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1. Introduction

Let A = {f : N — C} be the set of arithmetic functions. There are many
number theoretic investigations (for example, prime number theorem, mean
behaviour of arithmetic functions) that are based on identities between vari-
ous special functions. These identities result from manipulations of arithmetic
functions like Mobius and von Mangoldt function, divisor function, etc. and
they are evidence of a more formal structure surrounding the arithmetic func-
tions. The setting for this structure is that of the ring (A, +,*) where the
addition + and the convolution * are defined, for f,g € A, by

(f + 9)(n) = f(n) + g(n) (neN)

and

(Fr9m =Y fdg(5) (eN),

din

respectively. This point of view often provides simplicity and elegance to proofs.
In addition, for a given arithmetic function f € A we can form the symbol-

ism )
— f

Such an object is called a formal Dirichlet series. In the case where the Dirich-
let series converges absolutely for a given s € C, rearrangement of terms is
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permissible and multiplication yields

0o > 1

o AR WLILE
s fxg(l
;( lf)()

This then is taken as a definition for multiplication of formal Dirichlet series,

namely,
= f(n) <=9(n) = (f*g)(n)
B

n=1 n=1 n=1

The set D of formal Dirichlet series forms a ring under addition and multipli-
cation, and the map 1" of A into D defined by

Z f TI
ns
describes an isomorphism between the rings A and D. For whatever s domain,

the series
=7(f) = Z £

ns

converges, the function F' defined thereby is called generating function of f.
(It should be noted, however, that not all f € A have generating functions.
For example, if f(n) = 2™, the corresponding formal Dirichlet series converges
nowhere.)

Thus the statement of identities and inequalities in convolution arithmetic
may in many cases be expressed by means of generating functions. This moti-
vation is the starting point of our investigations.

2. Results

The simple fact that multiplying by the log-function Lo (Lo(n) =logn
for n € N) acts as an derivation on (A4, +, *) and the von Mangoldt function A
defined by Lo(n) = >, A(d) plays an important role in our proofs.

Theorem 1. Let f : N — C be a multiplicative function, and put

M(z) = Zf(n) forz > 1.

n<z
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Define a completely multiplicative function f by f(p) = f(p) for all primes p,
and define g by f = g* f. Then, forallz > 1

M(z)log?z = ZM( )f(n){ > A(d)A(d’)+A(n)1ogn}+

n<z dd'=n

X () ()} o o

n<zx
+{Ri(z) + Rz(z)} logz,

where

-3 (Z_ f(m>> g(n)logn.

For a given arithmetical function w : N — C with w(1) # 0 we define A,
by

Low = w x Ay,
Then we prove
Theorem 2. Let f, f and g be defined as in Theorem 1, and let w be an
arithmetical function with w(1) # 0. Put

M(z) =) (f(n) —w(n)).

n<z
Then

M(z)log’z = ZM( ) (n){ 3 A(d)A(d’)+A(n)logn}+
d

n<z d'=n

AR () 4R (D) + R (2)} Fw) A+

n<z

+{Ri1(z) + Ra(z) + R3(z)}logz,
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where

Ri(z) = 3 (f(n) — w(n))log T,

nlzT

Ry(z) =) (Z f(m)) g(n)logn,

R3(z) = — Z ( Z w(m)) (Aw(n) - A(n)f(n)) .

n<z \m<Z

—=n

We shall apply these identities to multiplicative functions of modulus smaller or
equal to one. For this we define, for a given a € R, the completely multiplicative

function 1, by
1 if n =1,
14(n) = )
n'* ifn>1.

Choosing w = A1, with some constant A € C, then A,, = A1, (if A # 0),
and Theorems 1 and 2 lead to

Theorem 3. Let f be multiplicative and |f| < 1. Let A € C and a € R.
Then

z | 2 (fln) — An*?)
X () -y < o [ 1= dut
T ~ logz u? v
n<zx 1
1 |f(p) — p*°|
+0 (lAllogz ) " logp | +
p<z
+o( ! )
log r
as T — o0o.

For an arithmetical function f : N — C we define the generating function
F of f by

(1) F(s):=)_ f(n)n™",
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where s = o + it and assume that F(s) converges absolutely for & > 1. Then,
integration by parts shows for ¢ > 1

—1F( / (Z f n)) —w(a—l)e—iwt‘dw

n<evw

and, by Parseval’s formula,

o I

This leads to

Theorem 4. Let A€ C,a € R and f : N — C. Assume that the generating
function F' of f converges absolutely for o > 1. Then

27T/|6_“’ Z f n)]? —2w(o— l)dw

n<le¥

> (f(n) - An*?)

1 1 T|F A of \}
< _ _
/ n<u , du < / (s) ¢(s —1a) dt
log u® logz S
1 —00
and
> (f(n) — An'e 3
1 /I nﬁu( ) /°° F”S) AC s—za)
du << )
log z u?
1 — 00
1 .
where s = 1 + —— + it.

logx
For ¢ > 1 and a € R we put

[e 9}
'Z B

and obtain

F(s —ia) _ Fals) 1@\ (;_ 1
<o) H(”Z k<s+w>)< )

P

From this we deduce the representation

F <s (Z fppe -1, h(s)> ,
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where

A =Y {log (1 Ly W) -p-ks) L) g (1 - p7) +p-s}.

a
p p

In view of | f(p*)p~***| < 1 the function h is uniformly continuous and bounded
for ¢ > 1. Especially we have

lh(s) = R(D)] <D Y Ip7Fe —p7F <
k=

M 10

Then, putting

we shall prove

Theorem 5. Let f be multiplicative and |f| < 1. Assume that
012
|£(p) — p*|
3 ———— <c¢< o0
® SHerl <

for some a € R.

Let (logx)~!loglogz < dg(x) and So(x) — 0 as z — oo such that, if we put
y = y(z) = z%®

_ nta)2
) [f(p) = p*** _

» : (51 (13) S 50(.’1:)

y(z)<p<z
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for © > xo. Then

—Zj( ) -4 1+za=

_ Ref(p)p v-1) 1 log p _ . ia
—O(exp (pszz ) ) Ing,gz » |f() —p )+
+0(do(2))/10 =

= O((80(2))"/19).

As a corollary we obtain

Corollary 1. Assume that (3) holds. Then, with the notations of The-
orem 5

_T;zf( n) = 1+ al;EII( ) <1+Zf(pk)p—k(l+za)>
+0 ((Go(2))™)

If the series (3) diverges for all a € R we choose A = 0, and as in [6] we
obtain

Corollary 2. Assume that (3) diverges for all a € R. Then, if f is multi-

plicative and |f| < 1,
1
= Z f(n) =o(1)
s

n<c

as T — 00.
As an immediate consequence of the above results we have
Corollary 3. Let f be multiplicative and |f| < 1. Put

M@) =Y f(n)
n<lz
Then the following assertions are equivalent.

(i) lim 27! M(x) =0,
T—00

(i) lim ! /W( )Idu=0,

z—oo log u?
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(%i) lim logx/lM(U)l =0,

T —00

(iv) hm 0—1)/‘ dt=0.

3. Simple properties of convolution

Our treatment of this topic follows that of Shapiro’s book [10].
The classes of functions that are distinguished are denoted by S and A, and
are defined as follows

S ={f:R-C,f(z)=0 forz <1},

A ={feS: f(z) =0 for z ¢ N}.
Then, for f,g € S, the convolution f *x g in S is defined by
(4 fro@= 3 (%)
1<n<lz

The "action" of this definition on functions of A is given by the following: If
f€A geSthen fxge Aand for n €N,

(5) (Fx9) ) =31 (%)
d|n

In general the binary operation * is not commutative in S, but if f,g € A then
frg=g=f.
Consider the function & defined by

1 forzr=1,
e(z) =

0 otherwise.

Clearly € € A, and
fxe=f for feS

and

f(z) ifzeN,
(6) (e * f)() ={ for feS.

0 otherwise
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Thus € serves as a right identity under convolution for all of S, but is a left
idendity only in A.

The relation (6) suggests that for each f € S we define an image fy € A by
fo=cexf for f e S.
This definition leads to

(f*g)xh=fx(go+h) forf,gheS
which implies
(f*xg)*xh=fx(gxh) for f,g,h€ A
An element f € S is called a left unit in S if there exists a g € S such that
(7) f*g=¢.
It is called a right unit if there exists a g € S such that
g* f=e.

As a comparison terminology, if (7) holds g is called a right inverse for f, and
f a left inverse for g.

The investigation of these concepts may be initiated with the following

Further properties:

(i) A necessary and sufficient condition for f € S to have a left inverse is

that f(1) #0.
(i) If f(1) # 0, the left inverse of f is in A.
(iii) If f(1) #0, and f € A, then f has a unique two-sided inverse in A.

(iv) Let h € A be completely multiplicative (i.e. h(nm) = h(n)h(m) for all
n,m € N) then

h(f xg) = (hf) * (hg) forall f,g € A,

especially
hxhu=c¢.

Here the Mobius function u is defined by

10*#=€1
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where 1o = e*1 and 1 € § with
1 x>1,
1(z) =
0 otherwise.
The wellknown Mébius inversion formula says that if f,g € S then f =g* 19
if and only if g = f * p.
Examples:

(i) Let ¢ = 1. Then f(z) = [z] and Z [%] u(n) = 1 which implies

x Z %2 = 0(z), i.e.
n<z
pn) _ oo
(8) nz;z = 0(1).

(ii) Let g(x) =z for x > 1. Then
f(z) = Z % =zlogz + iz + O(1)

n<lzx
and x x x
z = g(z)= 7l;z/i(n) {; log ~+ CLE} +0(z) =
= xz Mlogf +(-1$Z pn) + O(x)
n<lzx n n n<c n
which implies
n z
(9) 3 —"(n ) log = = 0(),
n<zx

The constant ¢; equals Euler‘s constant 7.

(iii) Let g(z) = zlogz. By a straightforward calculation (partial summation)

we deduce
T T
flx) = E ;Llogﬁ—

n<z

= mlogx}:%—leoin =

n<zx n<lx

1
= §m10g2 z + cizlogz — cox + O(log x)
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since with some constant cp

1 1 1
E $2=710g2w+02+0(0gx).
n 2 T

n<r

This implies, by (8) and (9)

zlogz = g(x) = %:c Z u_izﬂ log? % + O(z)

n<z
and

1) 10g2 T =
(10) Z " log n—210gx+0(1).

n<lz

Let L € S denote the logarithm function. Then obviously L acts as a derivation
on S, that is

(11) L-(fxg)=(L-f)xg+fxL-g forall f,geS.
Further, we introduce the von Mangoldt function A € A by
(12) c*x L =Ly =Ax1,,
ie.
(13) A=Lo*p.
The relation (12) and (13) immediately show
L} = Lo-(1oxA)=

= LoxA+1g*xLoA =
= lg* (A* A+ LoA)
and
(14) px LE = Ax A+ LoA.
On the other hand, by (8) and (9)

Lr (prLg)(@) = 3 D pld)log” % = > wdlog’d =

n<z d|n dd’'<z
= u(d) ) log’d' =
d<z <z
_ pd), 2 pd), = u(d) _
—zZTlog p —ZzZ——d logd +2$Z—d +0(z) =
d<z d<z d<z

=Izﬁ§i)log2§+0(z)

d<z
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since

Yy
Y log’n = / log?t dt + O(log® y) =
1

n<y
=ylog?y — 2ylogy + 2y + O(log®y).
Considering (14) and (10) produces

1x(LoA+AxA)(z) =) Am)logn+ Y A(d)A(d) =
(15) n<z dd'<z
= 2zlogz + O(z).

which is known as Selberg’s Symmetry Formula.
4. Proof of Theorem 1 and Theorem 2
Let

i.e. 3
M =1xf=1x(g])

with the notations of Theorem 1.
Then

(16) LM =Lxf+1xLgf.
Putting R; = L * f leads to

LM =1xLof + R,.

Observing
Lof =Log+f+gx(Af«f)=
=f*Af+Log*f
gives
(17) 1xLo=Mx*Af + Ry,

where R2=1*(L0g*f).
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Collecting (16) and (17) shows

(18) LM =M *Af+ Ry + Ry
with
(19) Rl:L*f Rg:l*(Loq*f)

We multiply (18) with L and obtain
(20) I°M = (LM x Af') + M % LoAf + L(Ry + Ry).
Then, by substituting (18) in (20) we arrive at
L’M = (M*Af+R1 +R2) « A +
+M x LoAf + L(Ry + R,) =
(21) = M (AfxAf+ Lo Af)+
+(Ry 4 Ry) * Af + L(R, + Ra)

which leads immediately to Theorem 1.
For the proof of Theorem 2 we put M =1 = (f — w). This leads to

(16) LM =1 Lo(f —w) + Ry,

where R; = L * (f —w). Since w(1) # 0 there exists Ay such that
Low =w=* Ay

holds, and, as above

(17" 1xLo(f—w) =1xfxAf—1xw*Ay+Ry=
=M *xAf —1xw*(Ay — Af) + Ry,

where Ry = 1 % (Lo g * f). Collecting (16’) and (17°) shows

(18") LM =MxAf+R,+ Ry + Rs
with

(19) Ri=L*(f-w), Ro=1x(Logxf)
and

(22) Rs = —1%wx* (Ay — Af).
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We multiply (18’) by L and obtain
(20) LM = (LM x Af) + M * LoAf + L(R; + Ry + R3).
Then, by (18’) and (20’) we arrive at
LM =M s (Af * Af + LoAf)+
(21) .
+(R1 + Ry + R3) x NS + L(R1 + Ry + Rg)

which proves Theorem 2.
5. Proof of Theorem 3

Let f be multiplicative and |f| < 1. We apply either Theorem 1 or Theorem
2 with the choice w = A1, with some A € C and a € R. In the second case
A = Al,. In both cases we have

[Ry(@)| < Y log * = O(a)

n<z

and

|Rs ()| =0( > ‘9 ) = O(z)
n<z

which implies

(R1 + Ry) *Aﬂ (z)=0 (12 é%l) = O(zlogx).

n<zr
For the estimate of R3 we observe A,, = A1, and obtain
A(n) ¢ ia
|Rs(a)] < IA'””Z; = 1f () =i,

Since

(B« Af)(a)l <141 (Z logm) A@)f(n) - nie| <

n<z \m<£%

< |Alz(logz) Z A, () — o]

n<z
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we obtain the remainder terms in Theorem 2. The rest of the proof is based
on a summation formula the proof of which can be found in {6].

Lemma 1. Let R€ S,R(z) > 0 and v € A such that

Y v(n) = cx(logz)™ + O(z(log z)™*)

n<z

for some m > 0. Assume that there is a steadily increasing function H €
€ S, H(z) = O(x) such that for 1 <t' <t

|R(t) = R(t')] < H(t) - H(t').
Then

o) = 3 ()

n<z

T

c/ R (;) (logt)™dt + O(z(logz)™).

1

Put M(z) = Z(f(n)—Anm). Then by Theorems 1 and 2, (15) and Lemma
n<z

1 with H(t) =tand m =1

T

|M(z)|log’z < 2/ ( )\logth—

1

+0(z log z)+

+0 (lAllngZ Lf p)p pia| logx) .

p<z

Obviously

T T

/.M (%)‘logtdt Slogt/
1

1

()|
i / M@,
1

from which the assertion of Theorem 3 follows.



318 K.-H. Indlekofer

6. Proof of Theorem 4

By Cauchy’s inequality

M 1M (u)|2
JECE (/| () du)
1 1

Since 1 < u?/187 < e? for 1 < u < z we get

o=

VRS
"~
2|8
N~
Ol

d

witza WS [ Tarea

T T o0
M (u)|? M (u)|? M (u)|?
MR, o MR, [IMWE,
1 1 1

1
where a = Togz’ Substituting u = e* and using Parseval’s Formula (2) gives

T o0 V(2
! 1/|M(u)|du < |M (e )|—dw =
(log :L‘)5 u2 e2w(l+a)
1 0
1

_ (%_Z‘F(s)—i((s—ia) 2 ds)z’

o

(23)

1
where s =1+ —— +it.

log z
Putting K(u) = Z( f(n)— An'®) log n partial summation shows that for u > 2
nlu
K@) [ K()
(24) M(u) = log u +/ t(logt)2 "’
so that
[ M) (K@l [ KO [d
u u u
—d < —_ —dt <
(25) / wr %= /u2 logudu-k/t(logt)2 / u? e
2 2 2 t

< <1+ L) [ 1K) du.

u?log u
2



Identities in the convolution arithmetic

319

By Cauchy’s inequality

2

and in the same way as above we arrive at

[ M) Fier
u)! \ (e¥ _
/Tdu <\ ) @] =
(26) !
F'(s) - —ia)|?

/ |K( u)‘ / |K u)|2 / ,
u2 log u ulog®u
2

(3]

(2

1
where s =14+ —— +it.
logx

7. Some lemmas

First we collect some simple facts about the {-function.

Lemma 2. Let s = o +it. Then

Gl < o <3

and
IC(s) < loglt| if |t|>3
uniformly in o > 1.

Proof. Partial summation shows

((s) =) n*=s / u[i]ldu =

which obviously implies ¢(s) = O(|s — 1|7}) for [t| < 3.

N

1/2
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In the same manner we conclude for every o > 1 and positive integer N

oC
roa

s ul —u
¢(s) = Zn =s—1 S/[uJS_H du.

N

Hence
N oo

- du
Ol <Yn+ oo+l [ o <
N

1
s —1| + uN ? + constant
and the desired result is obtained by choosing N suitably.

Without loss of generality we may assume that f(p) = p*® if z < p since
these values do not influence the sum M (z). Then the following holds.

<logN +

1
Lemma 3. Leto = 1+F and let 6o(x) be given as in Theorem 5. Then,
as T — o0

e —1] 1 \?
(27) y(z)z;;g » <5o(z)log e ))
and
(28) Z |f(p)p~* - %‘ < 6o(z)|s — 1|logz.

p<y(x)
Proof. By Cauchy’s inequality

‘ 1/2
Z |_f_(p;)p_:_—1_| 3(50(1.))%( Z l) <

y(z)<p<z y(z)<p<z

< (sereegy)

and thus (27) holds. Further we observe

> 1fp

p<y(z)

i

Cp| T

<2 Z L1 — exp((1 - 5)logp)| <
p<y(z)

1
<2|s -1 Z ng<<6o(1:)|s—lllogz

p<y(z)
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which ends the proof of Lemma 3.

From Lemma 3 we conclude

Lemma 4. Let K >0 ando =1+ —1— Then
logx

1 \1/2
Fa(s) — AC(s) < [C(s)] { (aou) log W) n Kao(z)}

uniformly for |t| < K(o — 1) and every K > 0.
Proof. By Lemma 3 we have

Fao(s)
A((s)
e {Z LIRS St h(l)} _

—ia __ i _ 1 _ —
— exp (gﬂmp ) (ps p) +0(s 1|)>

1/2
= exp (O ((60(23) log Sazz—)) ) + O(6o(w)K)>

uniformly in |¢| < K (o — 1) which proves Lemma 4.
Lemma 5. If K(o — 1) < |t| < K then

. 1 1
Fa(0+'lt) < 7{1—/2 . m

Proof. Since
11— p*? <21 - f(p)p~*|* +2If(p)p~* - p*|?
we have
23,07 °(1-Rep) =3 p7?[1 —p*|* <
<2),p 0l - f(p)p** + 43,0 (1 — Ref(p)p~**p™*)

which implies together with (3)

2
<

4

¢(o)
Fy(o —it)

' ¢(o)
¢(o +it)
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This proves Lemma 5 since by Lemma 2

1

I¢(o +it)| < ?(_U-—l).

——— +log(3 + |t
a1 eIt <

Lemma 6. Let f be a nonnegative multiplicative function, f(p*) = O(1)
for all prime powers p*. Then

(29) z! Z f(n) < exp (Z I ) forall x > 2.

n<z p<z

Proof. Put M =1 x f. Then
LM = 1xLof+Lxf
which leads to

(logz)M(z) = Zf(n)logn+0<z lf(n)llog%) -

n<z n<zr

= Y i)Y logp® +o( Z‘fﬁl”) _

n<z plin n<z
a |f(n)]
= Z;zlo 2 p° n;ﬁf n)f(p*) + O (zg E?)) <

I)fn

IA

S ) S logp® + 0O (zzlf(n)') -

n<z px<E

= O(xzf—:ll)

f Q

n<z P p<z

Since

the assertation of Lemma 6 follows immediately.
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8. Proof of Theorem 5

By changing the variable ¢ into ¢ + ia we conclude

IF(s) IFus) — AC(5)P
/ lsP / ls+zl2 T rap A<

« / Fa(s) = AC)°

||2

Therefore, it is enough to estimate the integral

/ IFofe) = ACS)P

P

1
where s = 0 + it with o =1 + @. For this purpose we divide the range of

integration into the three parts
IL:={teR:|t| < K(oc-1)},
ILp:={teR:K(oc—1) <|t| < K},
Iy:={teR:K < |t|}

and choose K = (8o(x))~%/°. For the interval I; we use Lemma 4 and obtain

/ IFals) = ACO ,
Is[?
1/2 s
(30) < { (50(1) log ﬁ) + KJO(:E)} |C‘i|)2|2 dt <

I

< (8o(z))®log .
Concerning the intervals of I we have, by Lemma 2 and Lemma 5,

/|F (s) — A¢(s)P?
Is|?

dt <«

F 3/2 3/2
< max |Fa(s)|}? |—a—|(s!—)2|—dt + max 1¢(8)] M2 gls;)]L——dt <
Iy Iz
3/2 3/2
1 | Fa(s)l dt + 1 1<) dt.

K1/4(a 1) 1/2 |2 K1/2(c —1)1/2 Is|2
Iy
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It remains to estimate the two integrals on the right hand side. We shall
proceed as in [1] and [8].
In the halfplane o > 1 we have

Fa(o)l¥ < | exp (Z Fwp ) =

and thus, by Parseval’s equality and Lemma 6,

o0
Ua(s)la/z / E : 1 2w(o—1
L S & -2 . > (0-1)
13|2 dt < | exp 4p € dw <

p<ew

SO

n=1

I,

< w—1/2e—2w(0—])dw < (0’ _ 1)—1/2_

o —g®

In the same way we conclude

C(s)IP2

ls[?

dt < (o —1)71/2,
I

Collecting the estimates we arrive at

Last of all we deal with the intervals of I3. Again using Parseval’s formula (2)
we get

[ AR

|sr2
<X o [ ORGP+

I

Y lt m]<1
(32) i, x ’
Z 1'mt =S Znimtn—s
=Y 2/ n=1 ——— dt <
mak " ) s
1 _ 4/5
< e (6o(x))*/° log z.
Since

1/2
—ta _ 112
logmz S0y, ( o s logp>
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and
_ |2

1 —ia
= ) |f(p)p logp < bo(z)
og,:cpr D

and by (30), (31) and (32) the proof of Theorem 5 is completed.
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