ON TWO GAMES IN THE REAL LINE

G. Nagy (Budapest, Hungary)

Dedicated to Professor Imre Kátai on his 70th birthday

Abstract. Consider the next game. The ammunitions of player \mathcal{A} are: $\{\lambda_1, \lambda_2, \ldots\}$ $(\lambda_1 > \lambda_2 > \ldots \ge 0)$. The ammunitions of player \mathcal{B} are: $\{\omega_1, \omega_2, \ldots\}$ $(\omega_1 > \omega_2 > \ldots \ge 0)$. The game starts from 0. In the *n*th step \mathcal{A} chooses $\varepsilon_n \in \{0, \pm 1\}$ and calculates y_n :

$$x_{n-1} = \varepsilon_n \lambda_n + y_n.$$

Then \mathcal{B} chooses $\delta_n \in \{0, \pm 1\}$ and calculates x_n :

$$y_n = \delta_n \omega_n + x_n$$

The goal of player \mathcal{A} is to reach x_0 as $\sum_{n=1}^{\infty} (\varepsilon_n \lambda_n + \delta_n \omega_n)$, but player \mathcal{B} tries to prevent \mathcal{A} from it. In the case $\lambda_n = \lambda^n$ and $\omega_n = \omega^n$ I managed to determine the winning set of \mathcal{A} , while in the case $\lambda_n = \lambda^n$ and $\omega_n = a\lambda^n$ for some values of a I managed to set up only a conjecture, but for the rest values the winning set of \mathcal{A} is also known.

1. Introduction

Consider the next game. The ammunitions of player \mathcal{A} are: $\{\lambda_1, \lambda_2, \ldots\}$, $(\lambda_1 > \lambda_2 > \ldots \ge 0)$. The ammunitions of player \mathcal{B} are: $\{\omega_1, \omega_2, \ldots\}$, $(\omega_1 > \omega_2 > \ldots \ge 0)$. The game starts from 0. In the 1st step \mathcal{A} chooses $\varepsilon_1 \in \{0, \pm 1\}$, and calculates y_1 :

$$x_0 = \varepsilon_1 \lambda_1 + y_1.$$

Then \mathcal{B} chooses $\delta_1 \in \{0, \pm 1\}$, and calculates x_1 :

$$y_1 = \delta_1 \omega_1 + x_1.$$

After that \mathcal{A} follows again. In the *n*th step \mathcal{A} chooses $\varepsilon_n \in \{0, \pm 1\}$ and calculates y_n :

$$x_{n-1} = \varepsilon_n \lambda_n + y_n.$$

Then \mathcal{B} chooses $\delta_n \in \{0, \pm 1\}$ and calculates x_n :

$$y_n = \delta_n \omega_n + x_n.$$

It is clear that

$$x_0 = \varepsilon_1 \lambda_1 + \delta_1 \omega_1 + \ldots + \varepsilon_n \lambda_n + \delta_n \omega_n + x_n.$$

The goal of player \mathcal{A} is to choose ε_n so that $x_0 = \sum_{n=1}^{\infty} (\varepsilon_n \lambda_n + \delta_n \omega_n)$, i.e. that $x_n \to 0 \ (n \to \infty)$. The purpose of \mathcal{B} is to frustrate it. We would like to determine the set E of those $x_0 (\in \mathbb{R})$ for which \mathcal{A} wins. We say that \mathcal{B} wins if \mathcal{A} does not win. Thus \mathcal{B} wins if $x \notin E$.

We introduce some notations:

$$\begin{split} L_{n} &:= \sum_{k=n+1}^{\infty} \lambda_{k}, \\ W_{n} &:= \sum_{k=n+1}^{\infty} \omega_{k}, \\ M_{n} &:= L_{n} - W_{n} - \omega_{n}, \\ N_{n} &:= -(L_{n} - W_{n}) + \lambda_{n} + \omega_{n}, \\ H_{n} &:= [-(L_{n} - W_{n}), -N_{n+1}] \cup [-M_{n+1}, M_{n+1}] \cup [N_{n+1}, (L_{n} - W_{n})]. \end{split}$$

1.1. Statement. $x_0 \in E$ if and only if $x_n \in [-(L_n - W_n), L_n - W_n]$ for every n.

Proof. Sufficiency. $L_n - W_n$ tends to zero (because L_n and W_n tend to zero), so if the condition holds, then x_n tends to zero, consequently \mathcal{A} wins.

Necessity. Suppose that $x_0 > L_0 - W_0$. Then for the choice $\delta_j = -1$ (j = 1, 2, ...) of \mathcal{B} , \mathcal{A} cannot reach x_0 , the maximal number which can be represented in the form $\varepsilon_1\lambda_1 + \delta_1\omega_1 + ...$ is $L_0 - W_0$. Similarly, if for some integer $n x_n > L_n - W_n$, x_n cannot be written as $\varepsilon_{n+1}\lambda_{n+1} + \delta_{n+1}\omega_{n+1} + ...$, if \mathcal{B} chooses $\delta_{n+1} = \delta_{n+2} = ... = -1$. Thus, if $x_0 \in E$, then $x_n \leq L_n - W_n$ $(n \in \mathbb{N})$. It is clear that E = -E. Thus $-x_n \leq L_n - W_n$ $(n \in \mathbb{N})$, and so

$$x_n \in \left[-(L_n - W_n), L_n - W_n\right] \ (n \in \mathbb{N}).$$

For arbitrary $\{\lambda_i\}_{i=1}^{\infty}$ and $\{\omega_i\}_{i=1}^{\infty}$ it would be too hard to say anything, so we examine the next two cases:

1.
$$\lambda_n = \lambda^n$$
 and $\omega_n = \omega^n$ $\left(a = \frac{\omega}{\lambda} < 1, 1/3 < \lambda < 1\right)$,
2. $\lambda_n = \lambda^n$ and $\omega_n = a\lambda^n$, where $0 < a < 1$ and $1/3 < \lambda < 1$.

2. The first case

2.1. Statement. If $a > \frac{\lambda}{\lambda^2 - \lambda + 1}$, then E is the empty set. **Proof.** Let us solve the inequality $\omega_1 > L_1 - W_1$:

$$\begin{split} \omega_1 > L_1 - W_1, \\ a\lambda > \frac{\lambda^2}{1-\lambda} - \frac{a^2\lambda^2}{1-a\lambda}, \\ a\lambda(1-\lambda)(1-a\lambda) > \lambda^2(1-a\lambda) - a^2\lambda^2(1-\lambda), \\ a - a^2\lambda - a\lambda + a^2\lambda^2 > \lambda - a\lambda^2 - a^2\lambda + a^2\lambda^2, \\ a(\lambda^2 - \lambda + 1) > \lambda, \\ a > \frac{\lambda}{\lambda^2 - \lambda + 1}. \end{split}$$

Whilst $|y_1| \ge 0$ for all x_0 , thus with suitable choice of $\delta_1 \mathcal{B}$ can achieve that $|x_1| > \omega_1$, which means that \mathcal{A} cannot win.

2.2. Statement. If $a \leq \frac{3\lambda-1}{3\lambda^2-3\lambda+2}$, then $E = [-(L_0 - W_0), L_0 - W_0]$.

Proof. If $|x_0| > L_0 - W_0$, then \mathcal{A} cannot win because of Statement 1.1. Therefore, and from the symmetry E = -E we may assume that $0 \le x_{n-1} \le L_{n-1} - W_{n-1}$. If $\lambda^n < 2x_{n-1}$, then \mathcal{A} chooses $\varepsilon_n = 1$, and $\varepsilon_n = 0$ in the case $0 \le x_{n-1} \le \lambda^n/2$. Then

$$x_{n-1} = \varepsilon_n \lambda^n + \delta_n \omega^n + x_n.$$

We have to prove that $|x_n| \leq L_n - W_n$ for every choice $\delta_n \in \{-1, 0, 1\}$. We distinguish three cases.

Case I. $\lambda^n \leq x_{n-1}$.

Then $\varepsilon_n = 1$, $x_n = x_{n-1} - \lambda^n - \delta_n \omega^n$, therefore $x_n \leq x_{n-1} - \lambda^n + \omega^n$, and $x_n \geq -\omega^n$, consequently

$$|x_n| \le x_{n-1} - \lambda^n + \omega^n \le L_{n-1} - W_{n-1} - \lambda^n + \omega^n = L_n + \lambda^n - W_n - \omega^n - \lambda^n + \omega^n = L_n - W_n.$$

Case II. $x_{n-1} < \lambda^n < 2x_{n-1}$.

In this case

$$|x_n| \le \lambda^n - x_{n-1} + \omega^n < \lambda^n/2 + \omega^n.$$

Case III. $2x_{n-1} \leq \lambda^n$.

In this case

$$|x_n| \le x_{n-1} + \omega^n < \lambda^n/2 + \omega^n.$$

Solve the inequality $\lambda^n/2 + \omega^n \leq L_n - W_n$:

$$\begin{split} \lambda^n/2 + a^n \lambda^n &\leq \frac{\lambda^{n+1}}{1-\lambda} - \frac{a^{n+1}\lambda^{n+1}}{1-a\lambda},\\ 1 - \lambda - a\lambda + a\lambda^2 + 2a^n - 2a^n\lambda - 2a^{n+1}\lambda + 2a^{n+1}\lambda^2 &\leq \\ &\leq 2\lambda - 2a\lambda^2 - 2a^{n+1}\lambda + 2a^{n+1}\lambda^2,\\ &a^n(2-2\lambda) + a(3\lambda^2 - \lambda) \leq 3\lambda - 1. \end{split}$$

Since a < 1

$$a^{n}(2-2\lambda) + a(3\lambda^{2}-\lambda) \le a(2-2\lambda) + a(3\lambda^{2}-\lambda) = a(3\lambda^{2}-3\lambda+2).$$

Thus if $a \leq \frac{3\lambda - 1}{3\lambda^2 - 3\lambda + 2}$, then the inequality holds.

2.3. Statement. If $\frac{\lambda}{\lambda^2 - \lambda + 1} \ge a > \frac{3\lambda - 1}{3\lambda^2 - 3\lambda + 2}$ and $\lambda > 1/2$, then $E = H_0$. **Proof.** The proof is divided into three parts:

- A) If $x_0 \notin H_0$, then \mathcal{A} cannot win.
- B) If n is large enough, then $H_n = [-(L_n W_n), L_n W_n].$
- C) If $x_n \in H_n$, then $x_{n+1} \in H_{n+1}$.

A) Because of Statement 1.1 \mathcal{A} cannot win if $|x_0| > L_0 - W_0$. Assume that $x_0 > L_1 - W_1 - \omega$. If \mathcal{A} chooses $\varepsilon_1 = 0$ or $\varepsilon_1 = -1$, then for the choice $\delta_1 = -1$ $x_1 > L_1 - W_1$ follows, so \mathcal{A} must choose $\varepsilon_1 = 1$. If $x_0 < \lambda + \omega - (L_1 - W_1)$ holds, too, then for the choice $\delta_1 = 1$ $x_1 < -(L_1 - W_1)$ follows.

B) We have

$$M_{n+1} - N_{n+1} = \{L_{n+1} - W_{n+1} - \omega^{n+1}\} - \{\lambda^{n+1} + \omega^{n+1} - (L_{n+1} - W_{n+1})\} = 0$$

$$= 2(L_{n+1} - W_{n+1}) - \lambda^{n+1} - 2\omega^{n+1} =$$
$$= 2\left\{\frac{\lambda^{n+2}}{1-\lambda} - \frac{a^{n+2}\lambda^{n+2}}{1-a\lambda}\right\} - \lambda^{n+1} - 2a^{n+1}\lambda^{n+1},$$

and so

$$\frac{M_{n+1} - N_{n+1}}{\lambda^{n+1}} = 2\lambda \left\{ \frac{1}{1-\lambda} - \frac{a^{n+2}}{1-a\lambda} \right\} - 1 - 2a^{n+1}.$$

The right hand side tends to $\frac{2\lambda}{1-\lambda} - 1$ as $n \to \infty$, therefore B) holds if $\lambda > 1/3$.

C) We have

2.4. Statement.
$$x_n \in H_n \Longrightarrow y_{n+1} \in [-M_{n+1}, M_{n+1}].$$

The choice of \mathcal{A} for ε_{n+1} is given:

if $x_n \in [-M_{n+1}, M_{n+1}]$, then \mathcal{A} must choose $\varepsilon_{n+1} = 0$,

if $|x_n| \in [N_{n+1}, (L_n - W_n)]$, then \mathcal{A} must choose $\varepsilon_{n+1} = \operatorname{sgn}(x_n)$, otherwise \mathcal{B} can choose δ_{n+1} to satisfy $|x_{n+1}| > L_{n+1} - W_{n+1}$.

$$[N_{n+1}, L_n - W_n] - \lambda^{n+1} =$$

=[$\lambda^{n+1} + \omega^{n+1} - (L_{n+1} - W_{n+1}), L_n - W_n$] - $\lambda^{n+1} =$
=[$-(L_{n+1} - W_{n+1} - \omega^{n+1}), L_{n+1} - W_{n+1} - \omega^{n+1}$] = [$-M_{n+1}, M_{n+1}$].

After that, if
$$\delta_{n+1} = 0$$
, then:
I.: $L_k - W_k - \omega^k < L_{k+1} - W_{k+1} - \omega^{k+1}$,
if $\delta_{n+1} = \pm 1$, then:
II.: $\omega^k - (L_k - W_k) + \omega^k \ge \lambda^{k+1} + \omega^{k+1} - (L_{k+1} - W_{k+1})$ should hold.
I.: $L_k - W_k - \omega^k = \lambda^{k+1} - \omega^{k+1} + L_{k+1} - W_{k+1} - \omega^k \le L_{k+1} - W_{k+1} - \omega^{k+1}$,
 $\lambda^{k+1} \le a^k \cdot \lambda^k$,
 $\lambda \le a^k$.
II.: $\omega^k - (L_{k+1} - W_{k+1}) - \lambda^{k+1} + \omega^{k+1} + \omega^k \ge \lambda^{k+1} + \omega^{k+1} - (L_{k+1} - W_{k+1})$,
 $2\omega^k \ge 2\lambda^{k+1}$,
 $a^k \ge \lambda$.

We need: if $\frac{\lambda^n}{2} + \omega^n > L_n - W_n \Leftrightarrow a^n(2-2\lambda) + a(3\lambda^2 - \lambda) > 3\lambda - 1$ then $a^{n-1} \ge \lambda$.

Suppose indirectly that $a^{n-1} < \lambda \Leftrightarrow a^n < a\lambda$. Then

$$3\lambda - 1 < a^n(2 - 2\lambda) + a(3\lambda^2 - \lambda) < a\lambda(2 - 2\lambda) + a(3\lambda^2 - \lambda) \Leftrightarrow a > \frac{3\lambda - 1}{\lambda^2 + \lambda}.$$

We show the statement $\frac{3\lambda-1}{\lambda^2+\lambda} > \frac{\lambda}{\lambda^2-\lambda+1}$: $3\lambda^3 - 4\lambda^2 + 4\lambda - 1 > \lambda^3 + \lambda^2$, $2\lambda^3 - 5\lambda^2 + 4\lambda - 1 = 2(\lambda - 1)^2(\lambda - \frac{1}{2}) > 0 \Leftrightarrow \lambda > \frac{1}{2}$.

2.5. Statement. If $\frac{\lambda}{\lambda^2 - \lambda + 1} \ge a > \frac{3\lambda - 1}{3\lambda^2 - 3\lambda + 2}$ and $\lambda \le 1/2$, then E is the emptyset or the union of finitely many intervals.

We determine E. First we find the smallest n such that $H_n = [-(L_n - W_n), L_n - W_n]$. If $x_{n-1} \in H_{n-1}$, then \mathcal{A} wins, so \mathcal{B} wins if $x_{n-1} \notin H_{n-1}$. It can happen if $y_{n-1} \notin [-M_{n-1}, M_{n-1}]$ or $y_{n-1} \in [-M_{n-1}, M_{n-1}]$ and $|x_{n-1}| \in (M_n, N_n)$. The latter case stands if $y_{n-1} \in [-M_{n-1}, M_{n-1}]$ and

$$y_{n-1} \in \pm(M_n, N_n) \cup \pm[(M_n, N_n) + \omega_{n-1}] \cup \pm[(M_n, N_n) - \omega_{n-1}],$$

i.e.

 $y_{n-1} \in$

$$\in \left(\pm (M_n, N_n) \cup \pm [(M_n, N_n) + \omega_{n-1}] \cup \pm [(M_n, N_n) - \omega_{n-1}]\right) \cap [-M_{n-1}, M_{n-1}].$$

It is realized if and only if $x_{n-2} \in B_{n-2}$, where

 $B_{n-2} =$

$$= \left(\pm (M_n, N_n) \cup \pm [(M_n, N_n) + \omega_{n-1}] \cup \pm [(M_n, N_n) - \omega_{n-1}] \right) \cap [-M_{n-1}, M_{n-1}] \cup \\ \cup \left(\left(\pm (M_n, N_n) \cup \pm [(M_n, N_n) + \omega_{n-1}] \cup \\ \cup \pm [(M_n, N_n) - \omega_{n-1}] \right) \cap [-M_{n-1}, M_{n-1}] \right) + \lambda_{n-1} \cup \\ \cup \left(\left(\pm (M_n, N_n) \cup \pm [(M_n, N_n) + \omega_{n-1}] \cup \pm [(M_n, N_n) - \omega_{n-1}] \right) \cap \\ \cap [-M_{n-1}, M_{n-1}] \right) - \lambda_{n-1}.$$

Hence \mathcal{B} wins if $|x_{n-2}| > L_{n-2} - W_{n-2}$ or $x_{n-2} \in B_{n-2}$. This holds if $y_{n-2} \in (B_{n-2} \cup (B_{n-2} + \omega_{n-2}) \cup (B_{n-2} - \omega_{n-2})) \cap [-M_{n-2}, M_{n-2}]$ what is true if $x_{n-3} \in B_{n-3}$, where

$$B_{n-3} = \left(B_{n-2} \cup (B_{n-2} + \omega_{n-2}) \cup (B_{n-2} - \omega_{n-2}) \right) \cap [-M_{n-2}, M_{n-2}] \cup$$

$$\cup \left(\left(B_{n-2} \cup (B_{n-2} + \omega_{n-2}) \cup (B_{n-2} - \omega_{n-2}) \right) \cap [-M_{n-2}, M_{n-2}] \right) + \lambda_{n-2} \cup \\ \cup \left(\left(B_{n-2} \cup (B_{n-2} + \omega_{n-2}) \cup (B_{n-2} - \omega_{n-2}) \right) \cap [-M_{n-2}, M_{n-2}] \right) - \lambda_{n-2}.$$

So \mathcal{B} wins if $|x_{n-3}| > L_{n-3} - W_{n-3}$ or $x_{n-3} \in B_{n-3}$. Continuing this procedure we can determine the sets $B_{n-4}, B_{n-5}, \ldots, B_0$ and we can say that \mathcal{B} wins if $|x_0| > L_0 - W_0$ or $x_0 \in B_0$, hence \mathcal{A} wins if $x_0 \in [-(L_0 - W_0), L_0 - W_0] \setminus B_0$.

Examples.

If $\lambda = 0.35$ and $\omega = 0.155$, then E is the empty set.

If $\lambda = 0.35$ and $\omega = 0.156$, then

 $E = [-0.00004941524, 0.00004941524] \cup \pm [0.3499505848, 0.3500494152].$

If $\lambda = 0.35$ and $\omega = 0.154$, then

 $E = \pm [0.00494655847, 0.0064284416] \cup \pm [0.3435715584, 0.3450534415] \cup$

 $\cup \pm [0, 3549465585, 0.3564284416].$

If $\lambda = 0.35$ and $\omega = 0.153$, then

 $E = \pm [0.00455100581, 0.0048020712] \cup \pm [0.0049416788, 0.0064829942] \cup$

 $\cup \pm [0.3435170058, 0.3450583212] \cup \pm [0.3451979288, 0.3454489942] \cup$

 $\cup \pm [0.3545510058, 0.3548020712] \cup \pm [0.3549416788, 0.3564829942].$

3. The second case

3.1. Statement. If $a > \lambda$, then E is the empty set. **Proof.** Let us solve the inequality $\omega_1 > L_1 - W_1$:

$$\omega_1 > L_1 - W_1,$$
$$a\lambda > \frac{\lambda^2}{1-\lambda} - \frac{a\lambda^2}{1-\lambda},$$
$$a\lambda(1-\lambda) > \lambda^2 - a\lambda^2,$$
$$a - a\lambda > \lambda - a\lambda,$$
$$a > \lambda.$$

Whilst $|y_1| \ge 0$ for all x_0 thus with suitable choice of $\delta_1 \quad \mathcal{B}$ can obtain that $|x_1| > \omega_1$, which means that \mathcal{A} cannot win.

3.2. Statement. If $a \leq \frac{3}{2}\lambda - \frac{1}{2}$, then $E = [-(L_0 - W_0), L_0 - W_0]$.

Proof. If $|x_0| > L_0 - W_0$, then \mathcal{A} cannot win because of Statement 1.1. Let $S = [-(L_0 - W_0), L_0 - W_0] = [-(1-a)L_0, (1-a)L_0]$. It is enough to prove that for each $x_0 \in S$ there exists a choice of $\varepsilon_1 \in \{-1, 0, 1\}$ such that for every choice of $\delta_1 \in \{-1, 0, 1\}$ $x_1 \in \lambda S$, where $x_1 = x_0 - \varepsilon_1 \lambda - \delta_1 a \lambda$. The choice $\varepsilon_1 = 0$ is suitable if $x_0 \in \lambda S \cap (\lambda S - a\lambda) \cap (\lambda S + a\lambda) = T$. The right hand side is an interval,

$$T = [-(1-a)\lambda L_0 + a\lambda, (1-a)\lambda L_0 - a\lambda],$$

since $(1-a)\lambda L_0 - a\lambda \ge -(1-a)\lambda L_0 + a\lambda$. Indeed, this inequality holds true, since $2(1-a)\lambda L_0 \ge 2a\lambda$, which holds if and only if $(1-a)\frac{\lambda}{1-\lambda} \ge a$, i.e. if $\lambda \ge a$. Similarly, $\varepsilon_1 = 1$ is suitable if $x_0 \in T + \lambda$, and $\varepsilon_1 = -1$ is suitable if $x_0 \in T - \lambda$. Finally we observe that

$$(T - \lambda) \cup T \cup (T + \lambda) = S,$$

if $(1-a)\lambda L_0 - a\lambda - \lambda \ge -(1-a)\lambda L_0 + a\lambda$ which holds if and only if $a \le \frac{3}{2}\lambda - \frac{1}{2}$. **3.3. Statement.** If $a = \lambda$, then $E = \{0, \pm \lambda\}$.

Proof. If $x_0 \notin \{0, \pm \lambda\}$, then with suitable choice of $\delta_1 \quad \mathcal{B}$ can obtain that $|x_1| > \omega_1$, which means that \mathcal{A} cannot win. If $x_0 \in \{0, \pm \lambda\}$, then with the choices $\varepsilon_1 = \operatorname{sgn}(x_0)$ and $\varepsilon_i = -\delta_{i-1} \quad i \geq 2 \quad \mathcal{A}$ wins trivially.

3.1. Remarks on the case $\lambda > a > \frac{3}{2}\lambda - \frac{1}{2}$

Conjecture. If λ > a > ³/₂λ - ¹/₂, then E is the empty set.
 Lemma. If x_n ∈ ±(M_{n+1}, N_{n+1}), then A cannot win.
 Remark. M_{n+1} < N_{n+1} if a > ^{3λ}/₂ - ¹/₂.
 Proof of the remark.

$$M_{n+1} < N_{n+1},$$

$$L_{n+1} - W_{n+1} - \omega_{n+1} < -(L_{n+1} - W_{n+1}) + \omega_{n+1} + \lambda_{n+1},$$

$$2(L_{n+1} - W_{n+1}) < \lambda_{n+1} + 2\omega_{n+1},$$

$$(L_{n+1} - W_{n+1}) < \lambda_{n+1}/2 + \omega_{n+1}.$$

We have seen previously that it holds if and only if $a > \frac{3\lambda}{2} - \frac{1}{2}$.

Proof of the lemma. We can assume that $|x_n| > 0$. If \mathcal{A} chooses $\varepsilon_{n+1} = 0$ or $\varepsilon_{n+1} = -1$, then for the choice $\delta_{n+1} = -1$ we get

$$x_{n+1} > L_{n+1} - W_{n+1} - \omega_{n+1} + \omega_{n+1} = L_{n+1} - W_{n+1}$$

If \mathcal{A} chooses $\varepsilon_{n+1} = 1$, then \mathcal{B} chooses $\delta_{n+1} = 1$, thus

$$x_{n+1} < -(L_{n+1} - W_{n+1}) + \omega_{n+1} + \lambda_{n+1} - \lambda_{n+1} - \omega_{n+1} = -(L_{n+1} - W_{n+1}).$$

So for any choice of \mathcal{A} \mathcal{B} can obtain $|x_{n+1}| > (L_{n+1} - W_{n+1})$, so \mathcal{A} cannot win.

3.1.3. Lemma. If $|x_{n-1}| \leq M_n$, then \mathcal{A} must choose $\varepsilon_n = 0$, in the opposite case \mathcal{B} wins. If $|x_{n-1}| \geq N_n$, then \mathcal{A} must choose $\varepsilon_n = sgn(x_{n-1})$, if not then \mathcal{B} wins.

Proof. If $|x_{n-1}| \leq L_n - W_n - \omega_n$ and $\varepsilon_n = 1$, then \mathcal{B} chooses $\delta_n = 1$, thus

$$x_n \leq L_n - W_n - \omega_n - \lambda_n - \omega_n \leq L_n - W_n - 2(L_n - W_n) = -(L_n - W_n).$$

If $\varepsilon_n = -1$, then \mathcal{B} reaches his goal with $\delta_n = -1$. In the case $|x_{n-1}| \ge N_n$ we get the proof similarly to the proof of the previous lemma.

3.1.4. Lemma. If $a > \frac{2\lambda^2}{1+\lambda}$, then

$$M_n \le N_{n+1}$$

Proof.

$$M_n \leq N_{n+1},$$

$$L_n - W_n - \omega_n \leq -(L_{n+1} - W_{n+1}) + \omega_{n+1} + \lambda_{n+1},$$

$$L_{n+1} + \lambda_{n+1} - W_{n+1} - \omega_{n+1} - \omega_n \leq -L_{n+1} + W_{n+1} + \omega_{n+1} + \lambda_{n+1},$$

$$2L_{n+1} \leq 2W_{n+1} + 2\omega_{n+1} + \omega_n,$$

$$\frac{2\lambda^{n+2}}{1-\lambda} \leq a \left(\frac{2\lambda^{n+2}}{1-\lambda} + 2\lambda^{n+1} + \lambda^n\right),$$

$$2\lambda^2 \leq a(2\lambda^2 + 2\lambda - 2\lambda^2 + 1 - \lambda) = a(1+\lambda),$$

$$\frac{2\lambda^2}{1+\lambda} \leq a.$$

3.1.5. Statement. If $a > \frac{2\lambda^2}{1+\lambda}$, then E is the empty set.

3.1.6. Remark.

$$\frac{2\lambda^2}{1+\lambda} > 3\lambda/2 - 1/2.$$

Proof of the remark. Let us solve the inequality

2

$$\begin{aligned} 4\lambda^2 &> 3\lambda^2 + 2\lambda - 1, \\ \lambda^2 &- 2\lambda + 1 > 0, \\ (\lambda - 1)^2 &> 0. \end{aligned}$$

Proof. Let the strategy of \mathcal{B} be the following: choose δ_n so that $|x_n| > L_n - W_n$ holds if he can, otherwise choose $\delta_n = 0$. Whilst \mathcal{A} tries to win it is given what to choose because of Lemma 3.2. After the first step we get $|y_1| \leq M_1$. Whilst $M_n \leq N_{n+1} \mathcal{A}$ must choose $\varepsilon_n = 0$ always. M_n tends to zero decreasingly so there will be such an n for which $M_{n-1} \geq |y_1| = \ldots = |x_{n-1}| = |y_n| > L_n - W_n - \omega_n$ holds. For this $n |x_n| > L_n - W_n$ also holds.

Lemma 3.1.7. If $a > \frac{\lambda^2(1+\lambda)}{1+\lambda^2}$, then

$$N_{n+1} + \omega_n - \lambda_{n+1} > M_{n+2}.$$

Proof.

$$\begin{split} N_{n+1} + \omega_n - \lambda_{n+1} > M_{n+2}, \\ -L_{n+2} - \lambda_{n+2} + W_{n+2} + \omega_{n+2} + \omega_{n+1} + \omega_n > L_{n+2} - W_{n+2} - \omega_{n+2}, \\ 2W_{n+2} + 2\omega_{n+2} + \omega_{n+1} + \omega_n > 2L_{n+2} + \lambda_{n+2}, \\ a\left(\frac{2\lambda^{n+3}}{1-\lambda} + 2\lambda^{n+2} + \lambda^{n+1} + \lambda^n\right) > \frac{2\lambda^{n+3}}{1-\lambda} + \lambda^{n+2}, \\ a(2\lambda^3 + 2\lambda^2 - 2\lambda^3 + \lambda - \lambda^2 + 1 - \lambda) = 2\lambda^3 + \lambda^2 - \lambda^3, \\ a(\lambda^2 + 1) > \lambda^3 + \lambda^2, \\ a > \frac{\lambda^2(1+\lambda)}{1+\lambda^2}. \end{split}$$

3.1.8. If $a > \frac{\lambda^2(1+\lambda)}{1+\lambda^2}$, then E is the empty set.

Proof. Let \mathcal{B} choose $\delta_n = 0$ while he cannot obtain $|x_n| > L_n - W_n$ or $|y_n| > N_n$ holds. In the latter case let \mathcal{B} start with choice $\delta_n = -1$. Whilst the distance $L_n - W_n - |x_n|$ will not change and $L_n - W_n$ tends to zero there will be such an l that

$$M_k < |x_l| < N_k$$

holds, thus \mathcal{A} cannot win.

Lemma 3.1.9. If the winning set of \mathcal{A} is E, then the winning set of \mathcal{A} after the first step is $\lambda \cdot E$.

Proof. The winning strategy of \mathcal{A} for some $x_0 \in E$ is the same as the winning strategy for λx_0 in the game played with the ammunitions $\{\lambda_2, \lambda_3, \ldots\}$ and $\{\omega_2, \omega_3, \ldots\}$, therefore the lemma is true.

3.1.10. Statement. If $\frac{3}{2}\lambda - \frac{1}{2} < a < \lambda$, then there is no interval on which \mathcal{A} wins.

Proof. Suppose indirectly that \mathcal{A} wins on the interval [a, b]. We can assume that $b < M_1$ and b - a is maximal. In the first step \mathcal{A} must choose $\varepsilon_1 = 0$. If \mathcal{B} chooses $\delta_1 = 0$, then $\lambda \cdot H$ must contain [a, b] but it is a contradiction because the length of the longest interval contained by $\lambda \cdot E$ is $\lambda \cdot (b - a)$.

G. Nagy

Department of Computer Algebra Eötvös Loránd University Pázmány Péter sét. 1/C H-1117 Budapest, Hungary nagygabr@gmail.com