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ON THE RIEMANN ZETA–FUNCTION
AND THE DIVISOR PROBLEM III.

A. Ivić (Beograd, Serbia)

Dedicated to Prof. Imre Kátai
on the occasion of his seventieth birthday

Abstract. Let ∆(x) denote the error term in the Dirichlet divisor

problem, and E(T ) the error term in the asymptotic formula for the

mean square of |ζ( 1
2 + it)|. If E∗(t) = E(t) − 2π∆∗(t/2π) with

∆∗(x) = −∆(x) + 2∆(2x)− 1
2∆(4x) and we set

T∫

0

E∗(t)dt = 3πT/4 + R(T ),

then we obtain

R(T ) = Oε

(
T 593/912+ε

)
,

T∫

0

R4(t)dt ¿ε T 3+ε

and
T∫

0

R2(t)dt = T 2P3(log T ) + Oε

(
T 11/6+ε

)
,

where P3(y) is a cubic polynomial in y with positive leading coefficient.

Mathematics Subject Classification: 11N37, 11M06
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1. Introduction and statement of results

This paper is a continuation of the author’s works [5], [6], where the
analogy between the Riemann zeta-function ζ(s) and the divisor problem was
investigated. As usual, let the error term in the classical Dirichlet divisor
problem be

(1.1) ∆(x) =
∑

n≤x

d(n)− x(log x + 2γ − 1),

and

(1.2) E(T ) =

T∫

0

∣∣∣∣ζ
(

1
2

+ it

)∣∣∣∣
2

dt− T

(
log

(
T

2π

)
+ 2γ − 1

)
,

where d(n) is the number of divisors of n, ζ(s) is the Riemann zeta-function,
and γ = −Γ′(1) = 0.577215... is Euler’s constant. In view of F.V. Atkinson’s
classical explicit formula for E(T ) (see [1] and [3, Chapter 15]) it was known
long ago that there are analogies between ∆(x) and E(T ). However, instead
of the error-term function ∆(x) it is more exact to work with the modified
function ∆∗(x) (see M. Jutila [7], [8] and T. Meurman [10]), where
(1.3)

∆∗(x) := −∆(x) + 2∆(2x)− 1
2
∆(4x) =

1
2

∑

n≤4x

(−1)nd(n)− x(log x + 2γ − 1),

which is a better analogue of E(T ) than ∆(x). M. Jutila (op. cit.) investigated
both the local and global behaviour of the difference

E∗(t) := E(t)− 2π∆∗
(

t

2π

)
,

and in particular in [8] he proved that

(1.4)

T∫

0

(E∗(t))2dt ¿ T 4/3 log3 T.
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In the first part of the author’s work [5] the bound in (1.4) was complemented
with the new bound

(1.5)

T∫

0

(E∗(t))4dt ¿ε T 16/9+ε;

neither (1.4) or (1.5) seem to imply each other. Here and later ε denotes
positive constants which are arbitrarily small, but are not necessarily the same
ones at each occurrence, while a ¿ε b (same as a = Oε(b)) means that the
¿-constant depends on ε. In the second part of the same work (op. cit.) it
was proved that

(1.6)

T∫

0

|E∗(t)|5dt ¿ε T 2+ε,

and some further results on higher moments of |E∗(t)| were obtained as well.
In [6] the author sharpened (1.4) to

(1.7)

T∫

0

(E∗(t))2dt = T 4/3P3(log T ) + Oε(T 7/6+ε),

where P3(y) is a polynomial of degree three in y with positive leading coefficient,
and all the coefficients may be evaluated explicitly.

The aim of the present work is to investigate the integral of E∗(t). More
precisely, we define the error-term function R(T ) by the relation

(1.8)

T∫

0

E∗(t)dt =
3π

4
T + R(T ).

We have (see [2], [4] for the first formula and [14] for the second one)

(1.9)

T∫

0

E(t)dt = πT + G(T ),

T∫

0

∆(t)dt =
T

4
+ H(T ),

where both G(T ), H(T ) are O(T 3/4) and also Ω±(T 3/4) (for g(x) > 0 (x >
> x0) f(x) = Ω(g(x)) means that f(x) = o(g(x)) does not hold as x → ∞,
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f(x) = Ω±(g(x))) means that there are unbounded sequences {xn}, {yn}, and
constants A,B > 0 such that f(xn) > Ag(xn) f(yn) < −Bg(yn). Since

(1.10)

T∫

0

∆(at)dt =
1
a

aT∫

0

∆(x)dx (a > 0, T > 0)

holds, it is obvious from (1.3), (1.9) and (1.10) that 3π
4 is the ”correct” constant

in (1.8), and that trivially one has the bound R(T ) = O(T 3/4), so that the
problem is to improve it. We shall prove

Theorem 1. We have

(1.11) R(T ) = Oε(T 593/912+ε),
593
912

= 0.6502129 . . . .

Theorem 2. We have

(1.12)

T∫

0

R2(t)dt = T 2P3(log T ) + Oε(T 11/6+ε),

where P3(y) is a cubic polynomial in y with positive leading coefficient, whose
all coefficients may be explicitly evaluated.

The asymptotic formula (1.12) bears resemblance to (1.7), and it is proved
by a similar technique. The exponents in the error terms are, in both cases, less
than the exponent of T in the main term by 1/6. This comes from the use of
(2.9) of Lemma 2.5, and in both cases the exponent of the error term is the limit
of the method. From (1.7) one obtains that E∗(T ) = Ω(T 1/6(log T )3/2), which
shows that E∗(T ) cannot be too small. Likewise, (1.7) yields the following

Corollary. We have

(1.13) R(T ) = Ω
(
T 1/2(log T )3/2

)
.

Theorem 3. We have

(1.14)

T∫

0

R4(t)dt ¿ε T 3+ε.
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It is rather difficult to ascertain the true maximum order of magnitude of
R(T ), but the omega-result (1.13) makes it reasonable to believe that maybe
it is T 1/2+o(1) (T →∞). It also seems reasonable to conjecture that

(1.15) R(T ) = Oε(T 1/2+ε)

holds. If (1.15) is true, then from Lemma 3, taking H = T 1/4, it would follow
that

(1.16) E∗(T ) ¿ε T 1/4+ε

or equivalently

(1.17) E(T ) = 2π∆∗
(

T

2π

)
+ Oε(T 1/4+ε).

By [4, Theorem 1.2] and (1.17) we have

∣∣∣∣ζ
(

1
2

+ iT

)∣∣∣∣
2

¿ log T

T+1∫

T−1

∣∣∣∣ζ
(

1
2

+ it

)∣∣∣∣
2

dt + 1 ¿

¿ log T (log T + E(T + 1)− E(T − 1)) ¿ε

¿ε log T

(
log T + 2π∆∗

(
T + 1

2π

)
− 2π∆∗

(
T − 1

2π

))
+ T 1/4+ε ¿ε T 1/4+ε,

since, from (1.3) and d(n) ¿ε nε,

∆∗(T + H)−∆∗(T ) = O(H log T ) +
1
2

∑

4T<n≤4(T+H)

(−1)nd(n) ¿ε HT ε

holds for 1 ¿ H ¿ T . Therefore the conjectural (1.17) implies the hitherto
unproved bound

(1.18) ζ

(
1
2

+ iT

)
¿ε T 1/8+ε.

This significance of (1.18) shows the strength of the conjecture (1.15), and the
importance of the estimation of R(T ) and its mean values.

Furthermore we note that if (1.17) is true, then θ = p, where

θ = inf {c > 0 : E(T ) = O(T c)} , ρ = inf
{
d > 0 : ∆(T ) = O(T d)

}
.



8 A. Ivić

Namely as θ ≥ 1/4 and ρ ≥ 1/4 are known to hold (this follows e.g. from mean
square results, see [4]) θ = ρ follows from (1.17) and ρ = σ, proved recently by
Lau-Tsang [9], where

σ = inf {s > 0 : ∆∗(T ) = O(T s)} .

The reader is also referred to M. Jutila [7] for a discussion on some related
implications. In any case our unconditional results on R(T ) show, as is to be
expected, that there is a lot of cancellation in the mean sense between E(T )
and 2π∆∗(T/(2π)), or in other words that the function E∗(T ) is on the average
much smaller than either E(T ) or 2π∆∗(T/(2π)).

2. The necessary lemmas

In this section we shall state the lemmas which are necessary for the proof

of our theorems. The first one brings forth a formula for
T∫
0

E(t)dt, which is

closely related to F.V. Atkinson’s classical explicit formula for E(T ) (see [1] or
e.g. Chapter 15 of [3] or Chapter 2 of [4]).

Lemma 1. We have

(2.1)
T∫

0

E(t)dt = πT +
1
2

(
2T

π

)3/4 ∑

n≤T

(−1)nd(n)n−5/4e2(T, n) sin f(T, n)−

− 2
∑

n≤c0T

d(n)n−1/2

(
log

T

2πn

)−2

sin
(

T log
(

T

2πn

)
− T +

1
4
π

)
+

+ O(T 1/4),

where c0 = 1
2π + 1

2−
√

1
4 + 1

2π , ar sinh x = log(x+
√

1 + x2), and for 1 ≤ n ¿ T ,

(2.2)
e2(T, n) =

(
1 +

πn

T

)−1/4
{(

2T

πn

)1/2

ar sinh
(πn

2T

)1/2
}−1/2

=

= 1 + b1
n

T
+ b2

( n

T

)2

+ . . . ,
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f(T, n) = 2Tar sinh
(√

πn/(2T )
)

+
√

2πnT + π2n2 − 1
4
π =

= −1
4
π + 2

√
2πnT + a3n

3/2T−1/2 + a5n
5/2T−3/2 + a7n

7/2T−5/2 + . .

We also need a formula for the integral of ∆∗(x). From a classical result
of G.F. Voronöı [14] (this also easily follows from pp. 90-91 of [3]) we have

X∫

0

∆(x)dx =
X

4
+

X3/4

2
√

2π2

∞∑
n=1

d(n)n−5/4 sin
(

4π
√

nX − 1
4
π

)
+ O(1).

To relate the above integral to the one of ∆∗(x) we proceed as on pp. 472-473
of [3], using (1.3) and (1.10). In this way we are led to

Lemma 2. We have

(2.3)

T∫

0

∆∗(t)dt =
T 3/4

2
√

2π2

∑

n≤T 2

(−1)nd(n)n−5/4 sin
(

4π
√

nT − 1
4
π

)
+

+ O(T
1
4 ).

We need also a result which relates E∗(T ) to its integral over a short
interval. This is

Lemma 3. For T ε ≤ H ¿ T we have, for some constant C > 0,

(2.4)

E∗(T ) ≤ 1
H

T+H∫

T

E∗(t)dt + CH log T,

E∗(T ) ≥ 1
H

T∫

T−H

E∗(t)dt− CH log T.

Proof. From (1.2) we have, for 0 ≤ u ¿ T ,

0 ≤
T+u∫

T

∣∣∣∣ζ
(

1
2

+ it

)∣∣∣∣
2

dt = (T + u)
(

log
(

T + u

2π

)
+ 2γ − 1

)
−
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−T

(
log

(
T

2π

)
+ 2γ − 1

)
+ E(T + u)− E(T ).

By the mean-value theorem this implies

E(T ) ≤ E(T + u) + O(u log T ),

giving by integration

(2.5) E(T ) ≤ 1
H

T+H∫

T

E(t)dt + CH log T (1 ¿ H ¿ T, C > 0).

From (1.3) we have (T ε ≤ H ¿ T )

(2.6) ∆∗(T )− 1
H

T+H∫

T

∆∗(t)dt ¿ H log T +
1
H

T+H∫

T

∑

4T<n≤4t

d(n)dt ¿ H log T

on applying a result of P. Shiu [13] on the values of multiplicative functions in
short intervals. It follows that

∆∗(T ) =
1
H

T+H∫

T

∆∗(t)dt + O(H log T ) (T ε ≤ H ¿ T ).

Hence

(2.7)

2π∆∗
(

T

2π

)
=

2π

H

T/2π+H∫

T/2π

∆∗(x)dx + O(H log T ) =

=
1
H

T+2πH∫

T/2π

∆∗
(

t

2π

)
dx + O(H log T ) =

=
2π

H

T+H∫

T

∆∗
(

t

2π

)
dx + O(H log T ),
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on replacing H by H/2π in the last step. On combining (2.5) and (2.7) we
obtain the first inequality in (2.4), and the second one follows analogously.

Lemma 4. If 1 ¿ K ¿ T 3/4, c1 6= 0, c3, . . . , c2L−1 are real constants,
L ≥ 1 is fixed, and

F (T, n) = c1(Tn)1/2 + c3n
3/2T−12 + . . . + c2L−1n

L−1/2T 3/2−L,

then for (κ, λ) an exponent pair we have

(2.8)
∑

K<k≤K′≤2K

(−1)kd(k)eF (T,k)i ¿ Tκ/2K(1+λ)/2 log T.

Proof. The factor (−1)k is innocuous, and in fact can be omitted, as was
done in Chapter 7 of [3]. It suffices thus to consider

S :=
∑

k≤K

d(k)eF (T,k)i = 2
∑

m≤
√

K

∑

n≤K/m

eF (T,mn)i −
∑

m≤
√

K

∑

n≤
√

K

eF (T,mn)i,

where the familiar hyperbola method was applied. The sums over n are split
into ¿ log T subsums over the ranges N < n ≤ N ′ ≤ 2N . In view of (Ca,b 6= 0)

∂a+bF (T,mn)
(∂m)a(∂n)b

∼ Ca,bT
1/2m1/2−an1/2−b (a, b = 0, 1, 2 . . . , mn ¿ T 3/4)

it follows that (see Chapter 2 of [3] for the definition and properties of exponent
pairs)

∑

N<n≤N ′≤2N

eF (T,mn)i ¿
(

mT

N

)κ/2

Nλ.

Hence we obtain

S ¿ log T
∑

m≤
√

K

(mT )κ/2

{(
K

m

)λ−κ/2

+ K(2λ−κ)/4

}
¿ Tκ/2K(1+λ)/2 log T.

Lemma 5 (cf. Lemma 3 of [6]). For a > − 1
2 a constant we have
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(2.9)
∑

n≤x

d2(n)na = xa+1P3(log x; a) + Oε(xa+1/2+ε),

where P3(y; a) is a polynomial of degree three in y whose coefficients depend
on a, and whose leading coefficient equals 1/(π2(a + 1)). All the coefficients of
P3(y; a) may be explicitly evaluated.

The last lemma is a new result of O. Robert - P. Sargos [12] which will be
needed in the proof of Theorem 3. This is

Lemma 6. Let k ≥ 2 be a fixed integer and δ > 0 be given. Then the
number of integers n1, n2, n3, n4 such that N < n1, n2, n3, n4 ≤ 2N and

∣∣∣n1/k
1 + n

1/k
2 − n

1/k
3 − n

1/k
4

∣∣∣ < δN1/k

is, for any given ε > 0,

(2.10) ¿ε Nε(N4δ + N2).

3. Proof of Theorem 1

From Lemma 1 and Lemma 2 we deduce that

(3.1) R(T ) = O(T 1/2 log T )+

+
1
2

(
2T

π

)3/4 ∑

n≤T

(−1)nd(n)n−5/4
{

e2(T, n) sin f(T, n)− sin
(
2
√

2πnT − π

4

)}
.

The sum over n is written as

∑

n≤T 3/4

=
∑

n≤T 1/3

+
∑

T 1/3<n≤T

=
∑

1
+

∑
2
,

say. In
∑

1 we use the asymptotic expansion (2.2) (actually a3 = 1
6

√
2π3) to

infer that
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(3.2)∑
1

= a3

∑

n≤T 1/3

(−1)nd(n)n−5/4
{

n3/2T−1/2 cos f(T, n) + O(n5/2T−3/2)
}

=

= a3T
−1/2

∑

n≤T 1/3

(−1)nd(n)n1/4 cos f(T, n) + O(T−3/4) =

= a3T
−1/2

∑
3

+ O(T−3/4 log T ),

say. The important thing is that in
∑

3 we have the increasing function n1/4,
and in

∑
2 the decreasing function n−5/4, while the exponential factors (up to

a constant) will be the same. This implies that the contributions both in
∑

2

and
∑

3 will be dominated by the contribution of n ³ T 1/3. Thus essentially
in the explicit formula (3.1) for R(T ) the ”critical” values of n will be when
n ³ T 1/3. In the truncated formula (1 ¿ N ¿ T )

(3.3)

∆∗(x) =
1

π
√

2
x

1
4

∑

n≤N

(−1)nd(n)n−
3
4 cos

(
4π
√

nx− 1
4
π

)
+ Oε

(
x

1
2+εN− 1

2

)
,

and in the integrated analogue for E(T ) (see (2.4)), if we want bounds of the
type ∆∗(x) ¿ε xs+ε(E(T ) ¿ε T d+ε) with s < 1/3 (resp. d < 1/3) we have
to take N in (3.3) with N = x1−2s. This implies that 1− 2s > 1/3, hence the
”critical” values for n in (3.3) will be larger that x1/3, whereas in (3.2) they
are of the order T 1/3. The ”closeness” of E(T ) and 2π∆∗(T/(2π)) is basically
induced by this phenomenon.

To continue with the estimation of R(T ), we use the Taylor expansion of
f(T, n) (see (2.2)) with L terms, where L is chosen so large that the tails of
the series will make a negligible contribution (i.e. O(1)). The sums in

∑
2 and∑

3 are split into O(log T ) subsums of the form (2.8), after the removal of the
monotonic coefficients n1/4 and n−5/4 by partial summation. Applying Lemma
4 it follows that

T 3/4
∑

1
¿ T 1/4Tκ/2 log2 T · T 1

3 ( 1
4+ 1

2+ λ
2 ) = T

1+κ
2 + λ

6 log2 T,

and in a similar way one has the bound

T 3/4
∑

2
¿ T

1+κ
2 + λ

6 log2 T.

Therefore we have the bound



14 A. Ivić

(3.4) R(T ) ¿ T
1+κ
2 + λ

6 log2 T + T 1/2 log T ¿ T
1+κ
2 + λ

6 log2 T,

since 0 ≤ κ ≤ 1
2 ≤ λ ≤ 1. Already the trivial exponent pair (0,1) gives the

bound R(T ) ¿ T 2/3 log2 T , which improves the bound R(T ) ¿ T 3/4 that was
mentioned in Section 1. The exponent in (3.4) does not exceed 2/3 if

(3.5) 3κ + λ ≤ 1

holds, but it is not likely that the exponent 593/912 = 0.6502129 . . . in (1.11)
of Theorem 1 can be attained in this fashion. To attain this exponent (more
sophisticated present-day estimates can yield a slightly smaller exponent), one
has to use estimates for two-dimensional exponential sums. In particular, for
(1.11) one can use the bound of G. Kolesnik, worked out in Chapter 7 of [3].
This is (c 6= 0, K ¿ T 1/2)

(3.6) ∑

K≤k≤K′≤2K

(−1)kd(k)eic(kT )1/2+idk3/2T−1/2 ¿ε T ε
(
T−

1
16 K

173
152 + T

1
16 K

119
152

)
,

as the terms a5k
5/2T−3/2 + . . . in the (2.2) make a smaller contribution.

The terms n > T 1/2 in (3.1) may be estimated by Lemma 4 with (κ, λ) =
= (2/18, 13/18) = ABA(1/6, 2/3) in the terminology of exponent pairs. The
contribution is seen to be Oε(T 11/18+ε), 11/18 = 0.6111 . . . .

In the bound (3.6) it is the first term on the right-hand side that will make
the larger contribution, which is found, similarly as in the derivation of (3.4),
to be

¿ε T 3/4+ε

{
max

K≤T 1/3
T−1/2−1/16K1/4+173/152 + max

K≥T 1/3
T−1/16K−5/4+173/152

}

¿ε T 593/912+ε.

4. Proof of Theorem 2

Combining Lemma 1 and Lemma 2 we obtain
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R(T ) =
1
2

(
2T

π

)3/4 ∑

T<n≤T 2

(−1)n+1d(n)n−5/4 sin
(

2π
√

2nT − 1
4
π

)
+

+
1
2

(
2T

π

)3/4 ∑

n≤T

(−1)nd(n)n−5/4×

×
{

e2(T, n) sin f(T, n)− sin
(

2π
√

2nT − 1
4
π

)}
−

−2
∑

n≤c0T

d(n)n−1/2

(
log

T

2πn

)−2

sin
(

T log
(

T

2πn

)
− T +

1
4
π

)
+ O(T 1/4).

We set, for T ≤ t ≤ 2T ,

S1(t) :=
∑

T<n≤T 2

(−1)n+1d(n)n−5/4 sin(2π
√

2nT − 1
4
π),

S2(t) := 2
∑

n≤c0T

d(n)n−1/2

(
log

t

2πn

)−2

sin
(

t log
(

t

2πn

)
− t +

1
4
π

)
.

Note that the mean square bound (c 6= 0)

(4.2)
2T∫

T

∣∣∣∣∣∣
∑

K<k≤2K

(−1)kd(k)e
√

ckti

∣∣∣∣∣∣

2

dt =

= T
∑

K<k≤2K

d2(k) +
∑

K<m 6=n≤2K

(−1)m+nd(m)d(n)

2T∫

T

e
√

ct(
√

m−√n)idt ¿

¿ TK log3 T +
√

T
∑

K<m 6=n≤2K

d(m)d(n)
|√m−√n| ¿ε

¿ε TK log3 T + T 1/2+ε
∑

K<m 6=n≤2K

K1/2

|m− n| ¿ε

¿ε T ε(TK + T 1/2K3/2)
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holds for 1 ¿ K ¿ TC (C > 0), where we used the first derivative test (see
Lemma 2.1 of [3]). The same bound also holds if in the exponential we have
f(t, k) (cf. (2.2)) instead of

√
ctk, as shown e.g. in the derivation of the mean

square formula for E(t) in Chapter 15 of [3]. Using (4.2) it follows that

(4.3)

2T∫

T

t3/2S2
1(t)dt ¿ε T 1+ε,

and, similarly as in Chapter 15 of [3], one obtains

(4.4)

2T∫

T

S2
2(t)dt ¿ε T 1+ε.

By using (4.2) we also have the crude bound

(4.5)

2T∫

T

R2(t)dt ¿ε T 2+ε,

Therefore from (4.1) and (4.3)-(4.5) we infer, by using the Cauchy-Schwarz
inequality for integrals, that (setting A = 1

π
√

2π
for brevity)

(4.6)

2T∫

T

R2(t)dt = Oε(T 7/4+ε)+

+A

2T∫

T

t3/2


∑

n≤T

(−1)nd(n)n−
5
4×

×
{

e2(T, n) sin f(T, n)− sin
(

2π
√

2nT − 1
4
π

)})2

dt.

Further, for a given δ > 0 we split

∑

n≤T

=
∑

n≤δ
√

T

+
∑

δ
√

T<n≤T

= S3(t) + S4(t),
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say. It follows from (4.6) that

(4.7)

2T∫

T

R2(t)dt = A

2T∫

T

t3/2
(
S2

3(t) + S2
4(t) + 2S3(t)S4(t)

)
dt + Oε(T 7/4+ε).

Again, by (4.2), it is seen that the integral with S2
4(t) is absorbed by the error

term in (4.7).
Next, we consider the integral with S3(t)S4(t) in (4.7), writing m for the

integer variable in S3(t). If m < T 1/3, then we observe that

sin f(t,m)− sin(2
√

2πmt− π/4) =
∞∑

k=1

(y − y0)k

k!
sin

(
y0 +

1
2
kπ

)
,

y = f(t,m), y0 = 2
√

2πmt− π/4, y − y0 = d3m
3/2t−1/2 + d5m

5/2t−3/2 + . . . .

Therefore in
2T∫

T

t3/2
∑

m<T 1/3

. . .
∑

δ
√

T<n≤T

. . . dt

we shall encounter the exponential factor

(4.9) exp
(
±i

{
f(t,m)−

√
8πmt

})
exp

(
±i

{
f(t, n)−

√
8πnt

})
.

In the first exponential we use (4.8), and the dominant contribution comes from
the term k = 1. The first derivative test shows that the contribution is

¿ T 2
∑

m≤T 1/3

d(m)m−5/4 ·m3/2T−1/2
∑

δ
√

T<n≤T

d(n)n−5/4n−1/2 ¿

¿ T 3/2T
5
4 · 13 T−

1
2 · 34 log2 T = T 37/24 log2 T.

In case when T 1/3 < m ≤ δ
√

T in S3(t), we shall have exponentials of the form

exp(±if(t,m)± i
√

8πnt), exp(±if(t,m)± if(t, n)),

exp(±i
√

8πmt± i
√

8πnt), exp(±i
√

8πmt± if(t, n)),

with all possible combinations of signs. The most interesting case is that of

exp(iF (t,m, n)), F (t, m, n) :=
√

8πmt− f(t, n),
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when

d

dt
F (t,m, n) =

√
2πm

t
− 2arsinh

√
πn

2t
=

=

√
2π

t
(
√

m−√n) + c3n
3/2t−3/2 + c5n

5/2t−5/2 + . . . .

Here we have |√m − √
n| À √

n for |n − m| À n, namely for m ¿ n. In
that case the contribution is clearly, by the first derivative test, ¿ε T 7/4+ε. If
m À n, this means that

(4.10) δ
√

T < n ¿ δ
√

T .

Then we have ∣∣∣∣∣

√
2π

t

(√
m−√n

)
∣∣∣∣∣ À

(n

t

)3/2

for |m−n| À n2/T , which certainly holds in view of (4.10) if δ > 0 is sufficiently
small, since |m−n| ≥ 1 when m 6= n. The total contribution of such pairs m, n
is

¿ T 2
∑

m≤
√

T

d(m)m−5/4
∑

n 6=m,n³δ
√

T

d(n)
|m− n|n

−5/4n1/2 ¿ T 7/4.

In a similar fashion it is seen that all other cases make the same total
contribution which is ¿ T 7/4. Thus we have

2T∫

T

R2(t)dt = A

2T∫

T

t3/2S2
3(t)dt + Oε(T 7/4+ε).

In S3(t) we replace e2(t, n) by 1 (see (2.2)), making an error which is absorbed
in the error term above. Thus it is shown that

(4.11)

2T∫

T

R2(t)dt = Oε(T 7/4+ε)+
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+A

2T∫

T

t3/2


 ∑

n≤δ
√

T

(−1)nd(n)n−5/4

{
sin f(t, n)− sin

(√
8πnt− 1

4
π

)}


2

dt =

= A

2T∫

T

t3/2
∑

n≤δ
√

T

d2(n)n−5/2

{
sin f(t, n)− sin

(√
8πnt− 1

4
π

)}2

dt+

+Oε(T 7/4+ε).

Namely, when we square out the first sum above, then we encounter diagonal
terms (m = n) which account for the main contribution. There are also the
non-diagonal terms (m 6= n), which are estimated similarly as in the preceding
case, and which make a total contribution of Oε(T 7/4+ε).

At this point we invoke the elementary formula

(sinα− sin β)2 = sin2 α + sin2 β − 2 sin α sinβ =

= 1− 1
2
(cos 2α + cos 2β) + cos(α + β)− cos(α− β)

with
α = f(t, n), β =

√
8πnt− 1

4
π,

and insert it in (4.11). To deal with the contribution of

−1
2
(cos 2α + cos 2β) + cos(α + β)

we split the sum over n in (4.11) at n = T ρ, 0 < ρ < 1
2 . Using | sinα− sinβ| ≤

≤ |α−β| for n < T ρ and the first derivative test for the remaining n we obtain
a contribution which is

(4.12)
¿ T 5/2

∑

n<T ρ

d2(n)n1/2T−1 + T 2
∑

n≥T ρ

d2(n)n−2 ¿

¿ T
3
2+ 3

2 ρ log3 T + T 2−ρ log3 T ¿ T 9/5 log3 T

with the choice ρ = 1/5. Using 1− cos(α− β) = 2 sin2( 1
2 (α− β)) and invoking

the asymptotic expansion (2.2) for f(T, n), we have altogether

(4.13)

2T∫

T

R2(t)dt =
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=
√

2
π
√

π

∑

T 1/5≤n≤δ
√

T

d2(n)
n5/2

2T∫

T

t3/2 sin2

(
1
2
a1n

3/2t−1/2

)
dt + O(T

15
8 log3 T ).

In the integral above we make the change of variable

1
2
a1n

3/2t−1/2 = y, dt = −1
2
a2
1n

3y−3dy.

We set z = (4(y/a1)2)1/3 so that, after changing the order of integration and
summation, the main term on the right-hand side of (4.13) becomes

1
π
√

2π

∑

T 1/5≤n≤δ
√

T

d2(n)n−5/2

1
2 a1n3/2T−1/2∫

1
2 a1n3/2(2T )−1/2

(
1
2
a1

)3

n9/2y−3 sin2 y·

(4.14) ·a2
1n

3y−3dy =

=
a5
1

8π
√

2π

1
2 a1δ3/2T 1/4∫

2−3/2a1T−1/5

∑

max(T 1/5,z)≤n≤min(δ
√

T ,21/3z)

d2(n)n5 · sin2 y

y6
dy.

The range of summation for n is the interval [z, 21/3z] if

y ∈ J, J :=
[
1
2
a1T

−1/8,
δ3/2

2
√

2
a1T

1/4

]
.

If we replace the interval of integration in the second integral in (4.14) by J ,
then by using

(4.15) | sin y| ≤ min(1, |y|)

it follows that the error that is made is ¿ε T 9/5+ε.

Now we use Lemma 3 ((2.9) with a = 5) to obtain that the integral over
J equals, with suitable constants dj , ej ,

1
2 a1δ3/2T 1/4∫

2−3/2a1T−1/5


T 2y4

3∑

j=0

dj logj(y2/3T 1/3) + Oε(T 11/6+εy11/3)


 sin2 y

y6
dy =
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= T 2

1
2 a1δ3/2T 1/4∫

2−3/2a1T−1/5




3∑

j=0

ej logj(y2T )


 sin2 y

y2
dy + Oε

(
T 11/6+ε

)
,

since by using (4.15) we have

1
2 a1δ3/2T 1/4∫

2−3/2a1T−1/5

T
11
6 +ε · sin2 y

y7/3
dy =

= T
11
6 +ε




1∫

2−3/2a1T−1/5

sin2 y

y7/3
dy +

1
2 a1δ3/2T 1/4∫

1

sin2 y

y7/3
dy


 ¿

¿ T
11
6 +ε




1∫

0

y−1/3dy +

∞∫

1

y−7/3dy


 ¿ T

11
6 +ε,

which accounts for the error term in Theorem 2. Replacing the segment of
integration in the integral on the right-hand side of (4.16) by (0,∞), we make
an error which is ¿ε T 9/5+ε. Namely, for 0 < α < 1 < β, j = 0, 1, . . . fixed, we
have

(4.17)

β∫

α

sin2 y

y2
logj dy =

∞∫

0

sin2 y

y2
logj dy + O(α) + O

(
β−1 logj β

)
,

where we used again (4.15). Hence the expression in (4.16) becomes, on using
(4.17) with α = 2−3/2a1T

−1/5, β = 2a1δ
3/2T 1/4,

T 2
3∑

j=0

bj logj T + O
(
T 11/6+ε

)

with some constants bj (b3 > 0) which may be explicitly evaluated, and
Theorem 2 follows.

5. Proof of Theorem 3

The proof of the fourth moment estimate in (1.14) follows by employing
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the method of [5] used in the proof of (1.5) and (1.6), and therefore we shall
be brief. The chief ingredient of the proof is Lemma 6 with k = 2, since raising
the sum ∣∣∣∣∣∣

∑

K<k≤2K

(−1)kd(k)e
√

ckti

∣∣∣∣∣∣
to the fourth power leads to expressions of the form

√
n1 +

√
n2 −√n3 −√n4

(nj ∈ N) in the exponential. Care has also to be taken when one takes the
first two terms in the asymptotic expansion (2.2) of f(t, k), namely of the
term k3/2t−1/2. This is achieved by using the approach of M. Jutila [7, part
II], as embodied in e.g. Lemma [5, part I]. As already explained, the major
contribution will come from the terms n ³ T 1/3 in (3.1). The contribution of
the terms n ≤ T 1/3, corresponding to Σ1 in the proof of Theorem 1, will be

(5.1) ¿ T log T max
K¿T 1/3

2T∫

T

∣∣∣∣∣∣
∑

K<n≤K′≤2K

(−1)nd(n)n1/4e
√

ckti

∣∣∣∣∣∣

4

dt,

and the integral is, up to a small error term,

(5.2)
¿ max

K¿T 1/3
K

5T/2∫

T/2

∣∣∣∣∣∣
∑∗

K<m,n,k,l≤K′≤2K

×

×(−1)m+n+k+ld(m)d(n)d(k)d(l) exp(i∆
√

t)
∣∣∣ dt,

where
∑∗ means that |∆| ≤ T ε−1/2 holds, and

∆ :=
√

8π(
√

m +
√

n−
√

k −
√

l).

Now we use Lemma 6 ((2.10) with k = 2, δ ³ K−1/2|∆|), estimating the integral
on the right-hand side of (5.2) trivially. It follows that the total contribution
will be

T 1+ε ¿ε max
K¿T 1/3

T (K9/2T−1/2 + K3) ¿ε

¿ε T 3/2+3/2+ε + T 3+ε ¿ε T 3+ε,

and the same final bound follows for the contribution of the terms n in (5.1)
satisfying n > T 1/3. The proof of Theorem 3 is complete.
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