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OF CONTINUOUS FUNCTIONS
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Abstract. Four of our theorems are generalized such that no monotonicity

restriction on the entries of the summability matrix. The origin of these

theorems goes back to P. Chandra.

1. Introduction

In the paper [3] we generalized some theorems of P. Chandra. Roughly
speaking we replaced by ”almost monotone conditions” the classical mono-
tonicity ones claimed at the entries of summability matrix appearing in his
theorems. Now we make one step further. We reduce the restrictions further,
and do not claim monotonicity conditions at all. Our new results, naturally,
include the previous ones as special cases.

Before presenting our theorems we recall some definitions and notations.
Let f(x) be a 2π-periodic continuous function. Let sn(f, x) denote the

n-th partial sum of its Fourier series at x and let ω(δ) = ω(δ, f) denote the
modulus of continuity of f .

We shall use the notation L ¿ R at inequalities if there exists a positive
constant K such that L ≤ KR holds.
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Let A := (ank) (k, n = 0, 1, . . .) be a lower triangular infinite matrix of
non-negative numbers and let the A-transform of {sn(f, x)} be given by

Tn(f) := Tn(f, x) :=
n∑

k=0

anksk(f, x) n = 0, 1 . . . .

2. Theorems

Theorem 1. Let (ank) satisfy the following conditions:

(2.1) ank ≥ 0,

n∑

k=0

ank = 1, and ank = 0 if k > n.

Suppose ω(t) is such that

(2.2)

π∫

u

t−2ω(t)dt ¿ H(u) (u → 0+),

where H(u) ≥ 0 and

(2.3)

u∫

0

H(t)dt ¿ uH(u) (u → 0+).

Then

(2.4) ‖Tn(f)− f‖ ¿ αnnH(αnn),

where

αnk =
k∑

ν=0

|∆anν |, ∆anν := anν − anν+1,

and ‖ · ‖ denotes the supnorm.

Theorem 2. Let (2.1) and (2.2) hold. Then

(2.5) ‖Tn(f)− f‖ ¿ ω(π/n) + αnnH(π/n).
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If, in addition, ω(t) satisfies (2.3) then

(2.6) ‖Tn(f)− f‖ ¿ αnnH(π/n).

In the special case

(2.7) ank ≤ an,k+1, k < n,

Theorems 1 and 2 were proved by P. Chandra [1], furthermore under the
additional condition αnn ¿ ann, but omitting (2.7), by us [3].

Theorem 3. Demote

(2.8) Anm :=
m∑

ν=0

anν and γnm :=
n∑

k=m

|∆ank| (m ≤ n).

Then

(2.9) ‖Tn(f)− f‖ ¿ ω(π/n) +
n∑

k=1

k−1ω(π/k)(An,k+1 + kγnk).

Theorem 4. Let (2.2), (2.3) and (2.8) hold. Then

(2.10) ‖Tn(f)− f‖ ¿ γn0H(γn0).

We also underline that in the special case

(2.11) ank ≥ an,k+1, k < n,

Theorems 3 and 4 were proved by P. Chandra [2], and with the condition
γn0 ¿ ank instead of (2.11) in [3].

We call the reader’s attention to the fact that γn0 = αnn, consequently
Theorems 1 and 4 have the same assertion, therefore Theorem 4 in this general
form is superfluous, but its two previous shapes were diverse, and their proofs
were dissimilar, too. Now, evidently, it suffices to prove Theorem 1. We have
presented Theorem 4 in order to show this special fusion of two theorems by
means of generalization.
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3. Lemmas

The following two lemmas were proved in [1] and [2] implicitly.

Lemma 1. ([1]) If (2.2) and (2.3) hold then

π/n∫

0

ω(t)dt ¿ n−2H(π/n).

Lemma 2. ([2]) If (2.2) and (2.3) hold then

u∫

0

t−1ω(t)dt ¿ uH(u).

Lemma 3. If τ denotes the integer part of π/t, then

(3.1)
n∑

k=0

ank sin
(

k +
1
2

)
t ≤ Anτ + τγnτ

holds uniformly in 0 < t ≤ π.
Furthermore

(3.2)
n∑

k=0

ank sin
(

k +
1
2

)
t ¿ t−1αnn.

Remark. Naturally the constant in (3.2) depends on the sequence {ank},
but not on t.

Proof. An elementary calculation shows that for n ≥ m ≥ 0

(3.3)

∣∣∣∣∣
n∑

k=m

ank sin
(

k +
1
2

)
t sin

t

2

∣∣∣∣∣ ≤
1
2

[
anm +

n−1∑

k=m

|∆ank|+ ann

]
≤ γnm.

Hence
∣∣∣∣∣

n∑

k=0

ank sin
(

k +
1
2

)
t

∣∣∣∣∣ ≤ Anτ +

∣∣∣∣∣
n∑

k=τ

ank sin
(

k +
1
2

)
t

∣∣∣∣∣ ≤ Anτ + τγnτ
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follows, and this verifies (3.1).

It is easy to check that if m = 0 in (3.3) then the sum γn0 can be replaced
by αnn. This modified inequality plainly verifies (3.2). The proof of Lemma 3
is complete.

4. Proofs

Proof of Theorem 1. We have with Φx(t) := 1
2{f(x+t)+f(x−t)−2f(x)}

the following equality

Tn(f, x)− f(x) =
2
π

π∫

0

{
Φx(t)

(
2 sin

t

2

)−1 n∑

k=0

ank sin
(

k +
1
2

)
t

}
dt.

Hence

(4.1)

‖Tn(f)− f‖ ≤ 2
π

π∫

0

ω(t)
2 sin t

2

∣∣∣∣∣
n∑

k=0

ank sin
(

k +
1
2

)
t

∣∣∣∣∣ dt =

=
2
π




αnn∫

0

+

π∫

αnn


 =: I1 + I2, say.

By (2.1) the sum in the integral does not exceed 1 and thus using Lemma 2 we
have

(4.2) I1 ¿
αnn∫

0

t−1ω(t) ¿ αnnH(αnn).

By (3.2) and (2.2) we also have

(4.3) I2 ¿ αnn

π∫

αnn

t−2ω(t)dt ¿ αnnH(αnn).
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Combining (4.1), (4.2) and (4.3) we obtain (2.4) as asserted.

Proof of Theorem 2. Using again (4.1) in the following form

(4.4) ‖Tn(f)− f‖ ¿




π/n∫

0

+

π∫

π/n


 =: J1 + J2, say.

To the estimation of J1 we utilize the inequality | sin t| ≤ t and (2.1), thus

(4.5)

∣∣∣∣∣
n∑

k=0

ank sin
(

k +
1
2

)
t

∣∣∣∣∣ ≤ 2nt

n∑

k=0

ank ≤ 2nt,

whence

J1 ¿ n

π/n∫

0

ω(t)dt ¿ ω(π/n)

follows.
In the estimation of J2 we use (3.2) and (2.2), thus

(4.6) J2 ¿ αnn

π∫

π/n

t−2ω(t)dt ¿ αnnH(π/n).

Henceforth (4.4) and the last two estimations verify (2.5).
The assumption (2.3) insures the application of Lemma 1, thus by (4.5)

we get that

(4.7) J1 ¿ n

π/n∫

0

ω(t)dt ¿ n−1H(π/n).

An elementary consideration shows that

αn,n−1 ≥ max
ν

anν −min
ν

anν ,

furthermore
αnn = αn,n−1 + ann,
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thus
αnn ≥ max

ν
anν .

Since Ann = 1, therefore max
ν

anν ≥ (n + 1)−1. Putting this into (4.7) we get

J1 ¿ αnnH(π/n).

This and (4.6) imply (2.6). The proof is complete.

Proof of Theorem 3. Proceeding as in the proof of (2.5), we obtain that

(4.8) J1 ¿ ω(π/n),

and in the estimation of J2 we apply Lemma 3 with (3.1). Then we get that

(4.9)

J2 ¿
π∫

π/n

t−1ω(t)(Anτ + τγnτ )dt =
n−1∑

k=1

π/k∫

π/(k+1)

¿

¿
n−1∑

k=1

k−1ω(π/k)(An,k+1 + γnk).

Thus (4.8) and (4.9) imply (2.9), as stated.
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