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1. Introduction

Let q be an arbitrary fixed natural number ≥ 2. Then every natural
number n can be written uniquely as

n =
∞∑

k=0

ak(n)qk, 0 ≤ ak(n) ≤ q − 1

(q-adic expansion of n).

A complex-valued arithmetical function g(n) is called q-additive according
to [5], if g(n) satisfies the relations

g(0) = 0 and g(n) =
∞∑

k=0

g(ak(n)qk), n ∈ N,

whenever n has the above q-adic expansion.

It is clear that when we give the values of the function g on the set {rqk; 1 ≤
≤ r ≤ q − 1, k = 0, 1, . . .}, then the q-additive function g(n) is determined
uniquely by the above relations, and vice versa.

The most famous example of q-additive functions is the function sum of

digits Sq(n), which is defined by Sq(n) =
∞∑

k=0

ak(n). When q = 10, its values

are, for example, S10(9) = 9, S10(10) = 1, . . ., S10(99) = 18, S10(100) = 1,
. . .. The values of S10(n) fluctuate largely because of the raising-up to the
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upper decimal point, but the raising-up occurs regularly, so we can expect
both regularity and irregularity in the behaviour of Sq(n).

Some mathematicians studied about the mean value of Sq(n), see [3], [2],
[7], [9], and in 1975 H. Delange proved the following very interesting result:

Theorem A. (Delange [4]) We have, for any N ∈ N, that

1
N

N−1∑
n=0

Sq(n) =
q − 1
2 log q

log N + F

(
log N

log q

)
,

where the function F (x) is a periodic function with period 1, defined by either
of the following two ways (I) and (II):

(I)

F (x) =
q − 1

2
(1 + [x]− x)+

+ q1+[x]−x
∞∑

r=0

q−r

qr(q−1−[x]+x)∫

0

(
[qt]− q[t]− q − 1

2

)
dt,

where [x] denotes the largest integer not exceeding x.

(II) F (x) =
∑

k∈Z

Cke2πikx,

whose Fourier coefficients are given by

C0 =
q − 1
2 log q

(log(2π)− 1)− q + 1
4

,

Ck = i
q − 1
2πk

ζ
(

2πik
log q

)

1 + 2πik
log q

, k 6= 0,

where ζ(s) denotes the Riemann zeta-fuction.

This theorem realizes both of the regularity and irregularity of the function
Sq(n) beautifully, and it must be remarked that Delange proved this result only
by elementary calculations.

This result was generalized for much more general q-additive functions
by Mauclaire and Murata [6], whereas their proof based on complex function
theory. Their results are a little complicated but in the essence their proof goes
as follows (we change their notations into our language):
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For a q-additive function g(n), they introduced generic functions by power
series,

Gr(z) =
∞∑

k=0

g(rqk)zk, 1 ≤ r ≤ q − 1,

and they assumed

(H1) every Gr(z) converges at z = 0, and represents a rational function in z.

They further assumed

(H2) every pole of Gr(z) is contained in the circle |z| < √
q.

Then their theorem states

Theorem B. (Mauclaire-Murata [6]) Under the above notations and
assumptions, we have, for a natural number N, an explicit formula

1
N

N−1∑
n=0

g(n) = a finite sum of terms of C · (log N)α+

+ a finite sum of terms of D ·Nβ(log N)γ · Fδ

(
log N

log q

)
,

where every function Fδ(x) is a periodic function with period 1. Moreover the
leading coefficients C’s and D’s, the exponents α’s β’s and γ’s, and the Fourier
coefficients of the periodic functions Fδ(x) are all determined explicitly from the
function-theoretical properties of the generic functions Gr(z).

When the maximum amplitude of the oscillating terms is smaller than the
leading C · (log N)α term, then the average of g(n) is given as “main term +
+ very exact error terms”, and when the oscillating amplitude is greater than
any C · (log N)α terms, this means that the average of g(n) oscillates and does
not have average order.

This paper is, in a certain sense, a sequel of the paper [6], and here we
consider about the above condition (H2). Let h be a 2-additive function defined
by

(1) h(0) = 0 and h(2k) = 2−k/2, k = 0, 1, . . . .

Then the only one generic function G(z) =
∞∑

k=0

h(2k)zk = −√2/(z − √
2)

does not satisfy the assumption (H2), and we cannot apply Theorem B to this
function h(n).
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In this paper, first we limit our attention to q-additive functions g(n) which
satisfy

g(rqk) = r · g(qk), for all 1 ≤ r ≤ q − 1 and k ∈ N ∪ {0},

and we will prove the following two facts,

(i) when we think of a more general average value Ag,m(x) of this q-additive
function g(n) (the definition appears in the next section), then this average
has the same expression - a finite sum of terms of C · (log N)α+ + a finite
sum of oscillating terms - as in Theorem B,

(ii) and as an application of this first result, we can weaken the assumption
(H2) into

(H3) very pole of Gr(z) is contained in the circle |z| < q,
(cf. Theorem 2 in Section 4), and for the function h(n) defined by (1), we
can conclude that

1
N

N−1∑
n=0

h(n) =
(q − 1)

√
q

2(
√

q − 1)
+

1− q3/2

√
N log q

(
3
2
Φ

(
log N

log q

)
+

1
log q

dΦ
dx

(
log N

log q

) )
,

where

Φ(x) =
∑

b∈Z

e2πibx
ζ

(
− 1

2 + 2πib
log q

)
(
− 1

2 + 2πib
log q

)(
1
2 + 2πib

log q

)(
3
2 + 2πib

log q

) ,

i.e. the average of h(n) is the sum of main term and two oscillating terms.

We think that the phenomenon described in Theorem B must be held
generally for all q-additive functions providing the assumption (H1). In fact,
for the average value of q-additive function which does not satisfy (H3), we can
separate the oscillating terms and can derive the Fourier type expressions for
these oscillating terms. But without assumptions such as (H2) and (H3), we
can not prove the convergence of the series.

Throughout of this paper [x] denotes the largest integer not exceeding x
and {x} = x− [x].

2. A q-additive function gf (n) and an m-tuple average of gf (n)

Let us introduce a weight function f : N ∪ {0} → C. We define the
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values of an arithmetic function gf by gf (rqk) = r·f(k) and for general n =

=
∞∑

k=0

ak(n)qk, we define

(2) gf (0) = 0 and gf (n) =
∞∑

k=0

g(ak(n)qk) =
∞∑

k=0

ak(n)f(k), n ∈ N.

Then gf (n) is a q-additive function defined by the weight function f(k), and
its generic functions are

Gr(z) =
∞∑

k=0

g(rqk)zk = r

∞∑

k=0

f(k)zk, 1 ≤ r ≤ q − 1.

So we need only

Gf (z) =
∞∑

k=0

f(k)zk.

First we remark that this q-additive function gf (n) has a relation with the
fractional part of n/qk.

Lemma 1. Let f(k) satisfy the following assumption:

(A1) lim
k→∞

∣∣∣∣
f(k)

f(k + 1)

∣∣∣∣ >
1
q
.

Then

gf (n) =
∞∑

k=1

(qf(k − 1)− f(k))
{

n

qk

}
.

Proof. Under the assumption (A1) the power series
∞∑

j=0

f(j)zj has the

radius of convergence r with r > q−1, and so, the series
∞∑

j=0

f(j)q−j converges.

Since

(3)
∞∑

j=k

(qf(j)− f(j + 1))qk−1−j = f(k),
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substituting (3) into (2), we have

gf (n) =
∞∑

k=0

ak(n)
∞∑

j=k

(qf(j)− f(j + 1))qk−1−j =

=
∞∑

j=0

(qf(j)− f(j + 1))q−j

j∑

k=0

ak(n)qk−1.

Since

0 ≤ q−j

j∑

k=0

ak(n)qk−1 < 1 and q−j
∞∑

k=j+1

ak(n)qk−1 ∈ N ∪ {0},

we see that

q−j

j∑

k=0

ak(n)qk−1 =

{
q−j

∞∑

k=0

ak(n)qk−1

}
=

{
n

qj+1

}
.

This completes the proof.

As for the average of gf (n), we have the following expression.

Lemma 2. Let N ∈ N. Under the assumption (A1), we have

1
N

N−1∑
n=0

gf (n) =
∞∑

k=1

(qf(k − 1)− f(k))
1
N

N∫

0

({
v

qk

}
− {v}

qk

)
dv.

Proof. From Lemma 1 it follows that

1
N

N−1∑
n=0

gf (n) =
∞∑

k=1

(qf(k − 1)− f(k))
1
N

N−1∑
n=0

{
n

qk

}
.

Let us consider the inner sum on the right-hand side. We have

(4)

N−1∑
n=0

{
n

qk

}
=

N∫

0

{
[v]
qk

}
dv =

=

N∫

0

{[
v

qk

]
+

{
v

qk

}
− {v}

qk

}
dv.
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Making use of the inequality

0 ≤
{

v

qk

}
− {v}

qk
< 1,

(4) becomes to
N−1∑
n=0

{
n

qk

}
=

N∫

0

({
v

qk

}
− {v}

qk

)
dv

and this completes the proof.

Now we generalize the usual average and put the definition.

Definition. Let m ∈ N, and x be a positive real number. The m-tuple
average Agf ,m(x) of gf is defined by

Agf ,m(x) =
∞∑

k=1

(qf(k − 1)− f(k))×

× 1
xm

x∫

0

vm−1∫

0

· · ·
v1∫

0

({
v

qk

}
− {v}

qk

)
dvdv1 · · · dvm−1.

Remark. When we take m = 1 and x = N ∈ N, then from Lemma 2, we
have

Agf ,1(N) =
1
N

N−1∑
n=0

gf (n).

Lemma 3. Let 0 < α < 1. Let Bm(x) be the function defined by

Bm(x) =

x∫

0

vm−1∫

0

· · ·
v1∫

0

{v}dvdv1 · · · dvm−1.

Then we have

(5) Bm(x) = − 1
2πi

α+i∞∫

α−i∞

ζ(s)xs+m

s(s + 1) · · · (s + m)
ds,

where ζ(s) is the Riemann zeta-function.
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Proof. Changing the order of integrations from right, we have

(5) Bm(x) =

x∫

0

{v} (x− v)m−1

(m− 1)!
dv.

Here we recall of a famous formula

(6) −ζ(s)
s

=

∞∫

0

{x}
xs+1

dx, 0 < σ < 1

(see [8] p.14, (2.1.5)). We want to repeat integration by parts to the right-hand
side of (7).

To do this we firstly derive some poperties for Bm(x). From (6) it follows
that

|Bm(x)| ≤ xm

m!
, x →∞, and Bm(x) =

xm+1

(m + 1)!
, x → 0 + .

Moreover, from the definition of Bm(x) it follows that B1(x) is continuous and
d

dx
B1(x) = {x} for x ∈ (0,∞)−N, and Bm(x), m ≥ 2, is a Cm−1 function and

d

dx
Bm(x) = Bm−1(x) for x > 0.

By these properties of Bm(x) we can repeat integration by parts to the
integral on the right-hand side of (7) and get

(8) − ζ(s)
s(s + 1) · · · (s + m)

=

∞∫

0

Bm(x)
xs+m+1

dx, 0 < σ < 1.

Applying the Mellin inversion formula to (8), we obtain the expression of this
lemma.

Lemma 4. We assume the assumption (A1), and let r be the radius of

convergence of the generic function Gf (z) =
∞∑

k=0

f(k)zk. When we choose a

positive number α with q−1 < q−α < min(r, 1), then

Agf ,m(x) =
1

2πi

α+i∞∫

α−i∞

ζ(s)xs

s(s + 1) · · · (s + m)
(1− q1−s)Gf (q−s)ds.
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Proof. Let us consider the m-tuple integrals in Definition 1. Changing
the order of integrations from right, we have, by (6),

x∫

0

vm−1∫

0

· · ·
v1∫

0

({
v

qk

}
− {v}

qk

)
dvdv1 · · · dvm−1 =

=

x∫

0

({
v

qk

}
− {v}

qk

)
(x− v)m−1

(m− 1)!
dv =

=qkmBm

(
x

qk

)
− 1

qk
Bm(x).

Hence we have, by (5),

Agf ,m(x) =
∞∑

k=1

(qf(k − 1)− f(k))×

× 1
2πi

α+i∞∫

α−i∞

ζ(s)xs

s(s + 1) · · · (s + m)
(q−k − (q−s)k)ds.

Under our choice of α we can change the order of summation and integration,
then by direct computation, we have

∞∑

k=1

(qf(k − 1)− f(k))(q−k − (q−s)k) = (1− q1−s)
∞∑

k=0

f(k)(q−s)k,

and this completes the proof.

This lemma shows that we can derive an exact value of Agf ,m(x) from
function-theoretical properties of Gf (z).

At the end of this section we remark that among the averages Agf ,m(x),
m ∈ N, we have the following relation.

Lemma 5. Under the assumption (A1), Agf ,1(x) is continuous, and

d

dx
(xmAgf ,m(x)) = xm−1Agf ,m−1(x), m ≥ 2, x ∈ (0,∞).
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Proof. By the expression of Agf ,1(x) in Lemma 4 we see that Agf ,1(x) is
continuous.

Multiply the equation of Lemma 4 by xm, then differentiate it. By the
estimate |ζ(α+it)| ¿ (1+|t|)(1/2)(1−α)+ε, where ε > 0 can be chosen arbitrarily
small, we can change the order of differentiation and integration, and obtain
this lemma.

3. Analytic properties of Agf ,m

In order to study the m-tuple average Agf ,m(x) we will shift the contour of
integration in Lemma 4 to left. For this purpose, here we put a new assumption
(cf. Assumption (H1)):

(A2) Gf (z) =
∞∑

k=0

f(k)zk is continued to a rational function for which the degree

of the polynomial on the numerator is less than that on the denominator.
Moreover, the poles P of Gf (z) satisfy |P | > q−1.

Obviously, the assumption (A2) is stronger than (A1).

The main result of this section is Theorem 1 (at the end of this section).
Let us consider the partial-fraction decomposition for Gf (z). Let Π be the

set of all poles P of Gf (z), and dP the order of the pole P of Gf (z). Then
Gf (z) is expressed as

Gf (z) =
∑

P∈Π

dP∑

l=1

CP,l

(z − P )l
, CP,l ∈ C,

and

(9)
1

(z − P )l
=

1
zl

∞∑

k=0

(
k + l − 1

k

)(
P

z

)k

, |z| > |P |.

From Lemma 4 and the assumption (A2), for a suitably chosen positive

number α with q−1 < q−α < min
(

min
P∈Π

|P |, 1
)

, we have

(10) Agf ,m(x) =
∑

P∈Π

dP∑

l=1

CP,l
1

2πi

α+i∞∫

α−i∞

ζ(s)xs

s(s + 1) · · · (s + m)
1− q1−s

(q−s − P )l
ds.
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Now let us choose m ∈ N as max
P∈Π

|P | < qm−1/2, and choose a negative

number β such that

(11) max
(

qm−1, max
P∈Π

|P |
)

< q−β < qm−1/2.

This β satisfies −m + 1/2 < β < −m + 1. For s = β + it, by the estimate
|ζ(β + it)| ¿ (1 + |t|)1/2−β , we have

∣∣∣∣
ζ(s)xs

s(s + 1) · · · (s + m)
1− q1−s

(q−s − P )l

∣∣∣∣ ¿
|ζ(β + it)|

(1 + |t|)m+1
¿ 1

(1 + |t|)(m−1/2+β)+1
,

and we can shift the contour of integration in (10) to the vertical line < s = β.
Then

Agf ,m(x) =

(12)

=
∑

P∈Π

dP∑

l=1

CP,l




∑
w=0,−1,...,−m+1

and P 6=q−w

Res
s=w

ζ(s)xs

s(s + 1) · · · (s + m)
1− q1−s

(q−s − P )l
+

+
∑

w=0,−1,...,−m+1
and P=q−w

Res
s=w

ζ(s)xs

s(s + 1) · · · (s + m)
1− q1−s

(q−s − P )l
+

+
∑

w:P=q−w

and w 6=0,−1,...,−m+1

Res
s=w

ζ(s)xs

s(s + 1) · · · (s + m)
1− q1−s

(q−s − P )l
+

+
1

2πi

β+i∞∫

β−i∞

ζ(s)xs

s(s + 1) · · · (s + m)
1− q1−s

(q−s − P )l
ds


 =

=
∑

P∈Π

dP∑

l=1

CP,l(R1 + R2 + R3 + I), say.

First we consider I. By (11) we see that |q−s| = q−β > |P |. Hence, by (9),

(13) I =
∞∑

k=0

(
k + l − 1

k

)
P k 1

2πi

β+i∞∫

β−i∞

ζ(s)xs

s(s + 1) · · · (s + m)
(1− q1−s)(qk+l)sds.

As for this integral we can calculate it exactly.
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Lemma 6. Let m ∈ N and choose β as −m + 1/2 < β < −m + 1.
Let Bt(x) be the t-th Bernoulli polynomial and Bt the t-th Bernoulli number
definded by

zexz

ez − 1
=

∞∑
t=0

Bt(x)
t!

zt and Bt = Bt(0),

respectively (see [1] p.264). Then

(14) − 1
2πi

β+i∞∫

β−i∞

ζ(s)xs+m

s(s + 1) · · · (s + m)
ds =

Bm+1({x})−Bm+1

(m + 1)!
.

Especially, we have, for N ∈ N,

− 1
2πi

β+i∞∫

β−i∞

ζ(s)Ns+m

s(s + 1) · · · (s + m)
ds = 0.

Proof. We prove (14) by induction. The assertion in the case m = 1 is a
special case of [6] Lemma 5, but we shall give here a little different proof for
the remaining process. It follows from Lemma 3 that

x∫

0

{v}dv = − 1
2πi

α+i∞∫

α−i∞

ζ(s)xs+1

s(s + 1)
ds.

We shift the contour of integration to the vertical line < s = β with −1/2 <
< β < 0, then

x∫

0

{v}dv = − 1
2πi

β+i∞∫

β−i∞

ζ(s)xs+1

s(s + 1)
ds− ζ(0)x.

By the facts ζ(0) = −1/2,
n+1∫
n

B1({v})dv = 0 if n ∈ N, and
d

dv
B2(v) = 2B1(v),

we have

− 1
2πi

β+i∞∫

β−i∞

ζ(s)xs+1

s(s + 1)
ds =

x∫

0

(
{v} − 1

2

)
dv =

=

{x}∫

0

B1(v)dv =
B2({x})−B2

2
,
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which verifies our assertion in the case m = 1.

Now we start from

− 1
2πi

γ+i∞∫

γ−i∞

ζ(s)xs+m−1

s(s + 1) · · · (s + m− 1)
ds =

Bm({x})−Bm

m!
,

where −m + 3/2 < γ < −m + 2 (assumption of induction). Let −m + 1/2 <
< β < −m + 1. Then
(15)

− 1
2πi

β+i∞∫

β−i∞

ζ(s)xs+m

s(s + 1) · · · (s + m)
ds =− 1

2πi

γ+i∞∫

γ−i∞

ζ(s)xs+m

s(s + 1) · · · (s + m)
ds+

+ Res
s=−m+1

ζ(s)xs+m

s(s + 1) · · · (s + m)
.

The second term on the right-hand of (15) is equal to Bmx/m!, because of
the fact ζ(−m + 1) = (−1)m+1Bm/m (see [1] p.266). Let us differentiate the
first term on the right-hand side of (15). Then, the change of the order of
differentiation and integration is valid, and we have

d

dx


− 1

2πi

γ+i∞∫

γ−i∞

ζ(s)xs+m

s(s + 1) · · · (s + m)
ds


 =

Bm({x})−Bm

m!
.

This asserts that the first term on the right-hand side of (15) is equal to
x∫
0

((Bm({v}) − Bm)/m!)dv. Hence, by
n+1∫
n

Bm({v})dv = 0 if n ∈ N, and

d

dv
Bm+1(v) = (m + 1)Bm(v), we have

− 1
2πi

β+i∞∫

β−i∞

ζ(s)xs+m

s(s + 1) · · · (s + m)
ds =

x∫

0

Bm({v})−Bm

m!
dv +

Bmx

m!
=

=

{x}∫

0

Bm(v)
m!

dv =
Bm+1({x})−Bm+1

(m + 1)!
.

This completes the proof.
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Combining Lemma 6 with (13), we have

(16) I =
∞∑

k=0

(
k + l − 1

k

)
×

×P k

(−Bm+1({xqk+l}) + Bm+1

(xqk+l)m(m + 1)!
+ q

Bm+1({xqk+l−1})−Bm+1

(xqk+l−1)m(m + 1)!

)
.

Computation of R1. To compute R1 we use the equation

(17)
1

s(s + 1) · · · (s + m)
=

1
m!

m∑
a=0

(
m

a

)
(−1)a

s + a
.

Since ζ(−j) = (−1)jBj+1/(j + 1), we have

R1 =
1
m!

∑
j=0,1,...,m−1

and P 6=qj

(
m

j

)
Bj+1

j + 1
x−j 1− qj+1

(qj − P )l
.

Hence

(18)
∑

P∈Π

dP∑

l=1

CP,lR1 =
1
m!

∑
j=0,1,...,m−1

and P 6=qj

(
m

j

)
Bj+1

j + 1
1− qj+1

xj
Gf (qj).

Computation of R2. We have

R2 =
∑

j=0,1,...,m−1
and P=qj

Res
s=0

ζ(s− j)xs−j

(s− j) · · · (s− j + m)
1− q1−s+j

qjl(q−s − 1)l
=

=
∑

j=0,1,...,m−1
and P=qj

(
1

(xql)j
Res
s=0

ζ(s− j)xs

(s− j) · · · (s− j + m)
1

(q−s − 1)l
−

− qj+1

(xql)j
Res
s=0

ζ(s− j)(x/q)s

(s− j) · · · (s− j + m)
1

(q−s − 1)l

)
.

We calculate these residues. We have, near s = 0,

(19)

1
(q−s − 1)l

=
1

(−s log q)l

∞∑
n=0

∑
n1+···+nl=n
ni=0,1,2,...,n

Bn1 · · ·Bnl

n1! · · ·nl!
(−s log q)n =

=
1

(−s log q)l

∞∑
n=0

Cn,l(−s log q)n, say.
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We put the Taylor expansion of ζ(s) at s = −j as

(20) ζ(s− j) =
∞∑

n=0

ζ(n)(−j)
n!

sn =
∞∑

n=0

Dn,js
n, say.

By (17) we have, near s = 0,

(21)
1

(s− j) · · · (s− j + m)
=

∞∑
n=0

1
m!

∑
a=0,...,m

a6=j

(
m

a

)
(−1)a+1

(j − a)n+1
sn +

1
m!

(
m

j

)
(−1)j

s
=

=
∞∑

n=−1

En,j,msn, say.

Combining (19)-(21), we have

Res
s=0

ζ(s− j)ys

(s− j) · · · (s− j + m)
1

(q−s − 1)l
=

=
1

(− log q)l

∑
n1+n2+n3+n4=l−1
n1,n2,n3=0,1,2,...,l

n4=−1,0,1,...,l−1

Cn2,lDn3,jEn4,j,m

n1!
(− log q)n2(log y)n1 ,

and hence,

(22) R2 =
1

(− log q)l
×

×
∑

j=0,1,...,m−1
and P=qj




1
(xql)j

∑
n1+n2+n3+n4=l−1
n1,n2,n3=0,1,2,...,l

n4=−1,0,1,...,l−1

Cn2,lDn3,jEn4,j,m

n1!
(− log q)n2(log x)n1−

− qj+1

(xql)j

∑
n1+n2+n3+n4=l−1
n1,n2,n3=0,1,2,...,l

n4=−1,0,1,...,l−1

Cn2,lDn3,jEn4,j,m

n1!
(− log q)n2(log(x/q))n1


 .
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Computation of R3. We have

R3 =
∑
b∈Z
b6=0

Res
s=−LogP

log q + 2πib
log q

ζ(s)xs

s(s + 1) · · · (s + m)
1− q1−s

(q−s − P )l
+

+ δ(P ) Res
s=−LogP

log q

ζ(s)xs

s(s + 1) · · · (s + m)
1− q1−s

(q−s − P )l
=

=
∑
b∈Z
b6=0

R3,1 + δ(P )R3,2, say,

where LogP = log |P |+ iArgP , 0 ≤ ArgP < 2π, and

δ(P ) =

{
1 if −LogP

log q 6= 0,−1, . . .−m + 1,

0 otherwise.

The calculation of δ(P )R3,2 is similar as R3,1, and we consider only R3,1.

R3,1 = Res
s=0

ζ
(
s− LogP

log q + 2πib
log q

)
xs−LogP

log q + 2πib
log q

(
s− LogP

log q + 2πib
log q

)
· · ·

(
s− LogP

log q + 2πib
log q + m

) 1− Pq1−s

(Pq−s − P )l
=

=
e2πib log x

log q

P
log x
log q +l

Res
s=0

ζ
(
s− LogP

log q + 2πib
log q

)
xs

(
s− LogP

log q + 2πib
log q

)
· · ·

(
s− LogP

log q + 2πib
log q + m

) 1
(q−s − 1)l

−

− qe2πib log x
log q

P
log x
log q +l−1

Res
s=0

ζ
(
s− LogP

log q + 2πib
log q

)
(x/q)s

(
s− LogP

log q + 2πib
log q

)
· · ·

(
s− LogP

log q + 2πib
log q + m

) 1
(q−s − 1)l

.

We use again the Taylor expansion of ζ(s),
(23)

ζ

(
s− LogP

log q
+

2πib

log q

)
=

∞∑
n=0

ζ(n)
(
−LogP

log q + 2πib
log q

)

n!
sn =

∞∑
n=0

Dn,P,bs
n, say,

and from (17) we have, near s = 0,

1(
s− LogP

log q + 2πib
log q

)
· · ·

(
s− LogP

log q + 2πib
log q + m

) =
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(24)

=
∞∑

n=0

1
m!

m∑
a=0

(
m

a

)
(−1)a+1

(
LogP
log q − 2πib

log q − a
)n+1 sn =

=
∞∑

n=0

En,P,b,msn, say.

Combining (19), (23) and (24), we have

Res
s=0

ζ
(
s− LogP

log q + 2πib
log q

)
ys

(
s− LogP

log q + 2πib
log q

)
· · ·

(
s− LogP

log q + 2πib
log q + m

) 1
(q−s − 1)l

=

=
1

(− log q)l

∑
n1+n2+n3+n4=l−1

n1,n2,n3,n4=0,1,2,...,l−1

Cn2,lDn3,P,bEn4,P,b,m

n1!
(− log q)n2(log y)n1 ,

and hence,

R3 =
1

(− log q)l

∑
b∈Z
b6=0


e2πib log x

log q

P
log x
log q +l

∑
n1+n2+n3+n4=l−1

n1,n2,n3,n4=0,1,2,...,l−1

Cn2,lDn3,P,bEn4,P,b,m

n1!
×

×(− log q)n2(log x)n1−

− qe2πib log x
log q

P
log x
log q +l−1

∑
n1+n2+n3+n4=l−1

n1,n2,n3,n4=0,1,2,...,l−1

Cn2,lDn3,P,bEn4,P,b,m

n1!
×

×(− log q)n2(log(x/q))n1

)
+

+
δ(P )

(− log q)l


 1

P
log x
log q +l

∑
n1+n2+n3+n4=l−1

n1,n2,n3,n4=0,1,2,...,l−1

Cn2,lDn3,P,0En4,P,0,m

n1!
×

×(− log q)n2(log x)n1−

− q

P
log x
log q +l−1

∑
n1+n2+n3+n4=l−1

n1,n2,n3,n4=0,1,2,...,l−1

Cn2,lDn3,P,0En4,P,0,m

n1!
×

×(− log q)n2(log(x/q))n1

)
.
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Substituting (16), (18), (22), (25) into (12), we obtain the following

Theorem 1. We assume the assumption (A2) and let Π be the set of
all poles of the generic function Gf (z). Choose m ∈ N as max

P∈Π
|P | < qm−1/2.

Then we have the generalized average Agf ,m(x) has an expression

Agf ,m(x) =a finite sum of terms of C · xα(log x)β+

+ a finite sum of oscillating terms,

and we can calculate all of those coefficients explicitly. More precisely we have

Agf ,m(x) = M1 + M2 + M3+

+
1

(m + 1)!xm

∑

P∈Π

dP∑

l=1

CP,l

∞∑

k=0

(
k + l − 1

k

)
P k×

× (−Bm+1({xqk+l}) + Bm+1) + qm+1(Bm+1({xqk+l−1})−Bm+1)
q(k+l)m

with

M1 =
∑

P∈Π

dP∑

l=1

CP,l

(− log q)l
×

×
∑

j=0,1,...,m−1
and P=qj




1
(xql)j

∑
n1+n2+n3+n4=l−1
n1,n2,n3=0,1,2,...,l

n4=−1,0,1,...,l−1

Cn2,lDn3,jEn4,j,m

n1!
(− log q)n2(log x)n1−

− qj+1

(xql)j

∑
n1+n2+n3+n4=l−1
n1,n2,n3=0,1,2,...,l

n4=−1,0,1,...,l−1

Cn2,lDn3,jEn4,j,m

n1!
(− log q)n2(log(x/q))n1


 ,

where Cn2,l Dn3,j En4,j,m are defined by (19), (20), (21), respectively,

M2 =
∑

P∈Π

dP∑

l=1

CP,l

(− log q)l
×

×




∑
b∈Z
b6=0


e2πib log x

log q

P
log x
log q +l

∑
n1+n2+n3+n4=l−1

n1,n2,n3,n4=0,1,2,...,l−1

Cn2,lDn3,P,bEn4,P,b,m

n1!
×
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×(− log q)n2(log x)n1−

− qe2πib log x
log q

P
log x
log q +l−1

∑
n1+n2+n3+n4=l−1

n1,n2,n3,n4=0,1,2,...,l−1

Cn2,lDn3,P,bEn4,P,b,m

n1!
×

×(− log q)n2(log(x/q))n1

)
+

+δ(P )


 1

P
log x
log q +l

∑
n1+n2+n3+n4=l−1

n1,n2,n3,n4=0,1,2,...,l−1

Cn2,lDn3,P,0En4,P,0,m

n1!
×

×(− log q)n2(log x)n1−

− q

P
log x
log q +l−1

∑
n1+n2+n3+n4=l−1

n1,n2,n3,n4=0,1,2,...,l−1

Cn2,lDn3,P,0En4,P,0,m

n1!
×

×(− log q)n2(log(x/q))n1

))
,

where Cn2,l Dn3,P,b En4,P,b,m are defined by (19), (23), (24), respectively, and

M3 =
1
m!

∑
j=0,1,...,m−1

and P 6=qj

(
m

j

)
Bj+1

j + 1
1− qj+1

xj
Gf (qj).

4. Examples and an application

In this last section, we discuss about some examples and remaining
problems.

Example 1. Let f(k) = 1 for k ∈ N. Then gf (n) is the function sum of
digits. We have

F (z) =
∞∑

k=0

f(k)zk =
−1

z − 1
,
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Π = {1}, P = 1, l = 1, CP,l = −1. Since max
P∈Π

|P | = 1 < qm−1/2 for any m ∈ N,

we can choose any m ∈ N in Theorem 1. By direct computation,

Agf ,m(x) =

=
q − 1
log q

log x

2m!
+

q − 1
2m! log q

(
m∑

a=1

(
m

a

)
(−1)a

a
+ log(2π)

)
− q + 1

4m!
−

− q − 1
log q

∑
b∈Z
b 6=0

e2πib log x
log q

ζ
(

2πib
log q

)
(

2πib
log q

)
· · ·

(
2πib
log q + m

)+

+
1
m!

m−1∑

j=1

(
m

j

)
Bj+1

j + 1
1− qj+1

xj

1
1− qj

−

− 1
(m + 1)!xm

∞∑

k=0

(−Bm+1({xqk+1}) + Bm+1) + qm+1(Bm+1({xqk})−Bm+1)
q(k+1)m

.

Especially, when we choose m = 1 and x = N ∈ N, then

1
N

N−1∑
n=0

gf (n) =
q − 1
log q

log N

2
+

q − 1
2 log q

(−1 + log(2π))− q + 1
4

−

− q − 1
log q

∑
b∈Z
b 6=0

e2πib log N
log q

ζ
(

2πib
log q

)
(

2πib
log q

)(
2πib
log q + 1

) ,

which is Theorem A of Delange [4].

In the case
√

q ≤ max
P∈Π

|P | < q we can study Agf ,1(x) more precisely.

Theorem 2. We assume the assumption (A2) and let Π be the set of all
poles of the generic funciton Gf (z). In the case

√
q ≤ max

P∈Π
|P | < q we have

Agf ,1(N) =
1
N

N−1∑
n=0

gf (n) =
1
N

d

dx

(
x2(M1 + M2 + M3)

) ∣∣∣
x=N

+
(q2 − 1)Gf (q)

12N
,

where M1, M2, M3 are the same quantities as in Theorem 1, and M2 is a C1

function in x ∈ (0,∞).
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Proof. Since
√

q ≤ max
P∈Π

|P | < q, we can choose m = 2 in Theorem 1.

Then

(26) x2Agf ,2(x) = x2(M1 + M2 + M3) + Ψ(x),

where M1, M2, M3 are the same quantities as in Theorem 1, and

(27)
Ψ(x) =

1
6

∑

P∈Π

dP∑

l=1

CP,l

∞∑

k=0

(
k + l − 1

k

)
P k×

× (−B3({xqk+l}) + B3) + q3(B3({xqk+l−1})−B3)
q(k+l)2

.

We shall verify that the series of Ψ(x) is termwisely differentiable in x. It is
known that

Bn({x}) = − n!
(2πi)n

∑
b∈Z
b 6=0

e2πibx

bn
, n ≥ 2

(see [1] p.267). This asserts that B3({x}) is differentiable in x ∈ R and
d

dx
B3({x}) = 3B2({x}). By max

x∈R
|B2({x})| = 1/6 and (9), we have

∞∑

k=0

(
k + l − 1

k

)
|P |k

∣∣∣∣∣
d

dx

(−B3({xqk+l}) + B3) + q3(B3({xqk+l−1})−B3)
q(k+l)2

∣∣∣∣∣ =

= 3
∞∑

k=0

(
k + l − 1

k

)
|P |k

∣∣∣∣∣
−B2({xqk+l}) + q2B2({xqk+l−1})

qk+l

∣∣∣∣∣ ≤

≤ 1 + q2

2
1
ql

∞∑

k=0

(
k + l − 1

k

) |P |k
qk

=
1 + q2

2
1

(q − |P |)l
.

Therefore, we can differentiate the series of (27) termwisely. x2Agf ,2(x) in (26)
is a C1 function in x ∈ (0,∞) by Lemma 5, and x2M1 and x2M3 in (26) are also
C1 functions in x ∈ (0,∞) by those forms. Therefore, x2M2, and consequently,
M2 is a C1 function in x ∈ (0,∞). We have

d

dx
Ψ(x) =

=
1
2

∑

P∈Π

dP∑

l=1

CP,l

∞∑

k=0

(
k + l − 1

k

)
P k−B2({xqk+l}) + q2B2({xqk+l−1})

qk+l
=
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=
1
2

∑

P∈Π

dP∑

l=1

CP,l

∞∑

k=0

(
k + l − 1

k

)
P k×

× (−B2({xqk+l}) + B2) + q2(B2({xqk+l−1})−B2)
qk+l

+

+
q2 − 1

12

∑

P∈Π

dP∑

l=1

CP,l

(q − P )l
=

=
1
2

∑

P∈Π

dP∑

l=1

CP,l

∞∑

k=0

(
k + l − 1

k

)
P k×

× (−B2({xqk+l}) + B2) + q2(B2({xqk+l−1})−B2)
qk+l

+

+
(q2 − 1)Gf (q)

12
.

Differentiating the both sides of (26), we obtain

(28)

Agf ,1(x) =
1
x

d

dx

(
x2(M1 + M2 + M3)

)
+

+
1
2x

∑

P∈Π

dP∑

l=1

CP,l

∞∑

k=0

(
k + l − 1

k

)
P k×

× (−B2({xqk+l}) + B2) + q2(B2({xqk+l−1})−B2)
qk+l

+

+
(q2 − 1)Gf (q)

12x
.

When we choose x = N ∈ N in (28), the second term on the right-hand side is
equal to 0. This completes the proof.

Example 2. Let f(k) = q−k/2, and consider gf (n) (cf. q-additive function
h(n) in Section 1 formula (1)). We have

Gf (z) =
∞∑

k=0

f(k)zk =
−√q

z −√q
,

Π = {√q}, P =
√

q, l = 1, CP,l = −√q, and now we can apply Theorem 2.
Theorem 2 gives

1
N

N−1∑
n=0

gf (n) =
1
N

d

dx

(
x2(M1 + M2 + M3)

)∣∣∣
x=N

+
(q2 − 1)

√
q

12N(
√

q − q)
.
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By direct computation, M1 = 0,

1
N

d

dx
(x2M3)

∣∣∣
x=N

=
(q − 1)

√
q

2(
√

q − 1)
+

q2 − 1
12N(

√
q − 1)

,

and
1
N

d

dx
(x2M2)

∣∣∣
x=N

=
1− q3/2

N log q

d

dx

(
x3/2Φ

(
log x

log q

)) ∣∣∣
x=N

,

where

Φ(x) =
∑

b∈Z

e2πibx
ζ

(
− 1

2 + 2πib
log q

)
(
− 1

2 + 2πib
log q

)(
1
2 + 2πib

log q

)(
3
2 + 2πib

log q

) .

Since Φ
(

log x

log q

)
is a C1 function in x ∈ (0,∞), Φ(x) is a C1 function in

x ∈ R. Moreover,
dΦ
dx

(x) is periodic with period 1 and continuous, because

Φ(x) is periodic with period 1. Hence
dΦ
dx

(
log x

log q

)
is bounded, and

d

dx

(
x3/2Φ

(
log x

log q

))
=

3
2
√

xΦ
(

log x

log q

)
+
√

x

log q

dΦ
dx

(
log x

log q

)
= O(

√
x).

Thus, we obtain

1
N

N−1∑
n=0

gf (n) =
(q − 1)

√
q

2(
√

q − 1)
+ O

(
1√
N

)
.

Example 3. Let us take the weight function f(k) = q−k, then

Gf (z) =
∞∑

k=0

f(k)zk =
−q

z − q
,

Π = {q}, P = q, l = 1, CP,l = −q. We can choose m ∈ N as m ≥ 2, and when
m = 2, we have

Agf ,2(x) =
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(29)

=
q

4
+

q2 − 1
log q

ζ(−1)
log x

x
−

(
(q2 + 1)ζ(−1)

2
− q2 − 1

log q
ζ ′(−1)

)
1
x
−

− q2 − 1
log q

· 1
x

∑
b∈Z
b6=0

e2πib log x
log q

ζ
(
−1 + 2πib

log q

)
(
−1 + 2πib

log q

)(
2πib
log q

)(
2πib
log q + 1

)−

− 1
6x2

∞∑

k=0

(−B3({xqk+1}) + B3) + q3(B3({xqk})−B3)
qk+1

.

Here appear two periodic functions

Φ(x) =
∑
b∈Z
b6=0

e2πibx
ζ

(
−1 + 2πib

log q

)
(
−1 + 2πib

log q

)(
2πib
log q

)(
2πib
log q + 1

) ,

Ψ(x) =
∞∑

k=0

(−B3({xqk+1}) + B3) + q3(B3({xqk})−B3)
qk+1

.

We see that Φ(x) and Ψ(x) are periodic with period 1. Differentiating (29) in
x, then, by Lemma 5,

Agf ,1(x) =

=
q

2
+

q2 − 1
log q

ζ(−1)
log x

x
+

(
− (q2 + 1)ζ(−1)

2
+

q2 − 1
log q

(ζ(−1) + ζ ′(−1)
)

1
x

+

+
1
x

d

dx

(
−q2 − 1

log q
xΦ

(
log x

log q

)
− 1

6
Ψ(x)

)
.

Because of the estimate ζ(−1 + it) ¿ |t|3/2 and the fact

d

dx
B3({xqk+l}) = 3qk+lB2({xqk+l}),

we can not apply termwise differentiation on Φ(x) and Ψ(x), and we can not
derive the similar results as Theorem 2 (or Example 2) for this gf . This means
we can prove the existence of the average Agf ,1, but not in the expression as
in the Theorem B.
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