Annales Univ. Sci. Budapest., Sect. Comp. 28 (2008) 261-270
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Dedicated to Professor Imre Kdtai on his seventieth birthday

Abstract. Construct the asymptotic formula of summatory function for
the number of divisors of matrices from M3(Z) with a determinant < z.
Derive the estimate of the second moment of error term of this asymptotic
formula.

1. Introduction

The interest to study the arithmetic functions over the ring of integer
matrices connects with applications in theory of groups, theory of rings, in
cryptography (see [1]-[4], [8]). The investigation of structure of abelian groups,
in particular, the problems on the member of subgroups of certain types of
groups, the average number of their formal direct factors and their formal
unitary factors can be realized by the results on the distribution of the divisor
function of integer matrices.

It is easy to determine a natural bijection between the set of subgroups of
a finite abelian group G of rank r represented by the Smith canonical form

G%Z/n1Z®®Z/nTZ nj|nj+1, ]= 1,...,7‘—1,
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and the set of divisors of an r X 7 matrix C for which a diagonal matrix S(C) =
= diag(ny,...,n,) is a Smith Normal Form (see [8]). Let 7(G) denote the
number subgroups of an abelian group G of rank r and let

tr(n) = > 7(G).

1Gl=n

In the works G. Bhowmik [2], G. Bhowmik and I. Wu [3] obtained the
asymptotic formula

(1) T(z) =Y ta(n) = zPy(logz) + A(z),

n<x

where P,(u) is quadratic polynomial, A(z) is an error term for which in [3] the
estimate A(x) < £%®In* z has been proved.

A. Tvig [6] obtained the "O” and Q" estimates for A(z) in mean square
(2) Q(m2 In* z) = /A2(m)dq: = 0(22(log1)31/3),
1

In our paper we investigate the divisor function tz(n). We proved the
following theorems:

Theorem 1. For x — oo we have

(3) Z ts(n) = zP;(log z) + O(z%/®),

n<z

where Py(u) is a polynomial of degree 4.
Theorem 2. Let A(z) = ) ta(n) — zPy(logz), then for z — oo the

n<lzx
Jollowing estimate

(4) / A2(z)dz < 2/
1

holds.
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2. Notation and auxiliary lemmas

The aim of this section is to introduce some notations and to recall some
known results, which we shall use later. The notations f = O(g), f < g mean
that |f| < cg with some positive constant c. We write |C| for the determinant
of the matrix C; S(C) for Smith Normal Form of C, H(C) for its Hermite
Normal Form. Mj3(Z) denotes the ring of matrices over Z and U(Z) := {U €
€ M3(Z)||U| = £1}. The letter s denotes a complex number, s = o + it.

Let A;, A be two matrices from M3(Z). We say that the matrices A,
and A, are associated on the left (accordingly, on the right) if 4; = UA,
(accordingly, A; = A;V), U,V € U(Z). Through 7(C), C € M3(Z) we denote
the number of representations of the C in the form C = AB, A, B € M3(Z),
moreover, two representations C = A; B; = A;Bs are considered as identical
if A; and A, are associated on the right (B, Bs are associated on the left).

Let C = US(C)V and let A|C, i.e. 3B € M3(Z), C = AB =US(C)V,
and, hence, S(C) = U"'ABV !, i.e. U1 A|S(C). Clearly, the correspondence
A & U~! A realizes bijection between the set of left divisors of the matrix S(C).
Thus, 7(C) = 7(S(C)). Also clear, that if A|S(C), then for any U € U(Z)
follows AU|S(C). Hence, AU(Z) is the associated left divisor of matrix S(C)
generated by the divisor A. But AU(Z) has single matrix A of type

ail 0 0
A=|az a2 0 |, a1 a2, azz3 €N, 0<ag < az, 0<as;,a32 < as3.
asy asz2 asg

The matrix A is called the Hermite Normal Form of matrix A (denoted
by H(A)). So, 7(S(C)) is the number of matrices of type A such that A|S(C),
i.e. A"1S(C) € M3(Z). We have

C1

0 0
a1
N a21C1 C22
AT's(C) = - — 0
a11022 azg
a21432 — G22031 332 (&
211022033 az2033 Q33

NOW, we set c; = ap, ¢c2 = ayag, C3 = a1a203. Hence, aiiici, 0.22|62, a3z |C3.
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Denote dy =

21 dy = agy, d3 = azz. We infer that the matrix A~ 1s(C) €

€ M;3(Z) if and only if

do
a ——k, k=0,.
2= (dlad?)

o (di,d2)—1; age = d—‘gl 1=0,..,d-1; d= <010/2>,

the congruence d;(az1aszz — de2x) = 0 mod dds resolves.

It is easy to see that for

we have

. al 0 0
A= 0 aaz 0
0 0 a1uya3

7(8(C)) =

2 Y T (i (e (4.52)) )

dila; d2|eiaz dalaiazas

(5)

Moreover, for (a;azas,

where

) #(t)
)
bibobs) =1

7(S(C1C2)) = 7(S(C1))7(S(C2)),

ap O 0 bp O 0
S(Cl) = 0 ajan 0 , S(Cz) = 0 blbz 0 .
0 0 ajazas3 0 0 b1 bg b3

Thus after short calculations we easily obtain

(6) t3(p") =

(k+Dp*(1+0(k)),  ifn=3k
20k + Dp*(1+0(%)), ifn=3k+1;
(k+ )p**1(1+0(%)), ifn=3k+2
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Consequently,

SEP=Y 5 2 -

s(C)
18(C)|=n

Z 1 a) 0 0
= " 35255 T 0 aiaz 0 =
(a1,a2,a5)=1 01782 a3 0 0 a1a2a3

O(L 2 1
H( +O( )+p(1+0(,,)>+2 P (1+0(3)) 22;0 (1+O(,,))+_

2 3 1
" p S p ] p s
3 1 2k c(k) 2k c(k)
p°(1+0(3)) p**(1+0(57)) 2p*(1+ O(5%))
+2 p5s £ RIR (k + l) psks + (k + ) p(3k+1)s
2k+1 c(k)
P14+ O(2R))
+(k+1) ET=E +..1,
where c(k) = S 1. It can be easily shown that
ky.kg kg>0
ky kg +kyok
2+0(;)  p(1+0(3) p?*(1+0(3))
F(s):H(1+ sp - 2SP)+...+(I€+1)—TP-+
P P p
P<po
1+ 0(3)) P 1+0(2))
+(k+1)wf“ (k-i-l)"WQ)sp%—... X

00 2k p2k+l
X ].—[ Z <(k + l) Skq + (k + 1) (3k+1)s + (k + 1) (3k+2) ) +

p>po \k=0
&3 i3 k3
+ Z ( ( 3ks— 2k+1> +0 (p(3k-+;1)s—2k+l> ++0 (p(3k+2)s—2k)>> ’
for some pyg.

Thus we have

(M F(s) = Gi(s):
e 2k 2k 2k+1
1 (kz ((k +E_ (4D (ik“)s +(k + )ﬁ + ) g,,(s)> ,
P>po 0
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where
Gi(s) =
0o 2k 1 2%k 1
p*(1+0(3)) 2p** (14 0(3))
= H (Z(’Hl)—pm b +(k+1)—p(3k+1)3” +
p<po \k=0
2k+1 1
p*H(1+0(3))

gp(s)=1+0( l)

pll
Now from (6)-(7) we obtain for Res > 1
(8) F(s) = ¢*(s)¢(25 — 1)¢*(3s — 2)C ™ (45 — 2)Go(s),

where ((s) is the Riemann zeta-function and Gg(s) is a Dirichlet series abso-

lutely convergent in Re s > %,

(9) Gols) = Y 2.

We will need the following facts about ((s):
(1¢(1/2 + it)| <« t*, (a < 89/570 + ¢ < 9/56 (see [5])),

IC(o +it)| < 2209 (log [t))2°~L, if 1/2<0o <1, |t| >3,
T

(10) 8 [1¢(1/2 +it)|2dt < T'log T,
1

T
[1¢(1/2 +it)|4dt < T T,
1

IC'(1 + it)| < In(|t] + 3).
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3. Proof of the upper bound estimate A(z)

By using Perron’s summation formula we have for ¢ > 1, T > 1:

c+iT

(11) Zt;; y=zP, lo,gar)+2L / F(s) ds+O(—(—£_c—i)—5—).

n<z 5T

Shifting the line of integration on the line Res = b (b = 3/4), and taking
into account that the function F'(s) has pole of 5-th order at the point s = 1,
we obtain

b+iT
(12) nzgztg(n) = zPy(logz) + %b /T C2(b+it)¢(2b — 1 + 2it)-
2 L CT@b -2+ 4it) < x° )

(here P4(u) be a polynomial of degree 4).
Applying the Cauchy inequality, from (12) we obtain
1/2

" ta(n) = oPs(log ) + O /14 3/4 +it)PIc(1/2 + m)]-

n<z

1/2

T
© [1co/araPica/z 2| | o max il |+
1

1<t
:L.C
0 (T(e - 1)5) |

Note that [~ (1 + it)| < logT for 1 < |t| < T and

T
(13) / IC(o + it) Pdt < T,
1
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for 0 > 5 (see Ch.8 of [7]). Then taking into account that [((1/4 + it)| <
< |t]2-1/4|¢(3/4 — it)| and using the Cauchy inequality, we have

Z ta(n) =

n<z

T

T 1/4 1/4
=zP(Inz) 4+ O | «° (/|C(3/4+it)|8%> (/ |C(l/2+2it)|2%)
1

1

T 1/4 T 1/4
: (’1‘2/|§(3/4+3it)|8%—t) (/I((l/2+2it)|2% 24+
1

\1

.,KC
+0 (7o) =
_ 3/4rpi1/245y z°
zPy(logz) + O(x°'*1 ) +_0<—T(c—1)5)'

= z!/6 we obtain the assertion of Theorem

Hence, setting ¢ = 1 +

1
log x>’

4. The second moment for A(z)

From the relation

b+ioo
1 3
@—Z;WWJM%Q—%i/F@?ﬁ(MﬁM,

follows that A(%) and F(s) generate the Mellin pair, and, hence, by Parseval’s
identity for Mellin transform we may immediately deduce that

F(b+it)? S U
(15) ~2—7r | |l()+ t|2)| /AQ( )1:2” 1d:zz/Az(a:):r =14y,
0

—00
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Take b = 3/4 + 6. where ¢ will be chosen later. By (14) we obtain for
z>x9>0

2z
/ A%(z)dr <

< g+t / |§2(b+it)((2b—1—|—2it)(2(3b—2+3it)C“1(4b—2+4it)]2#ﬁ? <

—0o0

1 Ty o0
< g+ /+_/+/ =221 + I + ),
0 1 To

say.

The estimate I; < 1 is clear. Further applying the estimates from (10)
and the functional equation for {(s) we have
To
14 . nid (s172-3b=2)\? (,2a(1-2641)\ 2
(A7) L < [ |¢(b+it)|*¢(3 — 3b — 3it)] (t ) (t ) 5 <
1
27y i@
1—126—-8ad+2a ., . 4\ 14 _ sy 14
< lsn%?%cTomax 17 log 13 / [€(b+ it)|*|¢(3 — 3b + 3it)] ; ) )
Ty
Setting § = %, a = %, £ = %, using (13) and the Cauchy inequality,
after short calculations we obtain

(18) L<1.

Moreover, for @ > Ty

oo

1\ 2
(19) / lﬁ%dt < Q.

—oe

Setting Q@ = 27T, we have

1 P
(20) Is = / =Y / < Yo RIT <«
oo oo
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Thus I + I, + I3 < 1, and consequently we have

2%
/AQ(m)dm < PV

Corollary. For all but o(z) of z < X,

(21) |A(z)] < 2*/%
holds.
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