
Annales Univ. Sci. Budapest., Sect. Comp. 29 (2008) 127-139

NOTE ON t–QUASIAFFINE FUNCTIONS

K. Nikodem (Bielsko-Biala, Poland)
Zs. Páles (Debrecen, Hungary)

Dedicated to the 70th birthday of Professor Imre Kátai

Abstract. Given a convex subset D of a vector space and a constant

0 < t < 1, a function f : D → R is called t-quasiaffine if, for all

x, y ∈ D,

min{f(x), f(y)} ≤ f
(
tx + (1− t)y

) ≤ max{f(x), f(y)}.

If, furthermore, both of these inequalities are strict for f(x) 6= f(y),
f is called strictly t-quasiaffine. The main results of the paper show

that t-quasiaffinity implies Q-quasiaffinity (i.e. t-quasiaffinity for every

rational number t in [0, 1]). An analogous result is established for strict

t-quasiaffinity.

1. Introduction

Let F be fixed subfield of the set of real numbers R and let X be a vector
space over F throughout this paper. The two most important particular settings
of our investigations are when either F = Q or F = R.

In what follows, we briefly recall the terminology related to t-convexity of
sets and to t-quasiconvexity and t-quasiaffinity of functions.
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Given a constant t ∈ [0, 1], a subset D ⊆ X is called t-convex if tx + (1−
−t)y ∈ D holds whenever x, y ∈ D. For a given collection T ⊆ [0, 1] of
numbers, the set D is called T -convex if it is t-convex for all t ∈ T (cf. [2],
[3], [8]). Observe, that T -convexity is simply equivalent to convexity in the
standard sense if T = [0, 1]. We say that D is F-convex if it is F∩ [0, 1]-convex.
In particular, D is Q-convex (rationally convex) if it is Q ∩ [0, 1]-convex.

The set of all numbers t ∈ [0, 1] such that D is t-convex will be denoted
by T (D) in the sequel. Obviously, 0, 1 ∈ T (D) for any set D ⊆ X.

Given a t-convex set D ⊆ X, a real-valued function f : D → R is called
t-quasiconvex (cf. [2], [3], [8]) if

(1) f
(
tx + (1− t)y

) ≤ max {f(x), f(y)} , x, y ∈ D.

If (−f) is t-quasiconvex then f is said to be t-quasiconcave. When f is both
t-quasiconvex and t-quasiconcave, i.e. when

(2) min {f(x), f(y)} ≤ f
(
tx + (1− t)y

) ≤ max {f(x), f(y)} , x, y ∈ D,

holds, then f is termed a t-quasiaffine function.
We say that f is strictly t-quasiconvex if it satisfies (1), furthermore,

(3) f
(
tx + (1− t)y

)
< max {f(x), f(y)} if f(x) 6= f(y).

If f and (−f) are strictly t-quasiconvex, i.e. if (2) and

(4) min{f(x), f(y)} < f
(
tx+(1− t)y

)
< max{f(x), f(y)} if f(x) 6= f(y)

are satisfied then f is called strictly t-quasiaffine.
If D is T -convex and (1), (2), (3) and (4) hold for all t ∈ T , then f

is said to be T -quasiconvex, T -quasiaffine, strictly T -quasiconvex and strictly
T -quasiaffine, respectively.

The collection of all numbers t ∈ [0, 1] such that f is t-quasiconvex is
denoted by T (f).

The 1
2 -quasiaffine functions defined on an interval I ⊂ R, that is functions

satisfying

(5) min{f(x), f(y)} ≤ f

(
x + y

2

)
≤ max {f(x), f(y)} , x, y ∈ I,

were introduced in 1949 by Á. Császár [4], [5]. (They were also called midpoint-
qusiaffine or internal.) Observe that monotone functions f : I → R as well as
Jensen functions, i.e. solutions of the Jensen functional equation
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f

(
x + y

2

)
=

f(x) + f(y)
2

, x, y ∈ I,

are always midpoint-quasiaffine. It is known that Jensen functions may be
very irregular (see [1], [10]). However, measurable Jensen functions are of the
form f(x) = ax+ b, x ∈ I, hence they are also monotone. Midpoint-quasiaffine
functions enjoy a similar property. Namely, Császár [5] proved that if a function
f : I → R satisfies (5) then it is either monotone or nonmeasurable. Other
results of this type were also obtained by Deák [7] and Marcus [13].

Midpoint-quasiaffine functions in a more general setting were investigated
by the authors in [14]. It was proved, among others, that under some regularity
assumptions every strictly midpoint-quasiaffine function f : X → R is of the
form f = g ◦ α where α : X → R is an additive function and g : R → R is
monotone. This characterization gives some insight into the result of Császár.

Recently Lewicki [12] extended this characterization to strictly t-quasiaffine
functions. The basic role in his paper is played by a theorem stating that if
f : X → R is strictly t-quasiaffine and Q-radially upper semicontinuous, i.e.

lim sup
r∈Q, r→0+

f
(
rx + (1− r)y

) ≤ f(y), x, y ∈ X,

then it is strictly midpoint-quasiaffine. This result is analogous to the result of
Kuhn [11] which states that every t-convex function is midpoint-convex. In the
proof of Lewicki’s theorem the assumptions that the domain of f is the whole
space X and f is Q-radially upper semicontinuous are essential. However,
using a more sophisticated method we can prove much stronger version of this
statement. Namely, we show that every t-quasiaffine function f : D → R,
where D is an F-convex set and t ∈ F∩ ]0, 1[, is Q-quasiaffine. An analogous
result is also established for strictly t-quasiaffine functions.

2. t-convexity and complementarity of sets

Lemma 1. Let D ⊆ X be a nonempty set. Then, for the set T (D), we
have the following properties:
(i) if t ∈ T (D), then 1− t ∈ T (D);
(ii) if r, s, t ∈ T (D), then tr + (1− t)s ∈ T (D).



130 K. Nikodem and Zs. Páles

Proof. Implication (i) is obvious. To prove (ii), assume that r, s, t ∈ T (D)
and fix x, y ∈ D. Then rx + (1− r)y, sx + (1− s)y ∈ D and, consequently,

(
tr+(1−t)s

)
x+

(
1−tr−(1−t)s

)
y = t

(
rx+(1−r)y

)
+(1−t)

(
sx+(1−s)y

) ∈ D,

which shows that tr + (1− t)s ∈ T (D).

As a consequence of the next lemma, we obtain that T (D) is also dense in
[0, 1] provided that T (D)∩ ]0, 1[ 6= ∅.

Lemma 2. Let S ⊆ [0, 1] be a nonempty set with the following properties:
(i) 0, 1 ∈ S and S∩ ]0, 1[ 6= ∅;
(ii) if r, s, t ∈ S, then tr + (1− t)s ∈ S.
Then S is dense in [0, 1].

Proof. Let t ∈ S∩ ]0, 1[ be fixed and suppose, contrary to our claim, that
S is not dense in [0, 1]. Then there exists an open interval ]a, b[⊆ [0, 1]\S. Let

r = sup
(
S ∩ [0, a]

)
and s = inf

(
S ∩ [b, 1]

)
.

One can see that S∩ ]r, s[ = ∅. Take sequences (rn), (sn) such that rn, sn ∈ S
and rn ↗ r, sn ↘ s. Since

trn + (1− t)sn −→ tr + (1− t)s ∈ ]r, s[ ,

for a sufficiently large n0, we have trn0 + (1 − t)sn0 ∈ ]r, s[. On the other
hand, by property (ii), trn0 + (1 − t)sn0 ∈ S, which contradicts the fact that
S∩ ]r, s[ = ∅.

In general, given a rational number r ∈]0, 1[, the r-convexity of a set D
does not imply its midpoint-convexity, and conversely, the midpoint-convexity
of a set does not imply its r-convexity for an arbitrary rational number r ∈
∈ [0, 1]. For instance, the set of diadic rational numbers

{
k
2n : k ∈ Z, n ∈ N}

is midpoint-convex but not 1
3 -convex. Similarly, the set of triadic rational

numbers
{

k
3n : k ∈ Z, n ∈ N

}
is 1

3 -convex but not midpoint-convex. It is
therefore surprising that the midpoint-convexity of a set and its complementary
(with respect to a Q-convex set) is equivalent to Q-convexity.

The key for such kind of implications is contained in our next result.

Theorem 3. Let D be an F-convex set, let s, t ∈ F∩ [0, 1] with t(s+1) ≤ 1
and assume that A and B are disjoint {s, t}-convex sets such that D = A∪B.
Then A and B are also 1−t

1−ts -convex.
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Proof. To verify the 1−t
1−ts -convexity of A, let x, y ∈ A be arbitrary points

and define

u :=
1− t

1− ts
x +

t− ts

1− ts
y, v :=

1− t− ts

1− ts
x +

t

1− ts
y.

The point u is trivially a convex combination of x and y with coefficients
belonging to F. By the assumption t(s+1) ≤ 1, it follows that v is also a convex
combination of x and y with coefficients in F. Therefore u, v ∈ D = A ∪B.

To complete the proof, we have to show that u ∈ A. We distinguish two
cases.

In the case v ∈ A, the easy-to-check identity u = sx + (1 − s)v and the
s-convexity of A yields that u ∈ A.

In the case v ∈ B, we use the identity

(6) tu + (1− t)v = (1− t)x + ty

which is also easy to see. By the t-convexity of A, the right hand side of (6) is
an element of A. Hence tu + (1 − t)v ∈ A. If the point u were in B, then, by
the t-convexity of B, tu + (1− t)v would be an element of B contradicting the
disjointness of A and B. Thus, u cannot be in B, i.e. u must belong to A in
this case, too.

The proof of the 1−t
1−ts -convexity of B is analogous.

Remark. If D is an F-affine set (i.e. tx+(1− t)y ∈ D for all x, y ∈ D and
t ∈ F), then the condition t(s + 1) ≤ 1 of Theorem 3 can be removed. Indeed,
due to the F-affinity, the point v constructed in the proof is contained in D
(even if it is not in the convex hull of x and y). It seems to be an important
question if this remains valid also in the case when D is only an F-convex sets.

Theorem 4. Let D be an F-convex set, t ∈ F∩ ]0, 1[ and assume that A
and B are disjoint t-convex sets such that D = A∪B. Then A and B are also
Q-convex.

Proof. Let τ ∈ T (A) ∩ T (B) be fixed. With the notation t := s := 1− τ ,
we can see that the inequality t(s + 1) ≤ 1 holds if τ ≥ 2

5 . Therefore, applying
Theorem 3, it follows that

1
2− τ

=
1

1 + t
=

1− t

1− ts
∈ T (A) ∩ T (B), τ ∈ T (A) ∩ T (B) ∩

[
2
5
, 1

]
.

By Lemma 1, the set S := T (A)∩T (B) satisfies property (ii) of Lemma 2.
Hence S is dense in [0, 1]. Thus, we can choose the element τ ∈ T (A) ∩ T (B)
such that 2

5 ≤ τ ≤ 1
2 also holds.
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Now define t := 1
2−τ and s := τ . The inequality t(s + 1) ≤ 1 is equivalent

to τ ≤ 1
2 which is valid by the choice of τ . Thus, using Theorem 3 again, we

get that

1
2

=
(2− τ)− 1
(2− τ)− τ

=
1− 1

2−τ

1− τ
2−τ

=
1− t

1− ts
∈ T (A) ∩ T (B),

i.e. A and B are 1
2 -convex sets.

Finally, we prove the Q-convexity of A and B. For a fixed number n ≥ 1,
denote by (Sn) the following statement: For all k ∈ {1, . . . , n}, the inclusion

k
n+1 ∈ T (A)∩T (B) holds. Clearly, (S1) is equivalent to 1

2 ∈ T (A)∩T (B) (what
we have already proved).

Assume that (Sn) has been verified. Then we have n
n+1 ∈ T (A) ∩ T (B) ∩

∩[
2
5 , 1

]
. Therefore, by the first assertion of this proof,

n + 1
n + 2

=
1

2− n
n+1

∈ T (A) ∩ T (B).

Using the second statement of Lemma 1, it follows that

k

n + 2
=

(
1− k

n + 1

)
· 0 +

k

n + 1
· n + 1
n + 2

∈ T (A) ∩ T (B)

for all k ∈ {1, . . . , n + 1}, which proves the validity of (Sn+1) and completes
the proof.

As an obvious consequence of this theorem, we get the following result
which was established in the particular case D = X in [15].

Corollary 5. Let D be a Q-convex set and assume that A and B are
disjoint sets such that D = A ∪ B. Then A and B are midpoint convex if and
only if they are also Q-convex.

3. t-quasiaffine functions

For a given function f : D ⊂ X → R, we define the upper and lower level
sets of f by

A(f, c) = {x ∈ D | f(x) < c}, A(f, c) = {x ∈ D | f(x) ≤ c}
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and

B(f, c) = {x ∈ D | f(x) > c}, B(f, c) = {x ∈ D | f(x) ≥ c}.

The t-convexity property of these sets is related to t-quasiconvexity and t-
quasiconcavity of the function f by the following lemma.

Lemma 6. Let t ∈]0, 1[, D be a t-convex set and f : D → R. Then the
following three properties are equivalent:
(i) f is a t-quasiconvex function;
(ii) for all c ∈ R, the level set A(f, c) is t-convex;

(iii) for all c ∈ R, the level set A(f, c) is t-convex.

The proof of this lemma is elementary, therefore, it is omitted. The
following lemma describes the basic properties of the set T (f) of a given
function f . Its statement is analogous to Lemma 1.

Lemma 7. Let D ⊆ X be a nonempty F-convex set and f : D → R.
Then, for the set T (f), we have the following properties:
(i) if t ∈ T (f), then 1− t ∈ T (f);
(ii) if r, s, t ∈ T (f), then tr + (1− t)s ∈ T (f).

Proof. By Lemma 6, we have that

T (f) =
⋂

c∈R
T

(
A(f, c)

)
.

Thus, the statement directly follows from Lemma 1.

As a consequence of Lemma 2 and Lemma 7, we can see that T (f) is
dense in [0, 1] provided that T (f)∩ ]0, 1[ 6= ∅. However, the density of T (f) in
[0, 1] does not imply that 1

2 ∈ T (f). In other words, t-quasiconvex functions,
in general, need not be midpoint-quasiconvex (in contrast to the theorem of
Kuhn [11] stating that t-convex functions are always midpoint-convex). For
instance, consider the function f : R→ R defined by

f(x) =





0 if x =
k

3n
, k ∈ Z, n ∈ N,

1 otherwise.

Then 1
3 ∈ T (f), but 1

2 /∈ T (f). Note also that for some t ∈ ]0, 1[ the t-
quasiconvexity implies midpoint-quasiconvexity. For instance, if f is (2−

1
n )-

quasiconvex for some n ∈ N, then it is midpoint-quasiconvex. Indeed, if t ∈
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∈ T (f), then, by Lemma 7, t2 ∈ T (f), and, by induction, tn ∈ T (f) for every
n ∈ N. Therefore, if 2−

1
n ∈ T (f), then 1

2 =
(
2−

1
n

)n ∈ T (f).
The following result describes the algebraic structure of the set T (f) ∩

∩T (−f). It is an easy consequence of Theorem 3 and Lemma 6.

Theorem 8. Let D ⊆ X be a nonempty F-convex set and f : D → R.
Let s, t ∈ F ∩ [0, 1] with t(s + 1) ≤ 1 such that f is {s, t}-quasiaffine. Then f
is also 1−t

1−ts -quasiaffine.

Proof. By Lemma 6 and the t-quasiaffinity of f , we have, for all c ∈ R
that A(f, c) and B(f, c) = A(−f,−c) are {s, t}-convex subsets of D. Clearly,
A(f, c) and B(f, c) are disjoint and D = A(f, c) ∪ B(f, c). Thus, applying
Theorem 3, it follows that the sets A(f, c) and B(f, c) are 1−t

1−ts -convex for all
c ∈ R. Now, by Lemma 6 again, we obtain that f and −f are 1−t

1−ts -quasiconvex,
i.e. f is 1−t

1−ts -quasiaffine.

Applying Lemma 6 and Theorem 4, we can state and prove the main result
of this paper, which generalizes Theorem 1 in [14].

Theorem 9. Let D be an F-convex set and t ∈ F∩ ]0, 1[. Assume that
f : D → R is a t-quasiaffine function. Then f is also Q-quasiaffine.

Proof. Arguing in the same way as in the proof of Theorem 8, the t-
quasiaffinity of f and Theorem 4 yield that the sets A(f, c) and B(f, c) are
Q-convex for all c ∈ R. Now, by Lemma 6 again, it follows that f is Q-
quasiaffine.

In view of Theorem 9, we immediately obtain the following

Corollary 10. Let D be a Q-convex set and f : D → R. Then f : D → R
is midpoint-quasiaffine if and only if it is Q-quasiaffine.

4. Strictly t-quasiaffine functions

The result of this section shows that strict t-quasiaffinity implies strict
Q-quasiaffinity.

Theorem 11. Let D be an F-convex set and t ∈ F∩ ]0, 1[. Assume that
f : D → R is a strictly t-quasiaffine function. Then f is also strictly Q-
quasiaffine.

Proof. In view of Theorem 9, the function f is Q-quasiaffine.
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We show first that f is strictly midpoint-quasiaffine. Let x, y ∈ D such
that f(x) 6= f(y). Without loss of generality, we may assume that f(x) < f(y).
By the Q-quasiaffinity, we have that (5) holds. We have to prove that both
inequalities in (5) are strict. We will only show that f

(
x+y

2

)
< f(y)

(
the proof

of f(x) < f
(

x+y
2

)
is analogous

)
. Suppose, on the contrary, that f

(
x+y

2

)
=

= f(y).
Define

(7) u := tx + (1− t)
x + y

2
and v := t

x + y

2
+ (1− t)y.

Then, we have the following identity (cf. [6]):

(8)
x + y

2
= (1− t)u + tv.

By (7) and the t-quasiaffinity of f ,

f(v) = f

(
t
x + y

2
+ (1− t)y

)
= max

{
f

(
x + y

2

)
, f(y)

}
= f

(
x + y

2

)
.

Since f(x) < f(y) = f
(

x+y
2

)
, by (7) and the strict t-quasiaffinity of f , we get

f(u) = f

(
tx + (1− t)

x + y

2

)
< max

{
f(x), f

(
x + y

2

)}
= f

(
x + y

2

)
.

Consequently, using the strict quasiaffinity once more, we obtain

f

(
x + y

2

)
= f (tv + (1− t)u) < max{f(u), f(v)} = f(v) = f

(
x + y

2

)
,

which is an obvious contradiction showing that f is strictly midpoint-quasiaffine.

Now we will prove (similarly as in the case of Theorem 1 in [14]) that f is
strictly Q-quasiaffine. By induction, we can get that

(9) min{f(x), f(y)} < f
(
dx + (1− d)y

)
< max{f(x), f(y)}

if f(x) 6= f(y) and d ∈]0, 1[ is a dyadic rational number, that is d = k/2n, where
k, n ∈ N, 0 < k < 2n. Let r ∈ ]0, 1[∩Q be arbitrary and f(x) 6= f(y). There
exist dyadic rational numbers d′, d′′ such that 0 < d′ < r < d′′ < 1. Then
rx +(1− r)y is a Q-convex combination of d′x+(1− d′)y and d′′x+(1− d′′)y.
Since, by Theorem 9, f is Q-quasiaffine, we have

min
{
f(d′x + (1− d′)y), f(d′′x + (1− d′′)y)

} ≤ f
(
rx + (1− r)y

) ≤
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≤ max
{
f(d′x + (1− d′)y), f(d′′x + (1− d′′)y)

}
.

On the other hand, we have (9) with d = d′ and d = d′′. These inequalities
together with the previous one yield

min{f(x), f(y)} < f
(
rx + (1− r)y

)
< max{f(x), f(y)}.

Hence f is strictly Q-quasiaffine, which completes the proof.

In view of Theorem 11, we immediately obtain the following

Corollary 12. Let D be a Q-convex set and f : D → R. Then f : D → R
is strictly midpoint-quasiaffine if and only if it is strictly Q-quasiaffine.

5. M-quasiaffinity

We can generalize the notion of t-quasiaffine functions by replacing the
weighted arithmetic mean used in its definition by a more general mean. Given
two points x, y ∈ X, we define

]x, y[ := {tx + (1− t)y : t ∈ ]0, 1[}, [x, y] := {tx + (1− t)y : t ∈ [0, 1]}.

Given a convex set D ⊆ X, a function M : D ×D → D is called a strict mean
on D if

M(x, y) ∈ ]x, y[, x, y ∈ D, x 6= y

and
M(x, x) = x, x ∈ D.

Let D be a convex subset of X. A function f : D → R is said to be M -
quasiaffine if

min{f(x), f(y)} ≤ f
(
M(x, y)

) ≤ max{f(x), f(y)}, x, y ∈ D.

Of course if t ∈ ]0, 1[, then M(x, y) = tx + (1 − t)y is a strict mean and M -
quasiaffinity of f coincides with its t-quasiaffinity. In this section, we consider
the question if M -quasiaffinity implies midpoint-quasiaffinity. The following
example shows that without any additional assumptions such implication does
not hold.

Example 2. Let M : R× R→ R be a strict mean defined by
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M(x, y) =





3
4
x +

1
4
y, if x, y /∈ Q and

x + y

2
∈ Q,

1
2
x +

1
2
y, otherwise.

The Dirichlet function

D(x) =

{ 1 if x ∈ Q,

0 if x /∈ Q

is M -quasiaffine (note that M(x, y) ∈ Q if x, y ∈ Q, and M(x, y) /∈ Q if
x, y /∈ Q). However, by the theorem of Császár, it is not midpoint-quasiaffine
(because it is measurable and non-monotone).

This example shows that M -quasiaffine functions need not be midpoint-
quasiaffine even if they are measurable. However, if an M -quasiaffine function
is continuous, then it is quasiaffine, that is it satisfies (2) for every t ∈ [0, 1].

Theorem 13. Let X be a Hausdorff topological-vector space, D be a
convex subset of X and M be a strict mean on X. If a function f : D → R is
M -quasiaffine and continuous, then it is quasiaffine.

Proof. Let x, y ∈ D, x 6= y. Define

C =
{
z ∈ D : min{f(x), f(y)} ≤ f(z) ≤ max{f(x), f(y)}}.

Clearly, x, y ∈ C and C is closed (because f is continuous). To prove that f
is quasiaffine, it is enough to show that [x, y] ⊂ C. Suppose, contrary to this
claim, that there exists an z0 ∈ ]x, y[ \C. Then there exist points x′, y′ ∈ [x, y]∩
∩C such that ]x′, y′[∩C = ∅. Since x′, y′ ∈ C, we have f(x′) ≤ max{f(x), f(y)}
and f(y′) ≤ max{f(x), f(y)}. Hence, by M -quasiaffinity,

f
(
M(x′, y′)

) ≤ max{f(x′), f(y′)} ≤ max{f(x), f(y)}.

Analogously
f
(
M(x′, y′)

) ≥ min{f(x), f(y)}.
Consequently M(x′, y′) ∈ C. On the other hand we have M(x′, y′) ∈ ]x′, y′[,
because M is a strict mean. This contradicts the fact that ]x′, y′[∩C = ∅ and
completes the proof.

In the case when X = R and M is a strict mean which is continuous
in both variables, the above result is a consequence of the characterization of
quasiconvexity presented in [9].
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Institute of Mathematics
University of Debrecen
H-4010 Debrecen, Pf. 12
Hungary
pales@math.klte.hu






