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NOTE ON +-QUASIAFFINE FUNCTIONS

K. Nikodem (Bielsko-Biala, Poland)
Zs. Pales (Debrecen, Hungary)

Dedicated to the 70th birthday of Professor Imre Kdtai

Abstract. Given a convex subset D of a vector space and a constant
0 <t <1, afunction f : D — R is called t-quasiaffine if, for all
z,y €D,

min{f(z), f(y)} < f(tz + (1 - t)y) < max{f(z), f(y)}.

If, furthermore, both of these inequalities are strict for f(z) # f(y),
f is called strictly t-quasiaffine. The main results of the paper show
that t-quasiaffinity implies Q-quasiaffinity (i.e. t-quasiaffinity for every
rational number ¢ in [0, 1]). An analogous result is established for strict
t-quasiaffinity.

1. Introduction

Let F be fixed subfield of the set of real numbers R and let X be a vector
space over F throughout this paper. The two most important particular settings
of our investigations are when either F = Q or F = R.

In what follows, we briefly recall the terminology related to ¢t-convexity of
sets and to t-quasiconvexity and t-quasiaffinity of functions.
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Given a constant ¢ € [0, 1], a subset D C X is called ¢-convez if tx + (1 —
—t)y € D holds whenever z,y € D. For a given collection T C [0,1] of
numbers, the set D is called T-convex if it is t-convex for all ¢ € T (cf. [2],
[3], [8]). Observe, that T-convexity is simply equivalent to convexity in the
standard sense if T' = [0, 1]. We say that D is F-convex if it is FN[0, 1]-convex.
In particular, D is Q-convex (rationally convex) if it is QN [0, 1]-convex.

The set of all numbers ¢ € [0, 1] such that D is ¢-convex will be denoted
by T'(D) in the sequel. Obviously, 0,1 € T(D) for any set D C X.

Given a t-convex set D C X, a real-valued function f : D — R is called
t-quasiconvez (cf. [2], [3], [8]) if

(1) fltz+ (1 —t)y) <max{f(z), f(y)}, x,y€D.

If (—f) is t-quasiconvex then f is said to be t-quasiconcave. When f is both
t-quasiconvex and t-quasiconcave, i.e. when

(2) min{f(2), f()} < f(tz+ (1 —)y) < max{f(2), fW)}, x.y€D,

holds, then f is termed a t-quasiaffine function.
We say that f is strictly t-quasiconver if it satisfies (1), furthermore,

(3) flte+ (1 —t)y) <max{f(z), f(y)} if f(z)# fy)

If f and (—f) are strictly t-quasiconvex, i.e. if (2) and

(4) min{f(z), f(y)} < f(te+(1-t)y) <max{f(x),f(y)} if f(z)# f(y)

are satisfied then f is called strictly t-quasiaffine.

If D is T-convex and (1), (2), (3) and (4) hold for all t € T, then f
is said to be T'-quasiconvex, T-quasiaffine, strictly T-quasiconver and strictly
T-quasiaffine, respectively.

The collection of all numbers ¢t € [0,1] such that f is t-quasiconvex is
denoted by T'(f).

The %—quasz’aﬁne functions defined on an interval I C R, that is functions
satisfying

r+vy
2

(5) min{f<x>,f<y>}§f( )gmax{fu),f(y)}, ryel,

were introduced in 1949 by A. Csészér [4], [5]. (They were also called midpoint-
qusiaffine or internal.) Observe that monotone functions f : I — R as well as
Jensen functions, i.e. solutions of the Jensen functional equation



Note on t-quasiaffine functions 129

P(ER) L8

2

are always midpoint-quasiaffine. It is known that Jensen functions may be
very irregular (see [1], [10]). However, measurable Jensen functions are of the
form f(x) = ax+b, x € I, hence they are also monotone. Midpoint-quasiaffine
functions enjoy a similar property. Namely, Csédszdar [5] proved that if a function
f I — R satisfies (5) then it is either monotone or nonmeasurable. Other
results of this type were also obtained by Dedk [7] and Marcus [13].

Midpoint-quasiaffine functions in a more general setting were investigated
by the authors in [14]. It was proved, among others, that under some regularity
assumptions every strictly midpoint-quasiaffine function f : X — R is of the
form f = g o« where a : X — R is an additive function and g : R — R is
monotone. This characterization gives some insight into the result of Csaszar.

Recently Lewicki [12] extended this characterization to strictly t-quasiaffine
functions. The basic role in his paper is played by a theorem stating that if
f: X — R is strictly t-quasiaffine and Q-radially upper semicontinuous, i.e.

limsup f(rz+ (1-r)y) < f(y), z,y € X,
reQ, r—ot

then it is strictly midpoint-quasiaffine. This result is analogous to the result of
Kuhn [11] which states that every t-convex function is midpoint-convex. In the
proof of Lewicki’s theorem the assumptions that the domain of f is the whole
space X and f is Q-radially upper semicontinuous are essential. However,
using a more sophisticated method we can prove much stronger version of this
statement. Namely, we show that every t-quasiaffine function f : D — R,
where D is an F-convex set and ¢t € FNJ0,1[, is Q-quasiaffine. An analogous
result is also established for strictly ¢-quasiaffine functions.

2. t-convexity and complementarity of sets

Lemma 1. Let D C X be a nonempty set. Then, for the set T(D), we
have the following properties:

(i) if t € T(D), then 1 —t € T(D);
(ii) if r,s,t € T(D), then tr + (1 —t)s € T(D).
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Proof. Implication (i) is obvious. To prove (i), assume that r, s,t € T(D)
and fix z,y € D. Then rz + (1 — r)y, sz + (1 — s)y € D and, consequently,

(tr+(1—t)s)z+ (1—tr—(1—t)s)y = t(ra+(1—r)y) +(1—t)(sz+(1—s)y) € D,

which shows that tr + (1 —t)s € T(D).

As a consequence of the next lemma, we obtain that T'(D) is also dense in
[0,1] provided that T'(D)N]0, 1[# 0.

Lemma 2. Let S C [0,1] be a nonempty set with the following properties:
(i) 0,1 € S and SN]0,1[# 0;
(ii) if r,s,t €S, thentr+ (1 —t)s € S.
Then S is dense in [0, 1].

Proof. Let t € SNJ0, 1] be fixed and suppose, contrary to our claim, that
S is not dense in [0,1]. Then there exists an open interval Ja, b[C [0,1]\ S. Let

r=sup (SN[0,a]) and s =inf (SN [b,1]).

One can see that SN]r, s[= 0. Take sequences (r,), (s,) such that r,, s, € S
and r, /' 7, s, \, s. Since

trp+ (1 —1t)s, — tr+ (1 —1t)s €]r, s,

for a sufficiently large ng, we have tr,, + (1 — t)s,, €]r,s[. On the other
hand, by property (i), trn, + (1 — t)sn, € S, which contradicts the fact that
SNlr, s[= 0.

In general, given a rational number r €]0,1[, the r-convexity of a set D
does not imply its midpoint-convexity, and conversely, the midpoint-convexity
of a set does not imply its r-convexity for an arbitrary rational number r €
€ [0,1]. For instance, the set of diadic rational numbers {2i cke€Z,ne N}

is midpoint-convex but not %—convex. Similarly, the set of triadic rational

numbers {3% k€ ZneN } is %—convex but not midpoint-convex. It is
therefore surprising that the midpoint-convexity of a set and its complementary
(with respect to a Q-convex set) is equivalent to Q-convexity.

The key for such kind of implications is contained in our next result.

Theorem 3. Let D be an F-conver set, let s,t € FN[0, 1] with t(s+1) <1
and assume that A and B are disjoint {s,t}-convex sets such that D = AU B.

Then A and B are also f_‘fg—convem.
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Proof. To verify the %—convexity of A, let z,y € A be arbitrary points
and define

11—t +t—t5 1—t—ts n t
= x V= x
1—ts 1—ts? 1—ts 1—ts

.
The point u is trivially a convex combination of x and y with coefficients
belonging to F. By the assumption ¢(s+1) < 1, it follows that v is also a convex
combination of z and y with coefficients in F. Therefore u,v € D = AU B.

To complete the proof, we have to show that u € A. We distinguish two
cases.

In the case v € A, the easy-to-check identity u = sz + (1 — s)v and the
s-convexity of A yields that u € A.
In the case v € B, we use the identity

(6) tu+ (1 —tho=(1—t)x+ty

which is also easy to see. By the t-convexity of A, the right hand side of (6) is
an element of A. Hence tu + (1 —t)v € A. If the point u were in B, then, by
the t-convexity of B, tu+ (1 — t)v would be an element of B contradicting the
disjointness of A and B. Thus, u cannot be in B, i.e. u must belong to A in
this case, too.

The proof of the =t

1
1—ts

-convexity of B is analogous.

Remark. If D is an F-affine set (i.e. tx+ (1 —t)y € D for all z,y € D and
t € IF), then the condition #(s 4+ 1) < 1 of Theorem 3 can be removed. Indeed,
due to the F-affinity, the point v constructed in the proof is contained in D
(even if it is not in the convex hull of z and y). It seems to be an important
question if this remains valid also in the case when D is only an F-convex sets.

Theorem 4. Let D be an F-convex set, t € FN0,1[ and assume that A
and B are disjoint t-convex sets such that D = AU B. Then A and B are also
Q-conver.

Proof. Let 7 € T(A) N T(B) be fixed. With the notation t := s:=1—7,
we can see that the inequality ¢(s + 1) < 1 holds if 7 > 2. Therefore, applying
Theorem 3, it follows that

1 1 1-—t 9
- = 1.
=T = 1 € TANT(B), TeT(A)mT(B)mL), ]

By Lemma 1, the set S := T'(A)NT(B) satisfies property (i) of Lemma 2.
Hence S is dense in [0, 1]. Thus, we can choose the element 7 € T'(A) N T(B)
such that % <7< % also holds.
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Now define ¢ := 71~ and s := 7. The inequality ¢(s + 1) < 1 is equivalent

toT < % which is valid by the choice of 7. Thus, using Theorem 3 again, we
get that

1 1—1t
- — T = T(ANT(B
2 2-7)-7 1-= 1—2556 (A NT(B),

i.,e. A and B are %—convex sets.

Finally, we prove the Q-convexity of A and B. For a fixed number n > 1,
denote by (S,) the following statement: For all k € {1,...,n}, the inclusion

niﬂ € T(A)NT(B) holds. Clearly, (S1) is equivalent to 3 € T(A)NT(B) (what

we have already proved).

Assume that (S,,) has been verified. Then we have %5 € T(A)NT(B) N

N [%, 1}. Therefore, by the first assertion of this proof,

n—|—1_ 1

n+2 a 2773—11-1

€ T(A)NT(B).

Using the second statement of Lemma 1, it follows that

k k E n+1
=|1-—]- . T(ANT(B
n+2 ( n+1> O+n—i—l n—|—2e (A)NT(B)

for all k € {1,...,n + 1}, which proves the validity of (S,+1) and completes
the proof.

As an obvious consequence of this theorem, we get the following result
which was established in the particular case D = X in [15].

Corollary 5. Let D be a Q-convexr set and assume that A and B are
disjoint sets such that D = AU B. Then A and B are midpoint convez if and
only if they are also Q-convex.

3. t-quasiaffine functions

For a given function f: D C X — R, we define the upper and lower level
sets of f by

A(f,e)={zeD| f(z)<c}, Afi)={zeD]|f(x)<c}
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and

B(f.e)={z €D | f(x)>c},  B(fic)={zeD|f(x)>c}

The t-convexity property of these sets is related to t-quasiconvexity and t-
quasiconcavity of the function f by the following lemma.

Lemma 6. Let t €]0,1[, D be a t-conver set and f : D — R. Then the
following three properties are equivalent:
(i) f is a t-quasiconvex function;
(i) for all c € R, the level set A(f,c) is t-convex;
(iii) for all c € R, the level set A(f,c) is t-convex.
The proof of this lemma is elementary, therefore, it is omitted. The

following lemma describes the basic properties of the set T(f) of a given
function f. Its statement is analogous to Lemma 1.

Lemma 7. Let D C X be a nonempty F-convex set and f : D — R.
Then, for the set T(f), we have the following properties:
(i) ift € T(f), thenl—t e T(f);
(i) if r,s,t € T(f), thentr + (1 —1t)s € T(f).

Proof. By Lemma 6, we have that

T(f) = [ T(A(f,0)).

ceR

Thus, the statement directly follows from Lemma 1.

As a consequence of Lemma 2 and Lemma 7, we can see that T'(f) is
dense in [0, 1] provided that T'(f)N]0,1[# (. However, the density of T'(f) in
[0,1] does not imply that 3 € T(f). In other words, t-quasiconvex functions,
in general, need not be midpoint-quasiconvex (in contrast to the theorem of
Kuhn [11] stating that t-convex functions are always midpoint-convex). For
instance, consider the function f : R — R defined by

k
0 ife=—,keZ N
f(x)z iz 3 € L,n €N,

1 otherwise.

Then & € T(f), but § ¢ T(f). Note also that for some t €]0,1[ the -

quasiconvexity implies midpoint-quasiconvexity. For instance, if f is (2*%)—
quasiconvex for some n € N, then it is midpoint-quasiconvex. Indeed, if ¢ €
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€ T(f), then, by Lemma 7, t> € T(f), and, by induction, t" € T(f) for every
n € N. Therefore, if 2= € T(f), then i= (2’%)n e T(f).

The following result describes the algebraic structure of the set T(f) N
NT(—f). It is an easy consequence of Theorem 3 and Lemma 6.

Theorem 8. Let D C X be a nonempty F-conver set and f : D — R.
Let s,t € FN[0,1] with t(s+ 1) < 1 such that f is {s,t}-quasiaffine. Then f

. 17t .
is also ;= -quasiaffine.

Proof. By Lemma 6 and the ¢t-quasiaffinity of f, we have, for all ¢ € R
that A(f,c) and B(f,c) = A(—f, —c) are {s,t}-convex subsets of D. Clearly,
A(f,c) and B(f,c) are disjoint and D = A(f,c) U B(f,c). Thus, applying
Theorem 3, it follows that the sets A(f,c) and B(f,c) are =%-convex for all

1—t
1—ts

c € R. Now, by Lemma 6 again, we obtain that f and —f are quasiconvex,
ie fis %—quasiafﬁne.

Applying Lemma 6 and Theorem 4, we can state and prove the main result
of this paper, which generalizes Theorem 1 in [14].

Theorem 9. Let D be an F-convex set and t € FN0,1[. Assume that
f:D — R is a t-quasiaffine function. Then f is also Q-quasiaffine.

Proof. Arguing in the same way as in the proof of Theorem 8, the t-
quasiaffinity of f and Theorem 4 yield that the sets A(f,c) and B(f,c) are
Q-convex for all ¢ € R. Now, by Lemma 6 again, it follows that f is Q-
quasiaffine.

In view of Theorem 9, we immediately obtain the following

Corollary 10. Let D be a Q-convex set and f : D — R. Then f: D — R
is midpoint-quasiaffine if and only if it is Q-quasiaffine.

4. Strictly t-quasiaffine functions

The result of this section shows that strict t-quasiaffinity implies strict
Q-quasiaffinity.

Theorem 11. Let D be an F-conver set and t € FN]0,1[. Assume that
f D — R is a strictly t-quasiaffine function. Then f is also strictly Q-
quasiaffine.

Proof. In view of Theorem 9, the function f is Q-quasiaffine.
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We show first that f is strictly midpoint-quasiaffine. Let xz,y € D such
that f(z) # f(y). Without loss of generality, we may assume that f(z) < f(y).
By the Q-quasiaffinity, we have that (5) holds. We have to prove that both
inequalities in (5) are strict. We will only show that f (Lgy) < f(y) (the proof
of f(z) < f (IT”) is analogous). Suppose, on the contrary, that f (%) =
= /().

Define

r+y
2

and U::tx—l—y

(7) u:=tr+(1—1t) +(1—1t)y.

Then, we have the following identity (cf. [6]):

Tty
2

(8) =(1—t)u+tv.

By (7) and the t-quasiaffinity of f,

f(v)—f<tff—2ky 1-ty )—max{f<x;y>’f(y)}_f<x—2ky>’

Since f(z) < f(y) = f (xﬂ’) by (7) and the strict t-quasiaffinity of f, we get

)= £ (1 1= 0752 ) <max{s(ons (52) b =1 (15).

Consequently, using the strict quasiaffinity once more, we obtain

F(55) = o+ =00 < max( ). £00) = 50) = £ (25,

which is an obvious contradiction showing that f is strictly midpoint-quasiaffine.

Now we will prove (similarly as in the case of Theorem 1 in [14]) that f is
strictly Q-quasiaffine. By induction, we can get that

(9) min{f(z), f(y)} < f(dz + (1 - d)y) < max{f(x), f(y)}

if f(x) # f(y) and d €]0, 1] is a dyadic rational number, that is d = k/2", where
k,neN, 0<k<2" Let r €]0,1[NQ be arbitrary and f(z) # f(y). There
exist dyadic rational numbers d’,d” such that 0 < d’ < r < d” < 1. Then
rz+ (1 —r)y is a Q-convex combination of d’z+ (1 —d')y and d"z+ (1 —d")y.
Since, by Theorem 9, f is Q-quasiaffine, we have

min { f(d'z + (1 —d")y), f(d"z+ (1 —d")y)} < fra+ (1 —r)y) <
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<max {f(dz+ (1—d)y), f(dz+(1—d")y)}.

On the other hand, we have (9) with d = d’ and d = d”. These inequalities
together with the previous one yield

min{f(z), f(y)} < f(rz + (1 - r)y) < max{f(z), f(y)}.

Hence f is strictly Q-quasiaffine, which completes the proof.
In view of Theorem 11, we immediately obtain the following

Corollary 12. Let D be a Q-convex set and f : D — R. Then f : D — R
18 strictly midpoint-quasiaffine if and only if it is strictly Q-quasiaffine.

5. M-quasiaffinity

We can generalize the notion of t-quasiaffine functions by replacing the
weighted arithmetic mean used in its definition by a more general mean. Given
two points x,y € X, we define

le,y[:={te+ (1 —t)y: ¢t €]0,1[}, [z,y] = {te+ (1 —t)y: t €[0,1]}.

Given a convex set D C X, a function M : D x D — D is called a strict mean
on D if
M(z,y) € lz,yl, wyeD, z#y

and
M(z,z) =z, x € D.

Let D be a convex subset of X. A function f : D — R is said to be M-
quasiaffine if

min{f(x), f(y)} < f(M(z,)) < max{f(2), f(y)},  z,y€D.

Of course if ¢t €]0, 1], then M(x,y) = tx + (1 — t)y is a strict mean and M-
quasiaffinity of f coincides with its t-quasiaffinity. In this section, we consider
the question if M-quasiaffinity implies midpoint-quasiaffinity. The following
example shows that without any additional assumptions such implication does
not hold.

Example 2. Let M : R x R — R be a strict mean defined by
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3 1

—x+-y, ifz,y¢Q and L—WEQ,

4 4 2
M(z,y) = .

5:10 + iy, otherwise.

The Dirichlet function

1 if x € Q,
D(x):{
0 ifx¢Q

is M-quasiaffine (note that M(z,y) € Q if z,y € Q, and M(x,y) ¢ Q if
z,y ¢ Q). However, by the theorem of Csédszar, it is not midpoint-quasiaffine
(because it is measurable and non-monotone).

This example shows that M-quasiaffine functions need not be midpoint-
quasiaffine even if they are measurable. However, if an M-quasiaffine function
is continuous, then it is quasiaffine, that is it satisfies (2) for every t € [0, 1].

Theorem 13. Let X be a Hausdorff topological-vector space, D be a
convex subset of X and M be a strict mean on X. If a function f: D — R is
M -quasiaffine and continuous, then it is quasiaffine.

Proof. Let x,y € D, x # y. Define

C'={z€ D:min{f(2), f(y)} < f(2) < max{f(x), f(y)}}-

Clearly, z,y € C and C is closed (because f is continuous). To prove that f
is quasiaffine, it is enough to show that [z,y] C C. Suppose, contrary to this
claim, that there exists an zg € |x, y[\C. Then there exist points z’,y" € [z, y]N
NC such that ]2/, y'[NC = 0. Since 2’,y" € C, we have f(2') < max{f(z), f(y)}
and f(y') < max{f(z), f(y)}. Hence, by M-quasiaffinity,

F(M(2',y")) < max{f(2), f(y)} < max{f (), f(y)}.

Analogously
F(M(2',y")) = min{f(z), f(y)}-

Consequently M (z',y') € C. On the other hand we have M(z',y") €]/, /|,
because M is a strict mean. This contradicts the fact that |2/, y'[NC = 0 and
completes the proof.

In the case when X = R and M is a strict mean which is continuous
in both variables, the above result is a consequence of the characterization of
quasiconvexity presented in [9].



138

K. Nikodem and Zs. Pales

1]

[10]

[11]

[12]
[13]

References

Aczél J., Lectures on functional equations and their applications, Mathe-
matics in Science and Engineering 19, Academic Press, New York-London,
1966.

Aleman A., On some generalizations of convex sets and convex functions,
Anal. Numér. Théor. Approz., 14 (1) (1985), 1-6.

Breckner W.W. and Kassay G., A systematization of convexity
concepts for sets and functions, J. Convexr Anal., 4 (1) (1997), 109-127.

Cséaszar A., Sur les fonctions internes, non monotones, Acta Univ.
Szeged. Sect. Sci. Math., 13 (1949), 48-50.

Csaszar A., Sur une classe des fonctions non mesurables, Fund. Math.,
36 (1949), 72-76.

Daréczy Z. and Pales Zs., Convexity with given infinite weight se-
quences, Stochastica, 11 (1) (1987), 5-12.

Deik E., Uber konvexe und interne Funktionen, sowie eine gemeinsame
Verallgemeinerung von beiden, Annales Univ. Sci. Budapest. Sect. Math.,
5 (1962), 109-154.

German L.F. and Soltan V.P., Quasiconvexity in linear and metric
spaces, Investigations in functional analysis and differential equations,
Shtiintsa, Kishinev, 1981, 19-24, 137-138.

Gilanyi A., Nikodem K. and Pales Zs., Bernstein-Doetsch type
results for quasiconvex functions, Math. Inequal. Appl., T (2) (2004),
169-175.

Kuczma M., An introduction to the theory of functional equations
and inequalities, Prace Naukowe Uniwersytetu Sl@skiego w Katowicach
489, Panstwowe Wydawnictwo Naukowe - Uniwersytet Slgxski, Warszawa-
Krakéw-Katowice, 1985.

Kuhn N., A note on t-convex functions, General Inequalities 4 (Oberwol-
fach, 1983), ed. W.Walter, International Series of Numerical Mathematics
71, Birkh&auser, Basel, 1984, 269-276.

Lewicki M., A remark on quasi-affine functions (to appear)

Marcus S., Sur une classe de fonctions définies par des inégalités,
introduite par M.A. Csaszar, Acta Sci. Math. Szeged, 19 (1958), 192-
218.

Nikodem K. and Pales Zs., A characterization of midpoint-quasiaffine
functions, Publ. Math. Debrecen, 52 (3-4) (1998), 575-595.



Note on t-quasiaffine functions

139

[15] Pales Zs., On the separation of midpoint convex sets, C. R. Math. Rep.
Acad. Sci. Canada, 8 (5) (1986), 309-312.

K. Nikodem

Department of Mathematics
University of Bielsko-Biala
ul. Willowa 2

43-309 Bielsko-Biala, Poland
knikodem@ath.bielsko.pl

Zs. Pales

Institute of Mathematics
University of Debrecen
H-4010 Debrecen, Pf. 12
Hungary
pales@math.klte.hu








