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Abstract. We concentrate our attention to the sandbox method and the
generalized number systems in real quadratic fields. In the latter area we
can find sets generated by a coefficient system whose Hausdorff dimension
so far has not been countable exactly. The main goal of this paper is
to investigate whether the sandbox method which is efficiently applied in
different fields of natural science is suitable for estimating the dimension
of the above mentioned sets.

1. Introduction

We focus on a new application of the sandboz method which is published
by T. Tél, A. Fiilsp and T. Vicsek in [7] in 1989. This process is used for
the determination of the generalized dimension (D,) associated with geometric
structure of growing deterministic fractal. The sandbox method was compared
with the well-known bozcounting process. It is demonstrated that the above-
mentioned two methods are equivalent if the sandbox method is applied with
an averaging over randomly selected centers. In this case the sandbox approach
provides better estimates of the generalized dimensions. At least 50 citations
show the importance of sandbox method in several areas of the natural sci-
ence, for example cell biochemistry, biophysics, physics of the Earth, statistical
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Figure 1: B_ s with S-type digit set (o = 3 + 3v/3).

mechanics, heterogeneous chemistry, molecular physics, electro analytical che-
mistry, nuclear physics and so on.

In this paper we investigate the question whether the sandbox method is
effectively usable in mathematical research fields. We applied this process for
the generalized number systems in real quadratic fields. We computed approx-
imately the Hausdorff dimension of such sets generated by different coefficient
systems where this has not been determined in theoretical way yet.

In the mid-seventies I. Katai started to deal with the problem of general-
ization of number systems from N to other algebraic structures.

Let M be an n x n type regular matrix with integer entries and £ = MZj.
Then L is a subgroup in Zy, and O(Zy/L) = t =| detM |. Let ¢t > 2 and
A = {ap =0,ay,...,a:—1} be a complete set of representatives of residue classes
mod M. Then for every n € Zj there exists a unique by € A for which
n — by € L, consequently there exists an unique n; € Z;, such that

n =bg + Mn;.
This procedure can be repeated:
n; = bj + M’n]‘+1.

We say that (A, M) is a number system if n, = 0 for a large enough r, which
is equivalent to the assertion that

(1.1) n=bo+ Mby +M?by+---+M 'b,_;, where b; € A
Thus (A, M) is a number system if every n € Zj has a finite (1.1) representa-

tion.
Let

H={z!z=§:M—ifi, f;‘GA}.

i=1
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If (A, M) is a number system, then

U (H+n)=R,
nGZk

furthermore

/\(H-i-nlﬂH+n2)=O

whenever ny,ng € Zg, n; # np. Let S be the set of those v € Zg, v # 0 for
which

H()H+~#0.

Let

B, :=HnH+7.

We would like to determine approximately the Hausdorff dimension of B.,. We
shall do it with a probabilistic method for real quadratic fields in the case k = 2.
The exact definitions and detailed descriptions connected with the generalized
number systems in real quadratic fields can be found in the 3 section.

2. The sandbox method

The sandbox method has been introduced for the determination of the
generalized dimension D*?(g) associated with the geometric structure of grow-
ing deterministic fractals. In this paper we present only the most important
concepts, the details are found in [7].

The definition of sandbox dimension is based on the generalized dimension
which phenomena is well-known in the natural science. It has been introduced
in [8]. Although the generalized dimension is an important quantity in the
research field mentioned in the introduction, to determine its value is too com-
plicated. The sandbox dimension can be counted in an easy way and suitable
for estimating the dimension of infinite sets using computations carried out in
finite sets.
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2.1. Generalized dimensions

We introduce the phenomena of generalized dimension based on the defini-

tions published by R. H. Riedi in [10]. Let K be a compact set K C R?. Let
us consider a lattice C with linear size § (§ >0, & € R) in the following way:

d
(2.1) Cj =[] d e+ 15[ L eN,
k=1
(2:2) C=|JCj, where je{l.N%, C,nK#0.

J
Let us denote Tj = C; N K j € {1..N9} and

Nd
T=|JTj, where T,NT;=0, j#i.
i=1

Let 4 be a measure and G5 means the set of §-box, where (u(T}) # 0). Then
the singularity ezponents are equal to

o lg(Ss(a))
(2.3) T(q)—ll[;ljélp “1g0) where
Ss(e)= Y w(T)? qeR.
T.€Gs

The generalized dimensions [8] are defined by this expression

1 1 1g(S5(9))
(24)  D(q) = q_lT(q)— q_lhr;l_fgp 1e(6) g#1,
=i S (T lg(u(T))

where 4 is a appropriate measure.
2.2. Application of sandbox method for finite sets

Since we can only study finite sets, therefore we apply the sandbox method
for them and we extrapolate from the counted values to properties of infinite
sets. There is a similar situation in the case of the generalized number systems
in real quadratic fields, since nevertheless the B, sets investigated in this paper
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are infinite compact sets, we can produce just finite self-affine subsets instead
of them.

Since in our case we study finite sets we can not use the definition of sandbox
dimension introduced in [7], therefore we give an "empirical" definition of this
value. We carry out the sandbox method and the given value is called "sandbox
dimension". Thus we can not prove the correctness of the sandbox method in
a mathematical way, so we present numerical results.

Let us consider a finite nonempty set K C R®. Further we assume that
d = 2. As a matter of fact we count the elements of K with a lattice C with
linear size § and a closed ball covering. We get an approximate value because
we consider only such T; where each element of T; belongs to KNC. We divide
the given values by |T'|. We note that for a finite set A |A| means the number
of elements of A. We define a closed ball with center £ € K and radius R
(R >0, ReR)in the following way:

(2.5) B(z,R)={y:lz-y|<Rye K}

Let us introduce two constant values a = min{|z -y |:z #y z,y € K},
L = max{| £~y |: 2,y € K}, i.e. a means the minimal distance which is
distinguishable between two points and L is the diameter of set K.

Let u(T) be a map which is used instead of the measure in expression (2.4)

Il’

=

(2.6) w(Ti) =

N

where i€ {1...N?}. We note that
d
i |7

>From p we can derive the really used quantity v(B(z, R)) on the set T in
the following way

(2.7) v(B(z,R)) = Z

viel

w(T),

77 = S M

where I = {1..n'} C {1,..N%} and the index set I contains each integer
i (1<i< N9 ieN)for which KNT; = T;. We apply the expression

(B, R = 3 1B RN

i=
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instead of Ss5(q) (in 2.4), where z; € K N C. The centers of the balls z; are
chosen by random number generator with uniform probability distribution from
the set KN C.

For the next step of the sandbox method let us consider the following ex-
pression introduced in [7]

v (@-1)
(2:8) Do) = & (?g((_@é%q i qil if g#1

and

oo g (B, R)))
DM = = emiL)

where a < R < L. The original definition of sandbox dimension is the limit of
the expression (2.8), if R/L — 0 and n, L are constant. For the finite set K
this limit is not defined. Thus we carry out the following steps to estimate the
sandbox dimension.

if g=1,

Let us determine the value of the expression

1
lg (v(B(z, R)V) —
for different R and constant n. Then we graph the given values with respect to
lg(L/R). Let us find those subintervals of [a, L] where the points show linear
dependence. Then we fit a straight line on these points. The slope of the
given line is considered the sandbox dimension. The precision of the
approximations can be increased by changing of § and n.

The sandbox method includes numerical and statistical error. The numer-
ical error depends on the implementation and the line fitting. The randomly
chosen centers of closed ball covering can cause statistical error. The error
can be estimated at every calculation. The error of the calculated sandbox
dimension values, published in this paper, is less than 0.05.

3. Generalized number systems in real quadratic field

3.1. Quadratic fields

Let 8 € C be a root of a polynomial z2 + az + b € Q[z]. Let Q(8) be the
smallest field containing 3. If 3 ¢ Q, then Q(B) is called quadratic, or quadratic
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extension field. It is known that every quadratic field is of form Q(v/D), where
D is a positive or negative square-free integer. We speak about real quadratic
field if D > 0. The set I of algebraic integers in Q(+/D) is given by

I=7Z+7ZvD

if D=2,3 (mod 4),

I=2Z+Zw
if D=1 (mod 4), where w = -—‘DC The conjugate of an algebraic integer
a € Q(v/D) is denoted by @. It is clear that @ = a — bvD if @ = a + bv/D and

a=a+bwif @ =a+ bw, where w = 1—‘2@. The norm of a € I is defined by
N(a) = ca.

3.2. S-type digit sets

Here we investigated such quadratic fields where D = 2,3 (mod 4), there-
fore {1, /D} is an integral bases in I. We assumed further that each considered
base number « is greater than 2. Thus we can construct an S-type digit set
in the analogues way as for the set of Gaussian integers has been found by G.
Steidl in [11], and by which « is a base of a number system. We shall define

the corresponding digit sets Eéf“s) exactly as follows. Let € = +1, § = £1 and
for some a € Q(v/D) let d = N (a) = a@.

Let & = a + bv/D and ES® be the sets of those f = k + IvD, k,l € Z
for which f& = (k + 1vD)(a — bvD) = (ka — bl2) + (la — kb)vD =1 + svD

satisfy the following conditions:

-if (¢,6) = (1,1), then 1, s € (:Aﬂ, 1%1] )

-if (¢,8) = (~1,-1), then r,s € [}, 1),

_if (€,6) = (~1,1), then r € [—gﬂ%)s ( =ld ]

- if (,8) = (1,-1), then 7 € (= “,"],s [ )

It is proved in [4] that for each value of € and § the pair (a, Et(f"s)) is a
number system.

3.3. Construction of B,

We used a method suggested by I. Katai in [2] to construct the set B,.

Since Q(v/D) is a two dimensional vector space over (Q we can consider the

elements of Z + Z+/D as the elements of ZZ. In order to distinguish the
one and two dimensional sets we underline the two dimensional ones. Let E,
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be one of E&’ %) We assume that (o, E4) is a number system in I, where

a=a+ b\/ﬁ and E, is the suitable S-type digit set. Let o correspond to

the matrix M = (z baD> and E, to A with the mapping f — f where

f=k+1VD € E,, f= (’;) € A. It is clear that both eigenvalues of M are

greater than 1 and the order of the factor group Y/ /M 7’ is | det M |=| d {,
thus A is a complete residue system mod M in Z2. According to the proof
published in [4] (A, M) is a number system in Z*.

Thus the fundamental region can be given in the following way:

(3.1) {z| 5=Z “ifi, fi€ A}

Now we can get a possible expansion of each elements of By C H. Since
By = HN H + 7, therefore

By={z|zeHz-v€H}

We can write 21} expansions of v as
— M1 -2
y=M"es+M e +...,

where ¢;,€;,-- € B=A—A. Thene; = f —f, where f , fi € A(i=1,2,...)
and let

(3:2) g=M1f +M7?f +... .

Then we construct a directed graph G(S). The nodes of G(S) are the
elements of S defined in the first section. From each node v € S goes an edge
toneSif

My—-§=n

holds for some § € B = A — A. This edge is labeled by §. In order to get the
elements of B, let us start from v, walk on the graph G(S) and write down
the sequence of labels §;,d,,... . Since for every § f f; (i=1,2,...),

we can compute all possible va]ues of the digits £, whlch are substxtuted mto
(3.2).

The Figure 1 shows an example of B, with S-type digit set and Figure 2
another one with canonical digit set.
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Figure 2: B_;_ s with canonical digit set (a = 6 + v/3).

3.4. Application of sandbox method for E:,

As it can be seen in previous subsection the set B, is an infinite compact

set. We generate a finite set §., so that we substitute the infinite sums (3.2)

with finite sums for some fixed k and . Thus we get that each element of E',
forms

k
(3.3) T=Y M7f.

We have applied the sandbox method for E; whose every element corresponds

to a subset of B.. We think that the self-affine behavior of E, gives a good
estimate of the dimension of the By. As a matter of fact we applied the

sandbox method for ﬁf, in the following way. Let us use the notations which
are introduced in subsections 2.1 and 2.2 with substitution K = B; As it
can be seen in the subsection 4.1, our computations support that the sandbox
dimension counted in finite set B is a good approximation of the theoretical
value of the boxcounting dimension of B,.
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Figure 3: Sandbox dimension of B_ 5 with S-type digit set (o = 3 + 3v3
N=10000, number of centum: 5000).

4. Analysis of the numerical results

In this section we present the numerical results of our investigations. In
the Figure 3 we show the estimation of the sandbox dimension of B., for a given
(a, E4) number system. The slope of the line fitting on the curve displays the
approximated value of the sandbox dimension (defined in (2.2).

After the fitting we get the value of D3%(g) which depends on 4. Since
D3%(q) has the property so called scaling nature (described in [13]), therefore
we can calculate the lattice independent value of the sandbox dimension. The
given values of D§b(q) are displayed with respect to & (Figure 4). The fitting
line of the intersection on y axis causes a lattice independent value (§ — 0)
which yields the numerical estimation of the sandbox dimension.

4.1. Comparison of the boxcounting and sandbox method

In this subsection we compare the well-known boxcounting method with
the sandbox method. We study such canonical digit sets where the theoretical
value of the boxcounting dimension is known. Remark, the sandbox method
contradicting to the boxcounting method is used on the lattice size is a con-
stant 4. In the Figure 4 we displayed the theoretical value of the boxcounting
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Figure 4: The convergence of sandbox and boxcounting dimension to the the-
oretical value in case a = 6 + v/3 with canonical digit set.
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Figure 5: Dimension of B, for different v with S-type digit set in case a =
343V3. i=-1,12=-1+3,73=0—-+3
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v D%(q) | digit
-5—-3 1.53 canon.
—5—-+3| 1.24 | S-type
0-+3 | 1.52 | S-type

1 1.37 | S-type
—2-v2 | 1.69 | S-type

W Tmw O ;W
W = W =T
N O W wwlY

Table 1: Approximations of sandbox dimensions for different B, .

dimension of the set B_g_ /3 for & = 6 + v/3. This is published in [5] by J.M.
Thuswaldner. Also it can be seen in this figure the approximated values of the
boxcounting and sandbox dimension of the same set B, with respect to §. It
is clear that the sandbox method arises faster convergence to the right value
than the boxcounting using the same parameters and precision.

The Table 1 summarizes the lattice independent sandbox dimension values
of the boundary set of fundamental region for coefficient systems and number
systems for different a, b, D.

4.2. Dimension of B, for different v

It is conjectured that if the graph G(S) is strongly connected, the Hausdorff
dimension of B, is the same for different values of v. The numerical estimation
confirms this conjecture as can be seen in Figure 5.

4.3. Modified S-type digit sets

The fundamental region is investigated even if (o, E,) is not a number
system. The Figure 6 shows an example for this case.

We conjecture that an S-type digit set for a given a can be modified to a
digit set which consists of a number system with this a. This is proved in case
D =2, where @,1 — « is not a unit and | a |,| @ |> V2.

4.4. Conclusion and further goals

The presented numerical results prove the effectiveness of sandbox method
for estimating the Hausdorff dimension of the boundary set of H in real quadratic
fields. Thus we strongly suppose that this method will be proved to be a useful
tool in the investigation of generalized number systems and connected research
fields.

Our prospective purpose is to study the dynamic systems by generalized
entropy which has been introduced in the articles [12], [14].
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Figure 6: Dimension of B_,, 5 with S-type digit set in case a = 3 + 3v2,
where (a, E,) is not a number system.
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