〉|2|〈ρ, εm〉|2
n + m + 1

.

From the formulae (3.15) it follows that the voice transform is injective for

every ρ 6= 0, ρ ∈ H2(T) satisfying
∞∑

n=0
|bn| < ∞. Indeed if ρ 6= 0, ρ ∈ H2(T),

then there exists m ∈ N such that 〈ρ, εm〉 6= 0. From (3.15) it follows that if
Vρf = 0 (f ∈ H2(T)), then 〈f, εn〉 = 0 (n ∈ N), which implies that f = 0.
This implies the injectivity of Vρf .

Taking into account the orthogonality of trigonometric system and the
orthogonality of polynomials P `

n, these coefficients can be expressed by voice
transform in the following way:
(3.16)

c`
n =

2n + ` + 1
2π

1∫

0

∫

I

(Vρf)(reiϕ)r|`|ei`ϕP `
n(r2)

r√
1− r2

dϕdr (` ∈ Z, n ∈ N).

On the base of (3.16) if we know the voice transform Vρf the coefficients c`
n

can be computed and from (3.14) the Fourier coefficients of f can be obtained.
Consequently beside (2.12) this is a way for the reconstruction of f .

Let fix a polynomial

κ(z) := c0 + c1z + · · ·+ cNzN (z ∈ C)

and a complex number b ∈ C and let denote by A the set of analytic functions
on D. Denote by αb(z) := 1− bz (z ∈ C). For every f ∈ A let be

(3.17) Lb
κf :=

N∑
n=0

cn

n!
(αn

b f)(n).

It is trivial that for b = 0 this is a differential operator with constant coefficients,
whose characteristic polynomial is κ(z) (z ∈ C).
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To represent the voice transform

(3.18) (Vρf)(a−1) :=
1
2π

∫

I

f(eit)

√
1− |b|2

1− be−it
ρ(Ba(eit)) dt (a = (b, 1) ∈ B)

as a differential operator in connection of f ∈ L2(T) we introduce two functions
belonging to H2(D) . For an arbitrary function

f(eit) =
∞∑

n=−∞
aneint (t ∈ I)

let denote by

(3.19) f∗(z) :=
∞∑

n=0

anzn, f∗(z) =
∞∑

n=0

a−n−1z
n (z ∈ D).

Then f∗, f∗ ∈ H2(D) and

f(eit) = f∗(eit) + e−itf∗(e−it) (for almost every t ∈ I).

Theorem 3. For every function f ∈ L2(T) and for every trigonometric
polynomial ρ ∈ L2(T) the voice transform Vρf of f can be represented as

(3.20) Vρf(a−1) =
√

1− |b|2[(Lb
ρ∗f

∗)(b) + (Lb
ρ∗f∗)(b)] (a = (b, 1) ∈ B).

From Theorem 3 it follows that Vρ represents the space L2(T) in the space
A of analytic functions. If f ∈ A, then f∗ = 0, consequently in this case

(3.21) Vρf(a−1) =
√

1− |b|2(Lb
ρ∗f)(b)) (a = (b, 1) ∈ B).

In the special case when ρ = 1,

(3.22) V1f(a−1) =
√

1− |b|2f(b) (a = (b, 1) ∈ B).

Let

ρ(eit) =
eit + e−it

2
= cos t (t ∈ I).

Then
ρ∗(z) = z, ρ∗(z) = 1 (z ∈ C),
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and the voice transform is equal by the following differential operator for every
(a = (b, 1) ∈ B):

(3.23) (Vρf)(a−1) =

√
1− |b|2

2
(αbf)′(b) =

√
1− |b|2

2
[(1− |b|2)f ′(b)− bf(b)].

On the base of (3.20) we can give a sufficient condition for the admissibility
of ρ ∈ L2(T), namely when ρ satisfies the condition Vρρ ∈ L2

m(B). If a = (b, 1) ∈
∈ B does not depend on θ, then the function F : B→ C belongs to L2

m(B) if

∫

D

|F (b)|2 db1db2

(1− |b|2)2 < ∞.

From (3.22) it follows easily that if ρ = 1 then Vρρ /∈ L2
m(B), consequently this

function is not admissible.
If ρ(eit) = cos t, then on the base of (3.20)

(Vρρ)(a−1) = (1− |b|2)3/2,

and
∫

B

|Vρρ|2 dm =
1
2π

∫

D

(1− |b|2) db1db2 =

1∫

0

(1− r2)r dr =
1
4
,

which means that ρ(eit) = cos t is admissible.The following theorem refers on
the square integrability of Vρρ.

Theorem 4. Let suppose that ρ is a real trigonometric polynomial and ρ∗

is an odd or even algebraic polynomial which vanishes in 0, namely

b0 = 0, bk = b−k (N ∈ N∗, k ≤ N), ρ∗(−z) = ±ρ∗(z) (z ∈ D).

Then ρ is an admissible function for the representation Ua which means that
Vρρ ∈ L2

m(B).

4. Proofs

In this section the proofs of previous results will be presented.
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Proof of Theorem 2. Let denote by an := 〈f, εn〉 and bn := 〈ρ, εn〉. Then
using (2.9) and (3.4), for a = (reiϕ, 1), the voice transform can be expressed
with the following series:

(Vρf)(a−1) =

〈 ∞∑
n=0

anεn,

∞∑
m=0

bmUa−1εm

〉
=

=
∞∑

m=0

bm

∞∑
n=0

an〈εn, Ua−1εm〉 =

=
∞∑

m=0

bm

∞∑
n=0

anvmn(a).

This double infinite series is absolutely and uniformly convergent if a =
= (reiϕ, 1) ∈ B, f ∈ H2(T) and if ρ satisfies the assumptions of the Theorem

3. Indeed, f ∈ H2(T) implies that
∞∑

n=0
|an|2 < ∞, the unitarity of the

representation Ua implies that
∞∑

n=0
|vmn(a)|2 = 1 (m ∈ N), then using the

Cauchy- Schwartz inequality we obtain that

∞∑
m=0

|bm|
∞∑

n=0

|an||vmn(a)| ≤
∞∑

m=0

|bm|
√√√√

∞∑
n=0

|an|2
√√√√

∞∑
n

|vmn(a)|2 < ∞.

Rearranging the series and using (3.4) we obtain that

(Vρf)(a−1) =
√

1− r2

∞∑
m,n=0

anbmei(n−m)ϕαmn(r) =

=
√

1− r2

∞∑

`=0

e−i`ϕ
∞∑

n=0

anbn+`αn+`,n(r)+

+
√

1− r2

∞∑

`=1

ei`ϕ
∞∑

n=0

am+`bmαm,m+`(r).

For an arbitrary index n ∈ N let introduce the notations

c`
n := anbn+` (` ≥ 0), c`

n := an−`bn, P `
n := (−1)`P−`

n (` < 0),

then using (3.7) we obtain that
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(Vρf)(a−1) =
√

1− r2

∞∑

`=−∞
r|`|e−i`ϕ

∞∑
n=0

c`
nP `

n(r2).

Using (3.2) the norm of Vρf induced by (3.12) is equal to

〈〈Vρf, Vρf〉
〉

=

1∫

0

r

∞∑

`=−∞
r2|`||

∞∑
n=0

c`
nP `

n(r2)|2 dr =

=
1
2

1∫

0

∞∑

`=−∞
x|`|

∣∣∣
∞∑

n=0

c`
nP `

n(x)
∣∣∣
2

dx =

=
1
2

∞∑

`=−∞

∞∑
n=0

|c`
n|2

2n + ` + 1
=

=
1
2

∞∑
n=0

∞∑
m=0

|anbm|2
n + m + 1

.

Proof of Theorem 3. The voice transform Vρf generated by an arbitrary
trigonometric polynomial of the form

ρ(eit) :=
N∑

n=−N

bneint

can be expressed as

(Vρf)(a−1)√
1− |b|2 =

N∑

n=−N

bn

2π

∫

I

f(eit)
1

1− be−it

(
e−it − b

1− be−it

)n

dt =
N∑

n=−N

bnJn,

where for Jn – using the decomposition (3.19) and making the change of
variables t = −s in the second therm – we obtain that:

Jn =
1
2π

∫

I

f(eit)
1

1− be−it

(
e−it − b

1− be−it

)n

dt =

=
1
2π

∫

I

f∗(eit)
(1− beit)n

(eit − b)n+1
eit dt +

1
2π

∫

I

f∗(eis)eis (eis − b)n

(1− beis)n+1
ds = J1

n + J2
n.

Applying the Cauchy-formula for every index n ∈ N we obtain that
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J1
n :=

1
2π

∫

I

f∗(eit)
(1− beit)n

(eit − b)n+1
eit dt =

=
1

2πi

∫

T

f∗(ζ)αn
b (ζ)

dζ

(ζ − b)n+1
=

1
n!

(f∗αn
b )(n)(b),

and for n < 0, n ∈ Z is trivial that J1
n = 0. Similarly for n ∈ N

J2
−n−1 :=

1
2π

∫

I

f∗(eis)
(1− beis)n

(eis − b)n+1
eis ds =

=
1

2πi

∫

T

f∗(ζ)αn
b
(ζ)

dζ

(ζ − b)n+1
=

1
n!

(
f∗αn

b

)(n)

(b)

and is trivial that J−n−1 = 0, if n < 0. Using this we obtain

(Vρf)(a−1)√
1− |b|2 =

N∑

n=−N

bn(J1
n + J2

n) =
N∑

n=0

bnJ1
n +

−1∑

k=−N

bkJ2
k =

=
N∑

n=0

bn

n!
(f∗αn

b )(n)(b) +
N−1∑
n=0

b−n−1

n!
(f∗αn

b
)(n)(b) =

= (Lb
ρ∗f

∗)(b) + (Lb
ρ∗f∗)(b).

Proof of Theorem 4. Applying the Leibniz formulae the differential
operator Lb

κ can be written in the following form:

(Lb
κf)(b) :=

N∑
n=0

cn

n!
(αn

b f)(n)(b) =

=
N∑

n=0

cn

n!
n!(−b)nf(b) +

N∑
n=1

n∑

k=1

((1− bz)n)(n−k)
z=b f (k)(b).

Let us denote the last sum by (1− |b|2)Q(b). If f is a polynomial, then Q
is a continuous function of variable b and we obtain that

(Lb
κf)(b) =

N∑
n=0

cn(−b)nf(b) + (1− |b|2)Q(b) =
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= κ(−b)f(b) + (1− |b|2)Q(b).

Using this we obtain that

Vρρ(a−1)√
1− |b|2 = ρ∗(−b)ρ∗(b) + ρ∗(−b)ρ∗(b) + (1− |b|2)Q1(b),

where Q1 is a continuous function of variable b. If ρ satisfies the conditions of
Theorem 4, then

ρ∗(z) =
N∑

n=1

bnzn =
N−1∑
n=0

b−n−1z
n+1 = zρ∗(z).

From this relation it follows that

ρ∗(−b)ρ∗(b) + ρ∗(−b)ρ∗(b) = (|b|2 − 1)|ρ∗(b)|2,

Vρρ(a−1)√
1− |b|2 = (1− |b|2)(Q1(b)− |ρ∗(b)|2),

which implies that Vρρ ∈ L2
m(B).
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