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1. Introduction

Let s = σ + it be a complex variable. The Hurwitz zeta-function ζ(s, α)
with parameter α, 0 < α ≤ 1, is defined, for σ > 1, by

ζ(s, α) =
∞∑

m=0

1
(m + α)s

,

and by analytic continuation elsewhere. The function ζ(s, α) is a meromorphic
function, the point s = 1 is its simple pole with residue 1. If α = 1, then ζ(s, α)
reduces to the Riemann zeta-function ζ(s).

The value distribution of the function ζ(s, α), as of other zeta-functions,
can be described by limit theorems in the sense of weak convergence of proba-
bility measures in various spaces. In [10] limit theorems of such a kind were
proved in the case of rational or transcendental α, while in [9], [11] and [12]
the function ζ(s, α) with an algebraic irrational parameter α was investigated.
All above mentioned theorems are of continuous type, since they deal with
probability measures defined by translations ζ(σ + it, α) or ζ(s + iτ, α), where
t or τ varies continuously in the interval [0, T ]. Also, there exist discrete limit
theorems when t or τ takes values from some discrete set, for example, from a
certain arithmetical progression.
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Denote by B(S) the class of Borel sets of a metric space S, and let, for
N ∈ N0, N0 = N ∪ {0},

µN (. . .) =
1

N + 1

N∑
l=0
...

1,

where in place of dots a condition satisfied by l is to be written. Discrete
limit theorems for the function ζ(s, α) with rational or transcendental α were
obtained in [6]. We will recall a discrete limit theorem with transcendental α.

Let

Ω̂ =
∞∏

m=0

γm,

where γm = {s ∈ C : |s| = 1} def
= γ for all m ∈ N0. By the Tikhonov theorem,

with the product topology and pointwise multiplication the infinite-dimensional
torus Ω̂ is a compact topological Abelian group. Therefore, on (Ω̂,B(Ω̂)) the
probability Haar measure m̂H can be defined, and this gives a probability space
(Ω̂,B(Ω̂), m̂H). Denote by ω̂(m) the projection of ω̂ ∈ Ω̂ to the coordinate
space γm, and, for σ > 1

2 , on the probability space (Ω̂,B(Ω̂), m̂H) define the
complex-valued random variable ζ(σ, α, ω̂) by

ζ(σ, α, ω̂) =
∞∑

m=0

ω̂(m)
(m + α)σ

.

Theorem 1. Suppose that α is a transcendental number, h > 0 is a
fixed number such that exp{ 2π

h } is irrational, and σ > 1
2 . Then the probability

measure

(1) µN (ζ(σ + ilh, α) ∈ A), A ∈ B(C),

converges weakly to the distribution of the random variable ζ(σ, α, ω̂) as N →
→∞.

The proof of Theorem 1 is based on the linear independence over the field
of rational numbers Q of the system

L(α) = {log(m + α) : m ∈ N0}

with transcendental α.
The aim of this paper is to obtain the weak convergence of probability

measure (1) in the case of algebraic irrational α. For this, we will adapt the
method proposed in [11].
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For α algebraic irrational, J.W.S. Cassels proved [2] that at least 51 percent
of the elements of the system L(α) are linearly independent over Q. Let I(α) be
a maximal linearly independent subset of L(α). We suppose that I(α) 6= L(α),
since otherwise we have the same situation as in the case of transcendental
α. Denote D(α) = L(α) \ I(α). For any element dm ∈ D(α), the system
{dm}∪I(α), clearly, is linearly dependent overQ. Therefore, there exists a finite
number of elements im1 , . . . , imn

∈ I(α) such that, for some k0(m), . . . , kn(m) ∈
∈ Z \ {0},

k0(m)dm + k1(m)im1 + . . . + kn(m)imn
= 0.

This implies the relation

(2) m + α = (m1 + α)−
k1(m)
k0(m) . . . (mn + α)−

kn(m)
k0(m) .

Now let M(α) = {m ∈ N0 : log(m + α) ∈ I(α)} and N (α) = {m ∈ N0 :
log(m + α) ∈ D(α)}. Define the torus

Ω =
∏

m∈M(α)

γm,

where γm = γ for all m ∈ M(α). Then, similarly as above, Ω is a compact
topological Abelian group, and we have a probability space (Ω,B(Ω),mH),
where mH is the Haar measure on (Ω,B(Ω)). Denote by ω(m) the projection
of ω ∈ Ω to the coordinate space γm, m ∈M(α).

If m ∈ N (α) and relation (2) takes place, then we define ω(m) by

ω(m) = ω(m1)
− k1(m)

k0(m) . . . ω(mn)−
kn(m)
k0(m) ,

where the principal values of the roots are taken. Thus, the functions ω(m) are
defined for all m ∈ N0. Now, for σ > 1

2 , on the probability space (Ω,B(Ω), mH)
we define the complex-valued random element ζ(s, α, ω) by

ζ(σ, α, ω) =
∞∑

m=0

ω(m)
(m + α)σ

.

There exists a Dubickas conjecture, see [3], [4], that there are algebraic
irrational numbers α such that the product

∞∏
m=0

(m + α)km ,
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where only a finite number of integers km are distinct from zero, for every
collection k = (k0, k1, . . .), is irrational. Denote by D a class of algebraic
irrational numbers with this property.

Theorem 2. Suppose that α is algebraic irrational and α ∈ D, h > 0 is
a fixed number such that exp{ 2π

h } is rational, and σ > 1
2 . Then the probability

measure
PN,σ(A)

def
= µN (ζ(σ + ilh, α) ∈ A), A ∈ B(C),

converges weakly to the distribution Pζ,σ of the random variable ζ(σ, α, ω) as
N →∞.

2. A limit theorem on the torus

In this section, we will consider the weak convergence of the probability
measure

QN (A) =
def

µN (((m + α)−ilh : m ∈M(α)) ∈ A), A ∈ B(Ω).

Theorem 3. Suppose that α and h are as in Theorem 2. Then the
probability measure QN converges weakly to the Haar measure mH on (Ω,B(Ω))
as N →∞.

Proof. The dual group of Ω is isomorphic to

⊕

m∈M(α)

Zm,

where Zm = Z for all m ∈ M(α). An element k = {km : m ∈ M(α)} ∈
∈ ⊕

m∈M(α)

Zm, where only a finite number of integers km are non-zero, acts on

Ω by
ω → ωk =

∏

m∈M(α)

ωkm(m), ω ∈ Ω.

Therefore, the Fourier transform gN (k) of the measure QN is given by

gN (k) =
∫

Ω

∏

m∈M(α)

ωkm(m)dQN ,
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where only a finite number of integers km are non-zero. Thus, we have that

(3)

gN (k) =
1

N + 1

N∑

l=0

∏

m∈M(α)

(m + α)−ikmlh =

=
1

N + 1

N∑

l=0

exp



−ilh

∑

m∈M(α)

km log(m + α)



 .

The system I(α) is linearly independent over Q. Moreover, since α ∈ D, the
number

∏

m∈M(α)

(m + α)km = exp





∑

m∈M(α)

km log(m + α)





is irrational. Since, by the choice of the number h, exp{ 2πr
h } is rational for

every integer r, we find from (3) that

gN (k) =





1 if k = 0,

1−exp{−i(N+1)h
∑

m∈M(α)

km log(m+α)}

(N+1)(1−exp{−ih
∑

m∈M(α)

km log(m+α)}) if k 6= 0.

Consequently,

lim
N→∞

gN (k) =

{ 1 if k = 0,

0 if k 6= 0.

This and Theorem 1.4.2 of [5] show that the measure QN converges weakly to
mH as N →∞.

3. Discrete limit theorems for absolutely convergent Dirichlet series

Let σ1 > 1
2 be a fixed number, and let, for m,n ∈ N0,

vn(m,α) = exp
{
−

(
m + α

n + α

)σ1
}

.
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Define

ζn(s, α) =
∞∑

m=0

vn(m, α)
(m + α)s

.

In [10] it was observed that the latter series converges absolutely for σ > 1
2 .

Let ω0(m) be a fixed element from the set of the functions ω(m) defined above.
Then the series

ζn(s, α, ω0) =
∞∑

m=0

ω0(m)vn(m, α)
(m + α)s

also converges absolutely for σ > 1
2 . Define on (C,B(C)) two probability

measures PN,n,σ and P̂N,n,σ by

µN (ζn(σ + ilh, α) ∈ A)

and
µN (ζn(σ + ilh, α, ω0) ∈ A),

respectively.

Theorem 4. Suppose that α and h are as in Theorem 2 and σ > 1
2 . Then

on (C,B(C)) there exists a probability measure Pn,σ such that both the measures
PN,n,σ and P̂N,n,σ converge weakly to Pn,σ as N →∞.

Proof. Define the function un,σ : Ω → C by the formula

un,σ({ω(m) : m ∈M(α)}) =
∞∑

m=0

ω(m)vn(m, α)
(m + α)σ

.

Since the latter series converges uniformly in ω, the function un,σ is continuous.
Moreover,

un,σ({(m + α)−ilh : m ∈M(α)}) = ζn(σ + it, α),

hence PN,n,σ = QNu−1
n,σ, where QN is the probability measure considered in

Theorem 3, and

QNu−1
n,σ(A) = QN (u−1

n,σA), A ∈ B(C).

Therefore, Theorem 3 together with Theorem 5.1 of [1] show that the measure
PN,n,σ converges weakly to mHu−1

n,σ as N →∞.
Now define u : Ω → Ω by

u({ω(m) : m ∈M(α)}) = {ω(m)ω0(m) : m ∈M(α)}.
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Then, obviously,

un,σ(u({(m + α)−ilh : m ∈M(α)})) = ζn(σ + it, α, ω0).

Therefore, similarly as in the case of the measure PN,n,σ, we obtain that the
measure P̂N,n,σ, as N →∞, converges weakly to the measure mH(un,σu)−1 =
= (mHu−1)u−1

n,σ = mHu−1
n,σ in view of the invariance of the Haar measure mH .

The theorem is proved.

4. Approximation in the mean

The functions ζn(s, α) and ζn(s, α, ω) are auxiliary. To pass from them to
ζ(s, α) and ζ(s, α, ω) we need some results on approximation in the mean.

Theorem 5. Let σ > 1
2 . Then

lim
n→∞

lim sup
N→∞

1
N + 1

N∑

l=0

|ζ(σ + ilh, α)− ζn(σ + ilh, α)| = 0.

Proof. Let

ln(s, α) =
s

σ1
Γ
(

s

σ1

)
(n + α)s,

where σ1 is the same as in Section 3, and Γ(s) denotes the Euler gamma-
function. Then in [6] it was obtained that, for σ2 > 1

2 and σ > σ2,

ζ(σ + it, α)− ζn(σ + it, α) ¿

¿
∞∫

−∞
|ζ(σ2 + it + iτ, α)ln(σ2 − σ + iτ, α)|dτ +

∣∣∣∣
ln(1− σ − it, α)

1− σ − it

∣∣∣∣.

Hence we find that

(4)
1

N + 1

N∑

l=0

|ζ(σ + ilh, α)− ζn(σ + ilh, α)| ¿

¿
∞∫

−∞
(|ln(σ2 − σ + iτ, α)|) 1

N

N∑

l=0

|ζ(σ2 + ilh + iτ, α)|dτ + o(1)
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as N →∞. By Theorem 3.3.1 of [10] the mean square of ζ(s, α)

1
T

T∫

0

|ζ(σ + it, α)|2dt

is bounded for σ > 1
2 , σ 6= 1. This implies the estimate

1
T

T∫

0

|ζ ′(σ + it, α)|2dt ¿ 1.

Now an application of the Gallagher lemma (see, for example [13], Lemma 1.4),
shows that

1
N

N∑

l=0

|ζ(σ2 + ilh + iτ)| ¿
(

1
N

N∑

l=0

|ζ(σ2 + ilh + iτ)|2
)1/2

¿ 1 + |τ |.

Therefore, the left-hand side of (4) is estimated as

(5) O




∞∫

−∞
|ln(σ2 − σ + iτ)|(1 + |τ |)dτ


 + o(1).

Since σ2 − σ < 0, the definition of ln(s, α) yields

lim
n→∞

∞∫

−∞
|ln(σ2 − σ + iτ)|(1 + |τ |)dτ = 0,

and this together with (5) proves the theorem.

Theorem 6. Let σ > 1
2 and α is algebraic irrational. Then

lim
n→∞

lim sup
N→∞

1
N + 1

N∑

l=0

|ζ(σ + ilh, α, ω)− ζn(σ + ilh, α, ω)| = 0

for almost all ω ∈ Ω.

Proof. In [11], Lemma 8, it was proved that, for σ > 1
2 and almost all

ω ∈ Ω,

1
T

T∫

0

|ζ(σ + it, α, ω)|2dt ¿ 1.

Therefore, the further proof runs in the same way as that of Theorem 5.
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5. Proof of Theorem 2

On (C,B(C)) define one more probability measure

P̂N,σ(A) = µN (ζ(σ + it, α, ω) ∈ A).

Theorem 7. Suppose that α and h > 0 are as in Theorem 2, and σ > 1
2 .

Then on (C,B(C)) there exists a probability measure Pσ such that both the
measures PN,σ and P̂N,σ converge weakly to Pσ as N →∞.

Proof. By Theorem 4 both the measures PN,n,σ and P̂N,n,σ converge
weakly to the same measure Pn,σ as N →∞. We will prove that the family of
probability measures {Pn,σ : n ∈ N0} is tight, i.e. for every ε > 0 there exists
a compact subset K such that Pn,σ(K) ≥ 1− ε for all n ∈ N0.

Let M be an arbitrary positive number. Then the Chebyshev inequality
yields

(6) PN,nσ({z ∈ C : |z| > M}) = µN (|ζn(σ + ilh, α)| > M) ≤

≤ 1
M(N + 1)

N∑

l=0

|ζn(σ + ilh, α)|.

An application of the Gallagher lemma gives the estimate

(7)
1

N + 1

N∑

l=0

|ζn(σ + ilh, α)| ¿

 1

N

N∫

0

|ζn(σ + it, α)|2dt




1/2

.

Moreover, since the series for ζn(s, α) is absolutely convergent for σ > 1
2 , we

have that

lim
N→∞

1
N

N∫

0

|ζn(σ + it, α)|2dt =
∞∑

m=0

v2
n(m)

(m + α)2σ
¿

∞∑
m=0

1
(m + α)2σ

< ∞.

This, (6) and (7) show that

(8) sup
n∈N

lim sup
N→∞

PN,n,σ({z ∈ C : |z| > M}) ≤ CR,
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where

R =

( ∞∑
m=0

1
(m + α)2σ

)1/2

.

Now let ε > 0 be arbitrary, and M = CRε−1. Then in virtue of (8)

(9) lim sup
N→∞

PN,n,σ({z ∈ C : |z| > M}) ≤ ε.

The weak convergence of the measure PN,n,σ to Pn,σ as N → ∞ implies that
of the probability measure

µN (|ζn(σ + ilh, α)| ∈ A), A ∈ B(R),

to the measure Pn,σu−1, where u : C → R is given by u(z) = |z|. Hence
Theorem 2.1 of [1] and (9) give

Pn,σ({z ∈ C : |z| > M}) ≤ lim inf
N→∞

PN,n,σ({z ∈ C : |z| > M}) ≤

(10) ≤ lim sup
N→∞

PN,n,σ({z ∈ C : |z| > M}) ≤ ε.

Now we put Kε = {z ∈ C : |z| > M}. Then the set Kε is compact, and by (10)

Pn,σ(Kε) ≥ 1− ε

for all n ∈ N0, i.e. the family {Pn,σ : n ∈ N0} is tight. By the Prokhorov
theorem, Theorem 6.1 of [1], this family is relatively compact. Therefore, there
exists {Pn1,σ} ⊂ {Pn,σ} such that Pn1,σ converges to some measure Pσ on
(C,B(C)) as n1 →∞.

Define a discrete random variable θN on a certain probability space
(Ω0,B(Ω0),P) by the distribution law

P(θN = lh) =
1

N + 1
, l = 0, 1, . . . , N.

Let XN,n(σ) = ζn(σ+iθN , α), and denote by D→ the convergence in distribution.
Then the weak convergence of PN,n,σ to Pn,σ, as N →∞, is equivalent to

(11) XN,n(σ) D−→
N→∞

Xn(σ),
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where Xn(σ) is the random variable with distribution Pn,σ. Moreover, the
weak convergence of Pn1,σ to Pσ, as n1 →∞, implies the relation

(12) Xn1(σ) D−→
n1→∞

Pn.

By Theorem 5 we have that, for every ε > 0,

lim
n→∞

lim sup
N→∞

P(|XN (σ)−XN,n(σ)| ≥ ε) =

= lim
n→∞

lim sup
N→∞

µN (|ζ(σ + ilh, α)− ζn(σ + ilh, α)| ≥ ε) ≤

≤ lim
n→∞

lim sup
N→∞

1
ε(N + 1)

N∑

l=0

|ζ(σ + ilh, α)− ζn(σ + ilh, α)| = 0.

Now this, (11), (12) and Theorem 4.2 of [1] give the relation

(13) XN (σ) D−→
N→∞

Pσ,

which is equivalent to the weak convergence of PN,σ to Pσ as N → ∞.
Moreover, (13) shows that the measure Pσ is independent of the choice of
the sequence {Pn1,σ}. Therefore, the relation

(14) Xn(σ) D−→
n→∞

Pσ

takes place.
Now define

X̂N,n(σ) = ζn(σ + iθN , α, ω)

and
X̂N (σ) = ζ(σ + iθN , α, ω).

Then the above way together with (14) leads to weak convergence of P̂N,σ to
Pσ as N →∞. The theorem is proved.

From Theorem 7 it follows that for the full proof of Theorem 2 it suffices
to show the coincidence of the measures Pσ and Pζ,σ. For this, we need some
results of ergodicity theory. We set

ah,α = {(m + α)−ih : m ∈M(α)},

and define the measurable measure preserving transformation ϕh,α on Ω by
ϕh,α(ω) = ah,αω, ω ∈ Ω. A set A ∈ B(Ω) is called invariant with respect to the
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transformation ϕh,α if the sets A and Ah,α = ϕh,α(A) differ one from another
by a set of zero mH -measure. All invariant sets form a sub-σ-field of B(Ω). If
this σ-field consists only of sets having mH -measure equal to 0 or 1, then the
transformation ϕh,α is ergodic.

Lemma 8. The transformation ϕh,α is ergodic.

Proof. Let χ : Ω → γ be a character of the group Ω. In the proof of
Theorem 3 it was observed that

χ(ω) =
∏

m∈M(α)

ωkm(m),

where only a finite number of integers km are distinct from zero.
Let χ be a non-principal character. Then we have that

χ(ah,α) =
∏

m∈M(α)

(m + α)−ihkm .

By hypotheses on α and h, χ(ah,α) 6= 1. Therefore, the further proof runs in
the same way as, for example in [7], Lemma 7.

Denote by E(X) the expectation of the random element X.

Lemma 9. Let T be a measurable measure preserving ergodic transforma-
tion on the space (Ω̃,B(Ω̃), m). Then, for every g ∈ L1(Ω̃,B(Ω̃),m),

lim
n→∞

1
n

n−1∑

k=0

g(T k(ω̃)) = E(g)

for almost all ω̃ ∈ Ω̃.

The lemma is the Birkhoff theorem. Its proof can be found, for example,
in [8], §1.2.

Proof of Theorem 2. Let A be a continuity set of the measure Pσ in
Theorem 7, i.e. Pσ(∂A) = 0, where ∂ denotes the boundary operator. Then
Theorem 7 and Theorem 2.1 of [1] show that, for σ > 1

2 ,

(15) lim
N→∞

µN (ζ(σ + ilh, α) ∈ A) = Pσ(A).

Now we fix the set A, and on (Ω,B(Ω),mH) define a random variable θ by the
formula

θ(ω) =





1 if ζ(σ, α, ω) ∈ A,

0 if ζ(σ, α, ω) 6∈ A.
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Then we have that

(16) E(θ) =
∫

Ω

θdmH = mH(ω ∈ Ω : ζ(σ, α, ω) ∈ A) = Pζ,σ(A).

In view of Lemmas 8 and 9, for almost all ω ∈ Ω,

(17) lim
N→∞

1
N + 1

N∑

l=0

θ(ϕl
h,α(ω)) = E(θ).

However, by the definition of θ and ϕh,α,

1
N + 1

N∑

l=0

θ(ϕl
h,α(ω)) = µN (ζ(σ + ilh, α, ω) ∈ A).

Therefore, this, (16) and (17) show that, for almost all ω ∈ Ω,

lim
N→∞

µN (ζ(σ + ilh, α, ω) ∈ A) = Pζ,σ(A).

Thus, by (15), Pσ(A) = Pζ,σ(A) for all continuity sets A of the measure Pσ.
However, the system of all continuity sets constitute the determining class,
therefore, Pσ(A) = Pζ,σ(A) for all A ∈ B(C). The theorem is proved.
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[12] Laurinčikas A. and Steuding J., A limit theorem in the space of an-
alytic functions for the Hurwitz zeta-function with an algebraic irrational
parameter (submitted)

[13] Montgomery H.L., Topics in multiplicative number theory, Springer
Verlag, 1971.
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