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Abstract. By the Neumann-principle computers are based on the binary
number system, that is they accept as well the data as the instructions as
a series of binary digits. Technically this is the best choice and in some
point of view this choice is nearly the best also mathematically. Supposing
that the cost of the representation of a number is proportional to the
product of the number of the digits of its expansion and of the radix of
that expansion, and supposing that the number of the digits is a continuous
function, the best choice for the radix is the base of the natural logarithm.
The nearest integers to that real number are 2 and 3. In the following article
we investigate which of these two radices is better and which numbers are,
if there is any, exceptional. Instead of the continuous analysis we apply
mainly discrete methods.

Mathematics Subject Classification: 11A63, 68M07

1. Introduction

Given a radix r, where 7 is generally a positive integer greater than 1, all
of the real numbers can be represented as a finite or infinite series of digits,
that is by a series of nonnegative integers less than r. For the representation an
infinite series is theoretical, so we will focus our attention on the finite series.
The cost of displaying a number obviously depends on the number of the digits
and the cost of representing the digits occuring in the given expansion. The

1The research was supported by the Hungarian National Foundation for Scientific Re-
search under grant OTKA T-043657.
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simplest but fairly good assumption is that the cost is the product of the before-
mentioned two factors. It is an acceptable assumption, too, that the cost of
the representation of one position is proportional to the number of the possible
characters, that is, to r, if we want to display all of the numbers of a domain
containing more elements than r. For the sake of simplicity we will suppose
that the numbers are nonnegative integers as the sign and the point separating
the integer part and the fractional part of the number are of constant cost not
influencing essentially our investigation. In the following we study the cost of
the representation of the nonnegative integers less than a given positive integer
as the function of the radix of the expansion.

Let N be a given positive integer and let us suppose that we have to dis-
play all of the nonnegative integers less than N in the base r number system
with the positive integer r greater than 1. There is a uniquely determined
integer ¢ with the property of r*”! < N — 1 < r'. The number of the po-
sitions necessary for representing all of the integers of the given domain is
equal to t and ¢ = [log,(N)] as the values occuring in the previous inequalities
are positive integers (supposing that N is at least 2), so r*"! < N -1 < 7t
is equal to the inequalities of 7! < N < rt. Now the cost of the repre-
sentation is equal to rt = r[log,(N)], so the minimal cost is achieved if r
is equal to min {¢ [log;(N)] |2 < ¢ € N'}. The analysis is easy if we suppose
that min {¢ [logg(N)-‘ 2<(¢eN} »~ min{g’logc(N) |l <¢ eR} that is ei-
ther r = [p] or r = [p] where p denotes min {{log,(N)[1 <¢ €R}. As we
shall see this is almost always true but there are exceptions and in the other
cases it is a question which of these two integers is the better radix, which gives
the lower cost.

Now let us determine p = min {¢log,(N)|1 < ( € R}. Aslog,(c) = :g::éz,
where a, b and ¢ are positive real numbers and a and b are different from 1,
so (log.(N) = %’]‘%2, and p is the minimum of the function f(¢) = %g—)
This function is differentiable over the positive real numbers greater than 1 and

@ = ln(N)%c%}. As N and ¢ are greater than 1, so neither In(N) nor

In(¢) is equal to zero, and then f’(¢) = 0 if and only if In(¢) — 1 = 0, that
is if In(¢) = 1, namely if ¢ = e, where e is the base of the natural logarithm.
The denominator of the derivative is positive, and the logarithmic function is
strictly increasing if the base is greater than 1, so f (e) is the minimal value of
f over the given domain. For 2 and 3 are the nearest integers to e, one of these
two integers are the best choice as radix.

In the next part of this paper we point out that apart from finitely many N
the optimal choice is 7 = 3, and with the choice of 2 as the radix we get only
slightly worse result. In our investigation we apply almost everywhere discrete
methods and we shall not refer to the results got from the above-mentioned
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continuous analysis. We present all of the N’s special with the property that
they can represented more economically by a radix different from 3 and 2.

2. Development

Theorem 1. Let u and v be positive real numbers different from 1. If
ﬁ < %, then there exists such a real number (o greater than 1, that

u - [log, (¢)] < v-[log, (¢)] for any (o < ¢ € R.

Proof. 9 < [¥] < ¥ + 1 for any real number ¥, so if v - (log, (¢) +1) <
S v - IOg'u (C)a then

U - “Ogu (gﬂ <u- (IOgu (C) + 1) <
(1) <wv- logv (() <v- rlOgv (C)] ’

and then also u-[log, (¢)] < v-[log, (¢)] is fulfilled. But from u-(log, {¢) + 1) <
Swv- IOgv (C)

u < v-log, (€) —u-log, () =

_ . In(f) In(¢) _
@) ) Y i)

=1n.(<>-(g?7)‘ﬁl(t7)>'

The difference in the parentheses is positive by the condition given in the
theorem, thus the inequality can be divided by it, that is

S

3) I (¢) > ———a.

As both the numerator and the denominator of the fraction are positive real
numbers, the value of the fraction is positive, too. For f : ¢ — € is a strictly
increasing function, and €® = 1,

(4) (>emm W@ > 1.
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Now it can be seen that

u

e S—— —
(5) Co = e T ~“Ta(m
satisfies the condition stated in the theorem.

Theorem 2. Let 3 < s € N. Then ;75 < F%'

Proof. By the condition given in the theorem s, and then s + 1, too, is
greater than 1, therefor In (s)-In (s + 1) is positive, so multiplying the inequality
of the theorem by this product we get a correct inequality. This means that
instead of the original inequality we can study the truth of the relation of s -
In(s+1) < (s+1)-In(s). Applying the well-known identities of the logarithmic
function

(6) (s+1)-ln(8)—s'ln(5+”:ln((s_sj%>’

and this value is positive if and only if the argument of the right hand side
is greater than 1 that is if the nominator of the argument is greater than the
denominator of the argument. Now we have to point out only that if s is an
integer not less than 3 then s**! > (s + 1)°. By the binomial theorem

(7) (41 =Y (Z) K,

k=0

If s>3and 2 <k <sthen

(s> _s(s=1) - (s—k+1) .

k 1.2..... k
k
55 s s
8) <51 1 90
———
k-1
s0
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Corollary 1. The minimum of the function % restricted to the integers
greater than 1 is at s = 3. If s # 3 then
only at s = 4.

?2) < w(s), and the equality is held

In

Proof. By Theorem 2 135 < 13> and again by the previous theorem if

3
may < ﬁ for s > 4 then

3 s s+1

(10) m@G) “In(s) In(s+1)’

so the function takes its minimal value in the set of the integers not less than
3 at s = 3. At the same time

3 _ 4 _ 22 _
In(3) " In(4) In(22)
2.2 2

1 TImE WO

that proves the first statement. It can be got similarly that ﬁ < ﬁ-s—) for an
arbitrary integers 4 < s, and this shows that the second statement is true, too.

Now let v = 3, and let us determine the appropriate values of {y for the
integers v > 3. On the base of the results we got till now Cév) is a strictly
decreasing function of v, and the function is bounded from below, thus if C(g"") <
< 3 for a vy, then C(()”) < 3 for any integer v greater than vg. Butifn+1 <3
then n < 2, and this n can be written with only one digit both in its radix 3
expansion and in any number system where the base v is greater than 3, so
the cost of displaying this number is surely less in the ternary number system,
thus it is enough to expand our investigation for the integers less than or equal
to the maximum of the v’s with the property of C((,v) > 3. On the basis of these
results we get the following values:
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v o= 2 (o ~ 265156957,85
4 265156957, 85
5 2920, 87
6 128,35
7 31,88
8 14,69
9 9,00
10 6,43
11 5,03
12 4,18
13 3,61
14 3,21
15 2,91

For every radix less than 15 all of the numbers less than the ones indicated in
the table above can be checked, whether the ternary or the radix-v expansion
is cheaper. For the small values of the given v’s it takes much time to execute
this investigation, so we examine this problem in another way.

Unfortunately it does not follows from u - log, (n) < v - log, (n) that u -
-[log, (n)] < v - [log, (n)] or even the weaker form of u - [log, (n)] < v -
- [log, (n)]. For instance let u = 3, v = 4 and n = 244, then logz (244)
~ 5,004 and log, (244) =~ 3,966, and from these data we get that 3-log; (244)
~ 15,012 < 15,864 ~ 4 - log, (244), while 3 - [log, (244)] = 3-[5,004] = 3-6 =
=18>16=4-4=4-[3,966] = 4 [log, (244)], that is, the expansion of 243
needs six digits in the ternary number system and four digits in the radix-4
system, and the cost of the presentation of the latter case is lower. However,
we show that this is possible only in the cases when v =2, v =4 and v = 5
(and also in these cases only for a finite set of integers, as we saw this earlier).

~
=~
~
=~

Theorem 3. Letu and v > u be such positive integers, that u-[log, (v)] < v.
Then u-[log, (n +1)] < kv for any k € N and for any integer v*=! < n < vk,
and if furthermore u - log, (v) is less than v, then there is such an integer
m € N, that u - [log, (n +1)] < kv, if k > m.

Proof. [a+b] < [a] + [b] for any real numbers a and b. Applying this
relationship we get that

u-[log, (n+1)] <u- [log, (+v*)] =
(12) =u-[k-log, (v)] < u- (k- [log, (v)]) =
=k-(u-[log, (v)]) <k-v.

If both u-log,, (v) < v and u-{log, (v)] < v are true then either u-[log,, (v)] < v,
or log, (v) is not an integer. In the first case we can exchange in (12) the last



On the problem of the choice of the radix 277

< by <, and m = 1 meets the requirements. But if log,, (v) < {log, (v)], then
there exists such an s € N, that s ([log, (v)] — log, (v)) > 1, and from here

[S ' logu ('U)] = l-S ! [IOgu (U)—' -8 (“C’gu (Uﬂ - logu (U))-l <
(13) < [s-[log, (v)] — 1] = s [log, (v)] =1 < s- [log, (v)]

thus if m is the least value of the former integers s, then in (13) instead of <
separating the two rows we can write <.

The significance of the theorem above is the following with respect to our
investigation. An integer v*~! < n < v* needs k digits in its radix-v expansion,
so the cost of the representation of this integer is equal to kv in this expansion.
The same number can be given by [log, (n + 1)] digits if the radix is equal
to u, and then the cost is equal to u - [log, (n + 1)]. From this follows that if
the inequality given in the theorem is fulfilled then the cost of displaying an
arbitrary number with u different symbols is not greater than the cost when
we can apply v different digits, that is the radix-v expansion is at least so
expensive as the radix-u expansion.

Let u > 2 be an integer, and 7 = Eﬁ—l < 2. Then

1 =log, (u) =log, (14 (u—1)) =

(14) = log,, (1 + _:,L) = log, (1 + g) =

-1

S

= log, | —

:U) = logu (T + u) - logu (T) )

and if p > 7, then 0 < log, (p + u) — log, (p) < 1, as the logarithmic func-
tion is strictly increasing and % < %. Now let v > u > 2 integer and let’s

suppose that u - [log, (v)] < v. Then

u- flog, (v+u)] <u-{log, (v) +1] =
(15) =u-[log, (v)] +u <v+u,

that is if u - [log,, (v)] < v is true for a series of u consecutive integers r < v <
r + u, where r > u > 2, then the inequality is true for all of the integers not
less than r (and similar is true, if instead of the relation less than or equal the
stricter relation less is held everywhere).

Looking up in tables or another appropriate places we get the following
values:
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v = 4 logg(v) =~ 1,262 3-[logs(v)] = 6
5 1,465 6
6 1,631 6
7 1,771 6
8 1,893 6
9 = 2 6

This table shows that 3 [logs (v)] < v for the three consecutive integers v = 6,
v = T and v = 8, that is, the use of any radix greater than 5 is at least as
expensive as the use of the ternary expansion, and if the radix is greater than
or equal to 7 then the ternary system is definitely cheaper. 6 = 3 - [logz (6)] ,
but 3 - logs (6) < 6, the minimal value of m is

1 1
| [ogs (6)] — logs (6)] N {2 - 1,631‘| B
1

(16) = [O—,El =3,

so at most among the integers less than 36 are those integers which can be rep-
resented with the same cost also in the base-6 number system as in the ternary
number system. Representing the numbers from 0 to 35 in these number sys-
tems we can see that only the numbers 3 < n < 5 and 27 < n < 35 are of the
same cost.

Now we investigate the cases of radix 5 and radix 6. For an arbitrary positive
integer r greater than 2 and for every positive integer k it is true that the cost
of the representation of each integer r*~! < n < r* is equal to k - r, so if the
representation of r*~1 is more expensive or at least of the same cost in the
base-r’ number system then this statement is true for all of the aforementioned
integers n. This means that we have only to check whether in the case of r = 3
there exists such a t that 3t > ' [log,. (r'=' + 1)], where ' is equal to 4 or 5.
If t = 1 then this is surely not possible, as in this case also in the base-r’ number
system is 1 digit required, and so the cost is v’ > 7. Now let us consider the
case t > 2. [u+e€] > u +e > u for an arbitrary real number » and a positive
real number ¢, so

t—1
logs ()
and then the ternary number system is surely cheaper if 3t < r’lo;a‘ﬁ, that

[log,, (r*"! +1)] > log,, (r'™!) =

is if t > ng('r‘) We get that the potentially wrong values of ¢ are less
than 19 if #' = 4 and less than 9 if 7' = 5. The given values of t are only
possibly wrong so we have to check every pair (r’,t) whether the condition
3t > r' [log,s (371 + 1)] is held. By this examination only the cases of 7' = 4
andt=2,3,6,7, 11, as well as 7’ = 5 and ¢ = 2 are cheaper than the ternary
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number system for the same values of t. Now let us take into consideration that
if @y_1 ...ag is the representation of 3*~! in the base-r’ number system and
this representation is cheaper than the ternary one then this is true for all of

the numbers 3t=! < n < r'* — 1, as the costs of the representations of these
numbers are the same in the radix-r’ number system (the number of the digits

does not change). Finally, if < 3t, then we have to investigate wether the
cost of the representation of the number on the left hand side is lower than
the cost of the representation of the right hand side, namely, in this case the
costs of the representations of the numbers of the domain determined by the
former inequality are lower, too, in the radix-r expansion. On the base of these
results we get with some calculation that in the case of r' = 4 the greatest
number which can be represented with lower cost in this number system than
in the ternary one is 65535, and there are altogether 6803 such numbers, but
if ¥ = 5, then the numbers 3 and 4 representable with only one digit in the
quinary number system are of this property. The numbers exceptional in the
base-4 number system can be seen in the following table:

t

2 34 = 3 1
3 21y = 9 - 334 = 15 7
6 33034 = 243 - 33334 = 255 13
7 231214 = 729 - 33333, = 1023 295
11 321222214 = 59049 — 333333334 = 65535 6487

Let us see the binary number system. If a number is cheaper in the qua-
ternary number system than in the ternary one then it is cheaper also in the
binary one as the binary expansion can be got from the quaternary one ex-
changing every digit by a diagram of bits and omit the possible (only) leading
zero, that is, the number of the binary digits is at most the double of the num-
ber of the digits of the quaternary representation and the cost of a digit with
the greater radix is the double of the cost with the smaller one. At the same
time it can be that there are such numbers represented by odd numbers of
bits in their binary expansions which are cheaper in the base-2 number system
than in the ternary number system, but more expensive in the radix-4 number
system than in the ternary one (as in the quaternary case the binary equivalent
contains a leading zero bit, too). The investigation is similar to the former one:
if 3t > 2 [log, (3'=! + 1)] then the binary system is better than the ternary
one (t is the number of the digits in the letter system, that is in the ternary
case). Applying the well-known properties of the functions y = log,(z) and
y = [z] we get that

2-log, (317') < 2-log, (3071 +1) <
(17) <2 [log, (37" + 1)1,
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so if 3t < 2-log, (3t1), then it is surely true that 3t < 2- [log, (3t~ +1)].
From the previous expression we get that if ¢ > mﬁ—ga—@—), that is, if t > 19,
as t is an integer, then the representation of a number is more economic in the
ternary system. Among the numbers of the interval 1 < ¢t < 18 the inequality
3t > 2 [log, (3'~! + 1)] is fulfilled in the case of t = 1,...,7,9 and 11.

We give again the numbers more economic in the binary number system:

t
1 0= 0- l,=1 2
2 11, = 3 1
3 10012, = 9 — 1111, = 15 7
4 11011, = 27 — 11111, = 31 5
5 1010001, = 81 — 1111111, = 127 47
6 11110011, = 243 — 111111115 = 255 13
7 1011011001 = 729 — 1111111111, = 1023 295
9 1100110100001 = 6561 — 1111111111111, = 8191 1631
11 11100110101010012 = 59049 — 1111111111111111, = 65535 6487
8488

In the light of the previous results it is understandable why the computer
apply the binary number system: economically it is almost ideal, only slightly
worse than the cheapest ternary system (and in the domain of the most fre-
quently occuring numbers there are quite a lot such numbers where the radix-2
number system is more economic), at the same time this is technically the
simplest and most reliable radix, for in this case there are only two values to
distinguish.

We know that s - I—I“é(%z takes its minimal value at 3 over the whole domain
of 2 < s € N, but the deviation from this minimal value is not considerable at
2 and 3, as % / ﬁ = %%% = 0,946. It is worth examining which numbers
can be represented more economically with radices different from 3 than in
the binary system (the numbers more economically representable in the binary
system than in the ternary one were already given earlier). We do not have
to examine the quaternary system, too, as we saw that the numbers having an
event numbers of digits in their binary expansion are of same cost in the binary
and in the quaternary number systems, while the others are of lower cost in
the case of using the binary system. All of the other cases are enumerated in
the following table.

v log, (v)

5 2,322 2-log, (v) =~ 4,644 2-flog,(v)] = 6
6 2,585 5,170 6
7 2,807 5,615 6
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From this table we can read out that we have to study only the case of v = 5.
#ng(s) ~ 14,040, so we have to check the relation 2-¢ > 5- [logg (2! + 1)]
only over the interval 2 < t < 14. The relation is fulfilled for the integers
belonging to the given interval only in one case namely if ¢ = 3. Really,
23-1 = 4, the binary expansion of 4 is 100, that is, the cost is now 6, but on
the other hand 4 = 45, and the cost of this expansion is only 5 (but from 5 on
returns egain the normal case, for the binary cost of 5 is 6, and the cost of the
quinary representation of the same number is 10).

3. Conclusion

Technically the binary number system is the most preferable for the com-
puters, surely, and with the exception of a really insignificant number of ma-
chines, computers apply the binary principle. But the question is grounded,
too, what integer is theoretically the optimal choice as the radix of a number
system. For answering this question it is necessary to define, in what sense
is optimal an actual choice. Such consideration can be for instance the min-
imum of the cost of the representation of the numbers. In this case we have
to define a cost-function. A very simple but fairly reasonable cost-function is
f (n) = ulog, (n). Now the cost of the representation of a number depends not
only on the given number but on the base of the logarithm, too. By the help
of a continuous analysis it is easy to point out that u = e is the optimal choice
as the base of the logarithm (where e is the base of the natural logarithm),
but normally the radices are integers greater than 1, so we have to find the
optimum among the integer bases. It is not surprising that in the majority of
the cases 2 and 3 are the two best choices. By discrete methods we pointed
out that if u > 6 then the ternary system is definitely better for every number
then the base-u number systemn, if u = 6 then the base-3 system is at least as
good as the base-u system and there are only 12 numbers of the same cost,
two numbers can be represented more economically in the quinary number sys-
tem than in the ternary one, and if the radix is equal to 2 or 4, then there
are altogether 8488 exceptional cases, that is, when the ternary system is less
economic. The analysis shows that with a few exceptional cases the ternary
system is the best choice with respect to the given condition on the optimum.
However, the technically best choice is hardly worse than the ternary one, and
apart from the ternary system, the binary one is the best for all of the positive
integers with only one exception.
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