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Abstract. Let fi(z,y) € Folz,y], ¢ = 1,2, be quadratic polynomials.
We obtain nontrivial estimates for exponential sums on the algebraic variety

afl'l(z,y) + BfHX.Y) = 1, where a, 3 € F,.

1. Introduction

Let Fy, ¢ = p" be a finite field and let f(z,y), fi(z,y), f2(x,y) be quadratic
polynomials over Fy. For o, # € F; we define the algebraic variety

B
_ 4
V(a,f) = {(m y, X, Y) €F fl(z M RY) 1}'

Let x be an additive character of field Fy, r, s € F, with the condition r # 0 or
s # 0. Consider the exponential sum

S(a, B) = Z x(rz + sy +rX + sY).
(z,y,X.Y)EV(a,8)

Let Fg» be an extension of the field Fy of degree n. For z € Fg» we put

Tr(z)=xz+a29+ -+ 2 Tr(z) e F,.
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We denote by x, an extension of a character x in the field Fyn, i.e. for every
z € Fgr xn(z) := x(T'r(x)).
We define the algebraic variety

Vn(a,ﬂ)_—_{(z’y’x’y)eygn (.:,’l;) +f2(£ Y) =l},

Sn(a,B) = Z Xn(rz + sy + 71X +sY).
(2,9,X,Y)€Vn (a,8)

Consider the function

C(V(a» /3)vt) = exp (Z sn(a, ﬂ)")

From the paper of B. Dwork [1] it follows that {(V(a,B),t) is a rational
h(t)

g(t)’

coefficients. We denote by wl_l, e ,we_l and JJ(H, e

and h(t) (respectively). Moreover, the following equality

function where h(t), g(t) relatively prime polynomials are with complex

wy ' the roots of g(t)

Sp(a,B) =wl 4+ -+ wp —wiy — - — Wi, n=12...
holds. The complex numbers wy,...,wx are called the characteristic roots of
the sum S(a, B).

The aim of this paper to construct an estimate for S(a, §).

B. Birch and E. Bombieri [1] obtained the estimate S(a,) < g% in
the case fi(z,y) = fa(z,y) = zy. This permitted to obtain the asymptotic
formulae for the summatory function for 73(n) in an arithmetic progression
(see [7], [9]). Gunyavy [8] investigated the distribution of values of the function

)= > 1

n=(u?24+v?)w
in an arithmetic progression using the estimate S(a,3) < q? in the case
fi(z,y) = fa(z,y) = 2 + ¥

In the sequel we shall use the following notation:

f(z,y) = c112® + 2c122y + cooy® + 2132 — 223y + €33, ¢ij € Fy;
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€11 Ci2 €13
s = |{Ci2 C22 C23]|.
C13 €23 (€33

€11 C12
Ci2 C22

2 ~
W= ¢118% — 2c128T + coo1?, § =

'The polynomials fi(z,y), f2(z,y) are defined similarly, their coefficients de-

noted by a;;. b;; and parameters by wy, 01, A; and wa, d2, Ag, respectively.

We shall suppose that even one of coefficients ¢11, c12 or ¢go differs from 0.
We define for every ¢ € I,

Ky(c) := Z x(rz + sy).

ry€dy
J(x.y)=c

We shall distinguish seven cases:

1.6d#0, w#0, A=0;
2.0 #0, w#0, A#0;
33640, w=0;

4. 0=0, w#0, A=0;
5. 0=w=A=0;

6.6=0, w=0, A#0;
7.6=0, w#0, A#O0.

Further if in the variety V (a, 3) the polynomial f;(z,y) belongs to a case
i) and the polynomial f2(z,y) belongs to a case j), then we denote this case
by (i,7). Furthermore, (%, *) is the union of the cases (3,j5),j=1,...,7.

The following statement is the main result of this paper.

Theorem. There exist absolute constants co and c; such that for p > o
the following estimates

q/q  for the cases (7,1),(7,2),(1,1),(2,2),(7,7);
S(eB) < ¢ ¢° for the cases (7,5),(5,1),(5,2);
¢*\/q for the case (5,5)
hold. Moreover,
S(a,B) =0 for the cases (4,x), (6, *);

and for the cases (3, )
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x(rai + saz) - (K7, (0) + Ky,(3)) if a= —?1—
S(a’ﬂ> = 3A Al1
x(rar + sa2) (K7, (0) + K1, (8) + 0K, (s257)) o a# 5

2. Some lemmas

Lemma 1. (Deligne [4], [5]) For the characteristic roots w; we have the
equality

lelquj, m; € NU{0}, 7 =1,... k.

Moreover, all conjugates with w; over Q have equal modules (number m; is
called the weight of root w;).

Lemma 2. (Bombieri [2]) Let f(z,y) be an absolutely irreducible polyno-
mial over Fp. Then

Z xn(rzT + 8Y) € qn.
z,yei“qrx
f(z,4)=0

Lemma 3. Let f(z,y,2) € Fgz,y, 2] and let V be an algebraic variety,

defined by the polynomial f. Suppose that for a, 8,y € Fp and for all T € Fp
except for O(1) values of them, the polynomial

or(@,y) = flz,y, ™y — oyl - By ly)

is absolutely irreducible over Fp. Then

STr(ar+By+yz)
§ : eZm — & q.
(z,y,2)EVNF}

Proof. We shall follow the scheme of C.. Hooley [10].
Let us consider

2
2 s Tr(poz+uBytuyz
M(a,B,7) = Y IS(pa,uBpn)l®= D | Y & .

HeF; KEF} |(z,y,2)EV
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Let N(7) be the number of solutions of the system of the equations

f€,n,0) =0, al+Bn+¢ =1 (1 €T,).

Put .
N = . > N().

TEF,
Then, we have (since Y x(7) =0)
T€F,
S(uo, pB, ) = Y N(r)x(pr) = Y (N(r) = N)x(pr).
Teﬂ“,l Tqu
Hence,

M= M(e,f,7) = 3 30 (N(r) = N)(N(rz) - W)e2m =572

uEIF," T1.T2

=@-) L W@ -T2+ 3 (Nm) - TN () - W) Y 55 =

T€F, TI#T2 ueF;

=g > (N0 =N = 3 (N(n)-N)(N(r) - N) =
T€F, T1,72€F, )

=q ) (N(1)-N)*- (Z (N(r) - W)) =gy (N(r)-N)*=
T€F, TEF, T€F,

=q Y (N(r)-¢*~¢*(N-9)*<q ) (N(r)—q>

T€F, TEF,

It is clear that N(7) is the number of solutions of the equation

f&n (r—at—PBn)y =0

or
or(z,y) = 0.

Now, using the Weil’s estimate for the number of points on an algebraic curve
over Fy defined by an absolutely irreducible polynomial, we obtain

1) M=g ) (0ah)” +40() - 0(?) = 0@”).

TEF,
w1 (z,y) is abs. irredncibility
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Further, by Lemma 1
S(,ua, /-‘L/Ba U'-Y) = w;,y. + = UJZ+1_“ - w;;Auv (l"’ € ]F;)

and |wj,,| does not depend on u. Let

7= max |w]“| (N >0).

p 1<j

If N < 2 then we have S(a,8,7) < ¢. Thus we suppose that N > 3. Let ko
be the number of wj, j =1,...,k, for which |w;| = q%. Then we have

N-1
S(pa, pf, py) = elw{,u +ot ekr)wzu,ﬂ +0 (QT) )

N
T — -5 > s 3 -
where |w] | = ¢7, wj, u # Fwj,u for j1 # j2, and ey, ... e, are integers,

leo| + -+ + |ex,| > 0. Hence

na N-1
(2) S(ua,uﬂ,m)=q2(elzl,u+‘-~+ek(,2k“,u)+0(q 2 )

where z;,, are complex numbers, |z; .| = 1, z;, 4 # £2j,., for j1 # jo.
Now, from (2) we obtain

T VM(0,8,7) = ¢V Y |S(ue, B wn)IF > 7N Y IS (e, uB, )| =

ueF;, HEFS
= Z lelz{,u oot eknzl:n,u’ +0(p' %)
peFy,
Applying the Bombieri-Davenport lemma [3], we obtain

Z Z lelzg,u toe ek(’z;;()yll‘ =0(1)+0 (

* T<2R
”GF r=1(mod 2)

=[S

7).

and, hence,

. ) . 2
P-1)(F+ - +ef) =Y lm |er2], + - +exzh, | =
;LGF; r is odd

_ 1
= hmﬁ Z ]elz{’u+---+ekoz;0#|2=O(1).
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But the equality (p — 1)(e + - - + e, ) = O(1) means that p = O(1). Hence,
there exist ¢g > 0 such that for p > ¢g a greatest module of characteristic roots
|w;j] < p. Consequently,

S(a,8,7) X q.

Suppose that r,s,¢c € F,. f(z,y) € Fyz,y], deg f(z,y) = 2, and that x is
a character of the field F;. We define

Kp(c) = Ky(r.sic):= »_ x(rz+sy).
x,y€E¥Fq
f(z,y)=c

Lemma 4. If (r,s) € F2\{0,0}, then we have
< /q in the cases 1),2) or 7);
< q  in the case 5);

Kg(e)=1 0 in the cases 4),6);
g—1 inthecased #0,w=0,c=

’

-1 in the case d #0,w =0, c #

\

S

Proof. We can suppose that s # 0. Then

Kio)=3Y > x(n)=> Nmx(r),

T€F, f(.‘n,";7 "’)=c T€F,

where N(7) is the number of solutions of the equation f (x, Z5™2) = 0 over Fy:

f(x.T—T:E) _
s

1
2 [w:z2 + 2(7(a1258 — azor) + s(a13s — agsr))T + (aga7? + 2ap3sT + CL3382)] =

(3) =c
For the discriminant D of the equation (3) we have

S4D
T = ‘I'2 [(alzs - a2-21")2 - u.’azg] + 27s [(algs - agzr)(ams - a23r) - waga] +
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+5? [((1138 — agar)? — ;ua;;g] + wes®.
If the curve f(z,y) = 0 has center (a,b) then
K¢(c) = x(ra + sb) Z x(rz + sy).
f(z+a,y+b)=c

Denote
F(z,y) = f(z +a,y + b) = a112% + 20122y + any® + ajys, ass = f(a,b).

Then we have
Kj(c) = x(ra+ sb) > Ni(r)x(r),

TEW,

where Ni(7) is the number of solutions of the equation

- 1
(4 F (;p, T 97’:1:) == [wxz + 27(a128 — a2r)T + (age7? + a’3352)] =c

If w # 0, for a discriminant D of the quadratic equation (4) we have

2
TP e —aly) - 72,
4
and hence,
(5) N(1) =14 n(D) = 1 + n(w(c — aj3) — 672%).

Now we consider various cases:
1. §#0,w#0, A=0.
In this case

1 A
a= 5(013622 —a12a23), b= —(a11a23 — a13a12), azz = f(a,b) = 5= 0.

S

Thus by (1), (5)

Kf(c) = x(ra+sb) Y _ n(we — 67%)x(7) =
TEF,

= n(—06)x(ra + sb) Z X (.I + %y) < /4.

TY=c

2. 640, w#0, A#0.
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From (1), (5) we obtain

Ky(c) = x(ar + bs) (w (c _ ?> _ 7.2) () =

T€EF,

=n(=0)x(ar + bs) Z ( ) NGB

=C_T

3.6#0,w=0.
In this case the equation (4) has form

T—rT
s F <z, ) = 27(a)128 — agar) + (azeT? + aj3s%) = cs’.

s
Hence,
1 if 7#0,
. A
Nl(’T): q if ‘I‘=0,C——'g7
A
0 if 7=0, ('763
qg—1, if c—é,
Kg(c) = x(ra + sb) - g
-1, if c;é—é—

4.6=0,w#0,A=0.

, 2 - -
Then £2 = w(c - aj3), i.e. D is independent on 7. Hence,

K¢(c) = x(ra+sb) Y (14 n(D))x(r) = 0.
T€F,

5. 0=w=A=0.
The equation (3) has the form
1 2 2
8—2((1221' + 2a23sT + as3s®) = c.

Hence,
q if a227% + 2a238T + aj3s? = cs?,
Ni(7)

0 else.
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Ki(c)=4q > x(7) = ax <—935> >, x(n<g

TESq az2 TE¥,

n22?2+2023s?+u€msz-_—.cs2 n22'r2=s2(n—ngq)

2
r—a azg
(here aj3 = as3 — ).

Now we consider the cases, when the curve f(z,y) = 0 is a noncentrical
curve.

6. 6=0,w=0,A#£0.
The equation (3) accepts the form

1
2 [23((1133 — ag3r)x + (a22T2 + 2a03sT + 03352)] =c.

Then N;(7) = 1. Hence,

Kg(c) = Z x(t) =0  forany ceF,.
T€EF,

7.6=0,w#0,A#0.
Denote

1
a=- [(@128 — a227)(a138 — agsr) — wags|, b= (a138 — a3r)? — wass.

Then for a discriminant D of the equation (3) we have

1 =27a + b+ we.

From 6 = 0, A = 0 we easily infer that a # 0. Thus

Ks(e)= Y (1+nD)x(r) = > n(2ra+b+wo)x(r) =

T€F, TEF,

= n(2a)x (._b -;awc> Z n(T)x(T) € V4.

TEF,
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3. Auxiliary sum

We consider the auxiliary sum

> Kp(e)Kf(uc), uweT;
c€F,

(here @ is the complex conjugate of ). We have

Z Ks(e) = Z x(rz + sy) = 0.

ceF, z.y€F,

Let § # 0, w # 0, i.e. the conditions 1) or 2) from the Section 2 are carried
out. We have

> Ki(e)Ky(ou) =
c€F,
wA A
Z Z (Cw‘——571>71(ucw-w7—5722) x(m)x(m2) =
c€F, 11,m2€F,
A 67 1 (A 4§72
= n(-u) Z x(m + 72) Z n (C— (E +71>> 7)(5 (E + 72> ~0)
T1,T2€Fg c€F,
=W D XA, et e (07) =
T1,72€F,
=n(-u) Y x(r+72)+an(u) > X(r1 +72) =
71,72€Fg T1,T2€Fg

52r§+uA=u(a2+712+uA)
= qn(u) ) x(11 -+ 72).
T1.T2€%q

6272 twa=u(s2+ri4wn)
Hence, we make use the relations
Ja(n.n) = 31(n,m) = —n(-1), if a € Fy,
Jo(n.m) =n(-1)- (g - 1),

where J4(n,7) is the Jacobi sum

Jamm) = Y n(@n(y).

z,y€fq
r+y=a
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Let Ny(7) be the number of solutions of the system
T+ T2 =T, 8272 4+ wA = u(6%1E + wA).

Then
Z Ky(c)Kf(uc) = gn(u) Z No(T)x(7).

c€F, cEK

If put 72 = 7—71, then we obtain that N2(7) equals the number of the solutions
of the equation

(6) §%(u = 1)72 + 26%77 + wA(u - 1) — 6272 = 0.
If u =1, we have
1 ifr ek,
NQ(T) = {
g ifr=0.

Hence, for u = 1 we obtain

> Kf(c)K(uc) = q(g - 1).
c€F,

If u # 1, we have for a discriminant of quadratic equation (6)

D,

52 ub?r? — wA(u - 1)

Hence,
Na(r) = 1+ n(ub>r? — wA(u - 1)2),

> Kp(e)Ky(uc) = qn(u) Y n(ud®r* —wA(u—1)%)x(r).

c€eF, TEF,
Thus we infer
qlg—1) ifu=1,
ZKf(c)Kf(cu) ={ —q ifu#1l, A=0,

c€Fy _ .
gK(u) < q3 ifu#l, A#0,

where K(u) = n(u) ¥ n(ué?r? — wA(u — 1)2)x(r).
TEF,
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Let § = w = A =0 (i.e. the conditions of (5) are carried out). As in the
previous case we obtain

-1 ifu=1,
Z Kf(c)Kf(cu) = —n(u)g® ifu#1,as; =0,
c€F, N
q2K(U) if u # 1! a€33 # 07
where
2
a3

ags = ags — az’ K(u) = ) n(uadyr® - sPazsays(u — 1)*)x(r) < v/a.
TEF,

At last, let § =0, w # 0, A # 0. Then

Kf@)=7K&ﬂx(—b;:w>CKmx%

where

a#0, b= (a138—axnr)’ —wass, G(nx)= Z n(T)x(7)

TEF,
is the Gauss sum. Hence,
¢® ifu=1,
(7) > Kp(o)K(uc) =
ceFy 0 ifu#l

4. Proof of Theorem

Let a,8 € F;. Define the algebraic variety

V(a,B) = {(w,y,X,Y) €F,

a 8 _
fi@y)  RXY) 1}’
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where fi1(z,y), f2(z,y) € Fylz,y], degfi = 2, ¢ = 1,2. Let x be an additive
character of the field Fy, (r,s) € F2\{(0,0)}. Define

S(a,B3) = Z x(re +sy+rX +sY).

z.y,X,Y€EV(a,B)

Let
Li()=Kp(e)= Y x(rz+sy) (j=1,2).
fﬂuenq—
Then
®) S(a, B) = Z Ll( )]/2( g )
’ 1—u
uEIF‘\{l}

In order to prove the Theorem we consider the various pairs (¢,7), 4,5 = 1....,7,

which correspond the various sets of the polynomials f(z,y) and fa(z,y). Let,
for example, fi(z,y) belong to the case 3), i.e. 9; # 0, w = 0. Let (a;,a2) be
the center of the curve fi(x,y) =0. Then

x(ra; +saz)(g—-1) ifc= %,
Li(e) = A11
—x(ra; + saz) if ¢ # 5
1
Hence, in view of (8)
JaN| )
9) S (_61—’ﬁ> = x(ra1 + saz)(L2(0) + L2(B)),
and for a # A1
61

(10)  S(a,B) = x(ra1 + saz) <L2(0) +La2(0) + gLz (Alﬁ—A ad; ))

Hence, in this case an estimate of the sum S(«,3) depends from an estimate
of La(c), c€ K.

Further, for the cases 4) and 6) we have L(c) = 0, ¢ € Fq, and, hence, in
view of (8) we infer S(a, 3) = 0 for the pairs (4, *) and (6, *).

We now shall consider the combinations of the cases 1), 2), 5) and 7).
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Case (7,7). Let a,b € F;. We have

> x(%) X <1fu) =TZF N(7)x(r),

u€Fy\{1}

where N (7) is the number of the solutions of the equation

a b
u l—u

But we have

b
2+————=T =N Tu2+(b—a—7)u+a=0.
u l—-u

"The last equation has the discriminant D = (b —a — 7)% — 4ar.
a) a =b. Then N(0) =0, N(7) =1 —n(7% — dar) for 7 # 0. Hence,

(11) Z X (%) X (1—%—1:) =-1+ Z n(t* — dat)x (7).

u€F;\{1} T€F,

b) @ #b. Then N(0) =1, N(1) = 1+ n((b — a — 7)% — 4a7) for 7 # 0, and
then

(12) Z X (%) X (-]%> =-1+ E n((b—a —7)* — 4at)x(7).

u€F;\{1} T€F,

The sums on the right hand side of the relations (11), (12) are the
Kloosterman sums and, hence,

S(e, B) < g+/q.

Case (7,5). We have

S IS(a. B =

a€F,

-2 F n@e(n) X n0)n(E)-

a€Fq ueF:\{1} veF;\{1}
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(13) _

r (e () S (@) e

uveF;\{1} a€F, ’

2
= [by (M) =4¢° [¢°(¢ = 1) = [L2(0)* — |L2(B)°] <

<q¢®—q".

Hence, |S(a, B)| < 5.
For the case 5)

La(c) = gx (—IES> > x(n),

baz s

bopT2=x2(a=bl)

moreover,
Z x(r) eR.
Te?‘q
bopT2=s2(c—bl,)
Hence, L2(c) = eLa(c), where € is a fixed number for any ¢ € K, |¢| = 1,

x(—a) = x(a). Thus, from the representation of L, (c) (for the case 7)) and the
relation (8) we infer

(14) S(-a,8) =€'8(@, B), || =1.

Suppose that there exists a® € F, such that S(a®, 3) has a characteristic root of
weight 5. Then from Lemma 2 and the relation {13) it follows that for a #
the sum S(a, 3) has characteristic roots of weight < 5. But from (14) the sum
S(—a®,B) has such a root. Hence, for any a € F, the sum S(a,3) has some
characteristic roots of weight < 4. Thus for any «, 8 € F;

S(e, B) < ¢*.

Cases (7,1) and (7,2). For the cases 1) and 2) (i.e. dw # 0) we have

L(c) = x(ra + sb) Z n (w <c - %—) - 67'2) x(7),

T€EF,
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Z n(w (c— %) —57'2) x(r) €R.

TEF,

Hence, La(c) = eL1(c), where ¢ is a fixed number for any ¢ € Fy, |e| = 1. Thus,
using 6) and 8) we similarly have

S(a,B) < gy/q forany o,0 €.

Cases (1,1) and (2,2). The algebraic variety from the paper Birch,
Bombieri [1] belongs to this case. Moreover, repeating the proof in [1] almost
word for word, we obtain

S(a.f) < q4/3.

Case (5,5). In this case we can take the polynomials fi(z,y) and f2(z,y)
in the form

fl(xvy) = (T"B + 5?/)2 +a, f2(x7y) = (7‘3: + Sy)2 +b.

Then we have

S(a,B) = Z x(rz +sy+1X +sY)=q* Z x(x+y) =
(z,y)€V(a,8) x,y€Fq

= > x@+y)-¢" Y x@) Y x)=
a(y?+b)+6(z2+a)=(22+a)(y>+b) 2?+a=0 y?+b=0
=7 (51— %),
say. By Lemma 3 we have ), < ,/q. The second sum is O(1). Thus S(a, 8) <
< ¢*\/4.
Cases (1,5) and (2,5). In this case we can take

filz,y) = f(z,y) = a11z? + 2a120y + a2y’ + a,

where § = aj1a22 — a?, # 0, w = a1182 — 21287 + ager? # 0. Moreover, in the
case (1,5) @ = 0, and in the case (2,5) a # 0, fa(x,y) = (rz + sy)®> +b. Then

S(a, B) = E x(re+sy+rX+sY)=gq Z x(rz + sy + z),
V(a,p) &t =l
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where g(z) = 2% + b. Hence,

(15)  S(e,p0) =g¢ Z x(re + sy + z) — L1 (0)L2(0).
f(z,y)g(z)—ag(z)-Bf(z,y)=0

The last summand is 4¢,/q. The first summand can be estimated by Lemma
3 with f(z,y,2) = f(z,y)9(z) — ag(z) — 8f(z.y). In this case for any 7 € [,
the polynomial f,(z,y)f(z,y,T — r@ — sy) is absolutely irreducibie over Fp. In
view of the relation (13) and Lemma 3 we conclude

S(a,8) < ¢* for v. 3€F;.

Collecting together the estimates of S(a, 8) we obtain the assertion of Theorem.
Remark 1. The case (1,2) remained without consideration.

Remark 2. Let ¢(z,y) be a quadratic form over Z and let
d(p;n) = #{p(u,v)w=n|v.v,weZ}.

Let M(z,g;¢) (respectively, A(z,q;¢)) be the main term (respectively, the
error term) in an asymptotic formula

Y dlpin) = M(z,q:9) + A, g ).

n=a(mod ¢)
n<zx

Then, applying the method of Heath-Brown [9] one can prove that

@17+ 4 =107 il ¢(x,y) is a hyperbole,
Az, q:0) <
26 58 . . .
23t 4 g% if p(a.y) is an ellipse.
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