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ON TWO GAMES IN THE REAL LINE

G. Nagy (Budapest, Hungary)

Dedicated to Professor Imre Kátai on his 70th birthday

Abstract. Consider the next game. The ammunitions of player A are:

{λ1, λ2, . . .} (λ1 > λ2 > . . . ≥ 0). The ammunitions of player B are:

{ω1, ω2, . . .} (ω1 > ω2 > . . . ≥ 0). The game starts from 0. In the nth

step A chooses εn ∈ {0,±1} and calculates yn:

xn−1 = εnλn + yn.

Then B chooses δn ∈ {0,±1} and calculates xn:

yn = δnωn + xn.

The goal of player A is to reach x0 as
∞∑

n=1
(εnλn + δnωn), but player B

tries to prevent A from it. In the case λn = λn and ωn = ωn I managed to

determine the winning set of A, while in the case λn = λn and ωn = aλn

for some values of a I managed to set up only a conjecture, but for the rest

values the winning set of A is also known.

1. Introduction

Consider the next game. The ammunitions of player A are: {λ1, λ2, . . .},
(λ1 > λ2 > . . . ≥ 0). The ammunitions of player B are: {ω1, ω2, . . .}, (ω1 >
> ω2 > . . . ≥ 0). The game starts from 0. In the 1st step A chooses ε1 ∈
∈ {0,±1}, and calculates y1:

x0 = ε1λ1 + y1.
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Then B chooses δ1 ∈ {0,±1}, and calculates x1:

y1 = δ1ω1 + x1.

After that A follows again. In the nth step A chooses εn ∈ {0,±1} and
calculates yn:

xn−1 = εnλn + yn.

Then B chooses δn ∈ {0,±1} and calculates xn:

yn = δnωn + xn.

It is clear that

x0 = ε1λ1 + δ1ω1 + . . . + εnλn + δnωn + xn.

The goal of player A is to choose εn so that x0 =
∞∑

n=1
(εnλn + δnωn), i.e. that

xn → 0 (n → ∞). The purpose of B is to frustrate it. We would like to
determine the set E of those x0(∈ R) for which A wins. We say that B wins if
A does not win. Thus B wins if x 6∈ E.

We introduce some notations:

Ln :=
∞∑

k=n+1

λk,

Wn :=
∞∑

k=n+1

ωk,

Mn := Ln −Wn − ωn,

Nn := −(Ln −Wn) + λn + ωn,

Hn := [−(Ln −Wn),−Nn+1] ∪ [−Mn+1, Mn+1] ∪ [Nn+1, (Ln −Wn)].

1.1. Statement. x0 ∈ E if and only if xn ∈ [−(Ln −Wn), Ln −Wn] for
every n.

Proof. Sufficiency. Ln −Wn tends to zero (because Ln and Wn tend to
zero), so if the condition holds, then xn tends to zero, consequently A wins.

Necessity. Suppose that x0 > L0 −W0. Then for the choice δj = −1 (j =
= 1, 2, . . .) of B, A cannot reach x0, the maximal number which can be
represented in the form ε1λ1+δ1ω1+. . . is L0−W0. Similarly, if for some integer
n xn > Ln − Wn, xn cannot be written as εn+1λn+1 + δn+1ωn+1 + . . . , if B
chooses δn+1 = δn+2 = . . . = −1. Thus, if x0 ∈ E, then xn ≤ Ln−Wn (n ∈ N).
It is clear that E = −E. Thus −xn ≤ Ln −Wn (n ∈ N), and so

xn ∈ [−(Ln −Wn), Ln −Wn] (n ∈ N).
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For arbitrary {λi}∞i=1 and {ωi}∞i=1 it would be too hard to say anything,
so we examine the next two cases:

1. λn = λn and ωn = ωn
(

a =
ω

λ
< 1, 1/3 < λ < 1

)
,

2. λn = λn and ωn = aλn, where 0 < a < 1 and 1/3 < λ < 1.

2. The first case

2.1. Statement. If a > λ
λ2−λ+1 , then E is the empty set.

Proof. Let us solve the inequality ω1 > L1 −W1:

ω1 > L1 −W1,

aλ >
λ2

1− λ
− a2λ2

1− aλ
,

aλ(1− λ)(1− aλ) > λ2(1− aλ)− a2λ2(1− λ),

a− a2λ− aλ + a2λ2 > λ− aλ2 − a2λ + a2λ2,

a(λ2 − λ + 1) > λ,

a >
λ

λ2 − λ + 1
.

Whilst |y1| ≥ 0 for all x0, thus with suitable choice of δ1 B can achieve that
|x1| > ω1, which means that A cannot win.

2.2. Statement. If a ≤ 3λ−1
3λ2−3λ+2 , then E = [−(L0 −W0), L0 −W0].

Proof. If |x0| > L0 −W0, then A cannot win because of Statement 1.1.
Therefore, and from the symmetry E = −E we may assume that 0 ≤ xn−1 ≤
≤ Ln−1−Wn−1. If λn < 2xn−1, then A chooses εn = 1, and εn = 0 in the case
0 ≤ xn−1 ≤ λn/2. Then

xn−1 = εnλn + δnωn + xn.

We have to prove that |xn| ≤ Ln −Wn for every choice δn ∈ {−1, 0, 1}. We
distinguish three cases.

Case I. λn ≤ xn−1.
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Then εn = 1, xn = xn−1−λn− δnωn, therefore xn ≤ xn−1−λn +ωn, and
xn ≥ −ωn, consequently

|xn| ≤ xn−1−λn+ωn ≤ Ln−1−Wn−1−λn+ωn = Ln+λn−Wn−ωn−λn+ωn =

Ln −Wn.

Case II. xn−1 < λn < 2xn−1.

In this case
|xn| ≤ λn − xn−1 + ωn < λn/2 + ωn.

Case III. 2xn−1 ≤ λn.

In this case
|xn| ≤ xn−1 + ωn < λn/2 + ωn.

Solve the inequality λn/2 + ωn ≤ Ln −Wn :

λn/2 + anλn ≤ λn+1

1− λ
− an+1λn+1

1− aλ
,

1− λ− aλ + aλ2 + 2an − 2anλ− 2an+1λ + 2an+1λ2 ≤
≤ 2λ− 2aλ2 − 2an+1λ + 2an+1λ2,

an(2− 2λ) + a(3λ2 − λ) ≤ 3λ− 1.

Since a < 1

an(2− 2λ) + a(3λ2 − λ) ≤ a(2− 2λ) + a(3λ2 − λ) = a(3λ2 − 3λ + 2).

Thus if a ≤ 3λ−1
3λ2−3λ+2 , then the inequality holds.

2.3. Statement. If λ
λ2−λ+1 ≥ a > 3λ−1

3λ2−3λ+2 and λ > 1/2, then E = H0.

Proof. The proof is divided into three parts:
A) If x0 /∈ H0, then A cannot win.
B) If n is large enough, then Hn = [−(Ln −Wn), Ln −Wn].
C) If xn ∈ Hn, then xn+1 ∈ Hn+1.

A) Because of Statement 1.1 A cannot win if |x0| > L0−W0. Assume that
x0 > L1−W1−ω. If A chooses ε1 = 0 or ε1 = −1, then for the choice δ1 = −1
x1 > ÃL1 −W1 follows, so A must choose ε1 = 1. If x0 < λ + ω − (L1 −W1)
holds, too, then for the choice δ1 = 1 x1 < −(L1 −W1) follows.

B) We have

Mn+1 −Nn+1 = {Ln+1 −Wn+1 −ωn+1}− {λn+1 + ωn+1 − (Ln+1 −Wn+1)} =
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= 2(Ln+1 −Wn+1)− λn+1 − 2ωn+1 =

= 2

{
λn+2

1− λ
− an+2λn+2

1− aλ

}
− λn+1 − 2an+1λn+1,

and so
Mn+1 −Nn+1

λn+1
= 2λ

{
1

1− λ
− an+2

1− aλ

}
− 1− 2an+1.

The right hand side tends to 2λ
1−λ − 1 as n →∞, therefore B) holds if λ > 1/3.

C) We have

2.4. Statement. xn ∈ Hn =⇒ yn+1 ∈ [−Mn+1,Mn+1].

The choice of A for εn+1 is given:
if xn ∈ [−Mn+1,Mn+1], then A must choose εn+1 = 0,

if |xn| ∈ [Nn+1, (Ln−Wn)], then A must choose εn+1 = sgn(xn), otherwise
B can choose δn+1 to satisfy |xn+1| > Ln+1 −Wn+1.

[Nn+1, Ln −Wn]− λn+1 =

=[λn+1 + ωn+1 − (Ln+1 −Wn+1), Ln −Wn]− λn+1 =

=[−(Ln+1 −Wn+1 − ωn+1), Ln+1 −Wn+1 − ωn+1] = [−Mn+1, Mn+1].

After that, if δn+1 = 0, then:
I.: Lk −Wk − ωk < Lk+1 −Wk+1 − ωk+1,

if δn+1 = ±1, then:
II.: ωk − (Lk −Wk) + ωk ≥ λk+1 + ωk+1 − (Lk+1 −Wk+1) should hold.

I.: Lk−Wk−ωk = λk+1−ωk+1+Lk+1−Wk+1−ωk ≤ Lk+1−Wk+1−ωk+1,
λk+1 ≤ ak · λk,
λ ≤ ak.

II.: ωk−(Lk+1−Wk+1)−λk+1+ωk+1+ωk ≥ λk+1+ωk+1−(Lk+1−Wk+1),
2ωk ≥ 2λk+1,
ak ≥ λ.

We need: if λn

2 + ωn > Ln−Wn ⇔ an(2− 2λ) + a(3λ2− λ) > 3λ− 1 then
an−1 ≥ λ.

Suppose indirectly that an−1 < λ ⇔ an < aλ. Then

3λ− 1 < an(2− 2λ) + a(3λ2 − λ) < aλ(2− 2λ) + a(3λ2 − λ) ⇔ a >
3λ− 1
λ2 + λ

.
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We show the statement 3λ−1
λ2+λ > λ

λ2−λ+1 :

3λ3 − 4λ2 + 4λ− 1 > λ3 + λ2,
2λ3 − 5λ2 + 4λ− 1 = 2(λ− 1)2(λ− 1

2 ) > 0 ⇔ λ > 1
2 .

2.5. Statement. If λ
λ2−λ+1 ≥ a > 3λ−1

3λ2−3λ+2 and λ ≤ 1/2, then E is the
emptyset or the union of finitely many intervals.

We determine E. First we find the smallest n such that Hn = [−(Ln −
−Wn), Ln −Wn]. If xn−1 ∈ Hn−1, then A wins, so B wins if xn−1 6∈ Hn−1. It
can happen if yn−1 6∈ [−Mn−1,Mn−1] or yn−1 ∈ [−Mn−1,Mn−1] and |xn−1| ∈
∈ (Mn, Nn). The latter case stands if yn−1 ∈ [−Mn−1,Mn−1] and

yn−1 ∈ ±(Mn, Nn) ∪ ±[(Mn, Nn) + ωn−1] ∪ ±[(Mn, Nn)− ωn−1],

i.e.
yn−1 ∈

∈
(
±(Mn, Nn)∪±[(Mn, Nn)+ωn−1]∪±[(Mn, Nn)−ωn−1]

)
∩ [−Mn−1, Mn−1].

It is realized if and only if xn−2 ∈ Bn−2, where

Bn−2 =

=
(
±(Mn, Nn)∪±[(Mn, Nn)+ωn−1]∪±[(Mn, Nn)−ωn−1]

)
∩[−Mn−1,Mn−1]∪

∪
((

± (Mn, Nn) ∪ ±[(Mn, Nn) + ωn−1]∪

∪ ± [(Mn, Nn)− ωn−1]
)
∩ [−Mn−1,Mn−1]

)
+ λn−1∪

∪
((

± (Mn, Nn) ∪ ±[(Mn, Nn) + ωn−1] ∪ ±[(Mn, Nn)− ωn−1]
)
∩

∩[−Mn−1,Mn−1]
)
− λn−1.

Hence B wins if |xn−2| > Ln−2 − Wn−2 or xn−2 ∈ Bn−2. This holds if

yn−2 ∈
(
Bn−2 ∪ (Bn−2 + ωn−2) ∪ (Bn−2 − ωn−2)

)
∩ [−Mn−2, Mn−2] what is

true if xn−3 ∈ Bn−3, where

Bn−3 =
(
Bn−2 ∪ (Bn−2 + ωn−2) ∪ (Bn−2 − ωn−2)

)
∩ [−Mn−2,Mn−2]∪
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∪
((

Bn−2 ∪ (Bn−2 + ωn−2) ∪ (Bn−2 − ωn−2)
)
∩ [−Mn−2,Mn−2]

)
+ λn−2∪

∪
((

Bn−2 ∪ (Bn−2 + ωn−2) ∪ (Bn−2 − ωn−2)
)
∩ [−Mn−2,Mn−2]

)
− λn−2.

So B wins if |xn−3| > Ln−3−Wn−3 or xn−3 ∈ Bn−3. Continuing this procedure
we can determine the sets Bn−4, Bn−5, . . . , B0 and we can say that B wins if
|x0| > L0 −W0 or x0 ∈ B0, hence A wins if x0 ∈ [−(L0 −W0), L0 −W0] \B0.

Examples.
If λ = 0.35 and ω = 0.155, then E is the empty set.

If λ = 0.35 and ω = 0.156, then

E = [−0.00004941524, 0.00004941524] ∪ ±[0.3499505848, 0.3500494152].

If λ = 0.35 and ω = 0.154, then

E = ±[0.00494655847, 0.0064284416] ∪ ±[0.3435715584, 0.3450534415]∪
∪ ± [0, 3549465585, 0.3564284416].

If λ = 0.35 and ω = 0.153, then

E = ±[0.00455100581, 0.0048020712] ∪ ±[0.0049416788, 0.0064829942]∪
∪ ± [0.3435170058, 0.3450583212] ∪ ±[0.3451979288, 0.3454489942]∪
∪ ± [0.3545510058, 0.3548020712] ∪ ±[0.3549416788, 0.3564829942].

3. The second case

3.1. Statement. If a > λ, then E is the empty set.

Proof. Let us solve the inequality ω1 > L1 −W1 :

ω1 > L1 −W1,

aλ >
λ2

1− λ
− aλ2

1− λ
,

aλ(1− λ) > λ2 − aλ2,

a− aλ > λ− aλ,

a > λ.
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Whilst |y1| ≥ 0 for all x0 thus with suitable choice of δ1 B can obtain that
|x1| > ω1, which means that A cannot win.

3.2. Statement. If a ≤ 3
2λ− 1

2 , then E = [−(L0 −W0), L0 −W0].

Proof. If |x0| > L0 −W0, then A cannot win because of Statement 1.1.
Let S = [−(L0−W0), L0−W0] = [−(1−a)L0, (1−a)L0]. It is enough to prove
that for each x0 ∈ S there exists a choice of ε1 ∈ {−1, 0, 1} such that for every
choice of δ1 ∈ {−1, 0, 1} x1 ∈ λS, where x1 = x0 − ε1λ − δ1aλ. The choice
ε1 = 0 is suitable if x0 ∈ λS ∩ (λS − aλ)∩ (λS + aλ) = T. The right hand side
is an interval,

T = [−(1− a)λL0 + aλ, (1− a)λL0 − aλ],

since (1− a)λL0 − aλ ≥ −(1− a)λL0 + aλ. Indeed, this inequality holds true,
since 2(1 − a)λL0 ≥ 2aλ, which holds if and only if (1 − a) λ

1−λ ≥ a, i.e. if
λ ≥ a. Similarly, ε1 = 1 is suitable if x0 ∈ T + λ, and ε1 = −1 is suitable if
x0 ∈ T − λ. Finally we observe that

(T − λ) ∪ T ∪ (T + λ) = S,

if (1−a)λL0−aλ−λ ≥ −(1−a)λL0 +aλ which holds if and only if a ≤ 3
2λ− 1

2 .

3.3. Statement. If a = λ, then E = {0,±λ}.
Proof. If x0 6∈ {0,±λ}, then with suitable choice of δ1 B can obtain

that |x1| > ω1, which means that A cannot win. If x0 ∈ {0,±λ}, then with
the choices ε1 = sgn(x0) and εi = −δi−1 i ≥ 2 A wins trivially.

3.1. Remarks on the case λ > a > 3
2λ− 1

2

1. Conjecture. If λ > a > 3
2λ− 1

2 , then E is the empty set.

3.1.1. Lemma. If xn ∈ ±(Mn+1, Nn+1), then A cannot win.

3.1.2. Remark. Mn+1 < Nn+1 if a > 3λ
2 − 1

2 .

Proof of the remark.

Mn+1 < Nn+1,

Ln+1 −Wn+1 − ωn+1 < −(Ln+1 −Wn+1) + ωn+1 + λn+1,

2(Ln+1 −Wn+1) < λn+1 + 2ωn+1,

(Ln+1 −Wn+1) < λn+1/2 + ωn+1.

We have seen previously that it holds if and only if a > 3λ
2 − 1

2 .
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Proof of the lemma. We can assume that |xn| > 0. IfA chooses εn+1 = 0
or εn+1 = −1, then for the choice δn+1 = −1 we get

xn+1 > Ln+1 −Wn+1 − ωn+1 + ωn+1 = Ln+1 −Wn+1.

If A chooses εn+1 = 1, then B chooses δn+1 = 1, thus

xn+1 < −(Ln+1 −Wn+1) + ωn+1 + λn+1 − λn+1 − ωn+1 = −(Ln+1 −Wn+1).

So for any choice of A B can obtain |xn+1| > (Ln+1 −Wn+1), so A cannot
win.

3.1.3. Lemma. If |xn−1| ≤ Mn, then A must choose εn = 0, in the
opposite case B wins. If |xn−1| ≥ Nn, then A must choose εn = sgn(xn−1), if
not then B wins.

Proof. If |xn−1| ≤ Ln−Wn−ωn and εn = 1, then B chooses δn = 1, thus

xn ≤ Ln −Wn − ωn − λn − ωn ≤ Ln −Wn − 2(Ln −Wn) = −(Ln −Wn).

If εn = −1, then B reaches his goal with δn = −1. In the case |xn−1| ≥ Nn we
get the proof similarly to the proof of the previous lemma.

3.1.4. Lemma. If a > 2λ2

1+λ , then

Mn ≤ Nn+1.

Proof.

Mn ≤ Nn+1,

Ln −Wn − ωn ≤ −(Ln+1 −Wn+1) + ωn+1 + λn+1,

Ln+1 + λn+1 −Wn+1 − ωn+1 − ωn ≤ −Ln+1 + Wn+1 + ωn+1 + λn+1,

2Ln+1 ≤ 2Wn+1 + 2ωn+1 + ωn,

2λn+2

1− λ
≤ a

(
2λn+2

1− λ
+ 2λn+1 + λn

)
,

2λ2 ≤ a(2λ2 + 2λ− 2λ2 + 1− λ) = a(1 + λ),

2λ2

1 + λ
≤ a.

3.1.5. Statement. If a > 2λ2

1+λ , then E is the empty set.
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3.1.6. Remark.
2λ2

1 + λ
> 3λ/2− 1/2.

Proof of the remark. Let us solve the inequality

4λ2 > 3λ2 + 2λ− 1,

λ2 − 2λ + 1 > 0,

(λ− 1)2 > 0.

Proof. Let the strategy of B be the following: choose δn so that |xn| >
> Ln − Wn holds if he can, otherwise choose δn = 0. Whilst A tries to win
it is given what to choose because of Lemma 3.2. After the first step we get
|y1| ≤ M1. Whilst Mn ≤ Nn+1 A must choose εn = 0 always. Mn tends to
zero decreasingly so there will be such an n for which Mn−1 ≥ |y1| = . . . =
= |xn−1| = |yn| > Ln −Wn − ωn holds. For this n |xn| > Ln −Wn also holds.

Lemma 3.1.7. If a > λ2(1+λ)
1+λ2 , then

Nn+1 + ωn − λn+1 > Mn+2.

Proof.

Nn+1 + ωn − λn+1 > Mn+2,

−Ln+2 − λn+2 + Wn+2 + ωn+2 + ωn+1 + ωn > Ln+2 −Wn+2 − ωn+2,

2Wn+2 + 2ωn+2 + ωn+1 + ωn > 2Ln+2 + λn+2,

a

(
2λn+3

1− λ
+ 2λn+2 + λn+1 + λn

)
>

2λn+3

1− λ
+ λn+2,

a(2λ3 + 2λ2 − 2λ3 + λ− λ2 + 1− λ) = 2λ3 + λ2 − λ3,

a(λ2 + 1) > λ3 + λ2,

a >
λ2(1 + λ)

1 + λ2
.

3.1.8. If a > λ2(1+λ)
1+λ2 , then E is the empty set.

Proof. Let B choose δn = 0 while he cannot obtain |xn| > Ln −Wn or
|yn| > Nn holds. In the latter case let B start with choice δn = −1. Whilst the
distance Ln −Wn − |xn| will not change and Ln −Wn tends to zero there will
be such an l that

Mk < |xl| < Nk
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holds, thus A cannot win.

Lemma 3.1.9. If the winning set of A is E, then the winning set of A
after the first step is λ · E.

Proof. The winning strategy of A for some x0 ∈ E is the same as the
winning strategy for λx0 in the game played with the ammunitions {λ2, λ3, . . .}
and {ω2, ω3, . . .}, therefore the lemma is true.

3.1.10. Statement. If 3
2λ − 1

2 < a < λ, then there is no interval on
which A wins.

Proof. Suppose indirectly that A wins on the interval [a, b]. We can
assume that b < M1 and b − a is maximal. In the first step A must choose
ε1 = 0. If B chooses δ1 = 0, then λ·H must contain [a, b] but it is a contradiction
because the length of the longest interval contained by λ · E is λ · (b− a).
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Pázmány Péter sét. 1/C
H-1117 Budapest, Hungary
nagygabr@gmail.com






