Annales Univ. Sci. Budapest., Sect. Comp. 28 (2008) 213-233

GRAPHS REPRESENTING
SETS OF FUNCTIONAL DEPENDENCIES

J. Demetrovics (Budapest, Hungary)
A. Molnar (Budapest, Hungary)
B. Thalheim (Kiel, Germany)

Dedicated to Imre Kdtai on his 70th birthday

Abstract. The most popular graphical database design tool is the
Entity-Relationship model (ER). Designing a database schema is based on
modeling the real world as entities and relationships among them. ER and
other common database modeling tools have restricted capabilities for de-
signing a relationship of higher arity. Although a complete and unambigous
specification can be achieved by the traditional functional dependencies for
relational schemata, use of the traditional formal notation in practice is
rare. We propose a simplified formalism and a graphical framework for
designing or surveying the properties of a non-binary relationship among
entity classes or attributes, based on functional dependencies. Another
representation by the semilattice of closed attribute sets can also be used in
parallel. We also make an investigation on the number of closed dependency
sets.

1. Introduction

In relational database theory, the syntactical part of a database schema
consists of finitely many relational schemata, and each relation schema has
one or more (finitely many) attributes. It describes the structure of the data.
Actual data, contained in a database instance consists of relational tables for
each relation schema such that the attributes correspond to columns of the

214 J. Demetrovics, A. Molnar and B. Thalheim

table. The schema is extended by semantical integrity constraints to ensure
consistency of a database by specifying which instances are considered as
valid databases. The database management system checks that the prescribed
constraints are not violated by any transaction.

Functional dependencies are probably the most known database con-
straints. For two sets of attributes X,Y of a relational schema R, X — Y
states that only those tables are treated as valid instances of R that contain no
pair of rows that have the same values in the columns of attributes X but differ
in any of the columns of attributes Y, i.e. the values of X uniquely determine
the values of Y. For instance, in an address table of schema (City, ZIP, Street,
HouseNr), the ZIP code determines City so there is a functional dependency
ZIP— City between them. A key is a set of attributes that functionally
determines all attributes of the relation schema. It is an important task during
schema design to determine which of the possible functional dependencies are
valid, in order to avoid update anomalies and find a suitable decomposition
of the relational schemata. Specified constraints are not independent of each
other: one or more constraints may logically ¢mply other constraints while
some possible constraints consists of axioms and rules that support reasoning
on constraints.

The notion of functional dependencies was introduced in [1] for the
relational database model [13], mainly to provide a way for specification of
the properties of valid, acceptable instances of a relational schema. Classical
database design is based on a step-wise extension of the constraint set and on
a consideration of constraint sets through generation by tools.

Nowadays, dependency theory at schema design is usually applied for
determining keys and decomposing schemata into normal forms (e.g. [4, 5,
3, 6]). The Entity-Relationship (ER) model (e.g. [11, 12, 10, 26] is the most
widely used graphical tool for database schema design. The design procedure
is based on identification of entity classes and relationships among them. They
are usually binary, but higher arity relationships (e.g. ternary, quaternary) are
allowed and should be used whenever convenient. A database schema from an
ER graph can automatically be generated. The model allows specification of
cardinalities of entities participating in relationships. We focus on relationships
that can be described by sets of functional dependencies.

ER and other common modeling tools have restricted capabilities for de-
signing a relationship of higher arity. Therefore, binarization is often performed
even if a higher arity relationship would lead to a more suitable model. In most
cases, higher arity relationships can be decomposed (normalized) but to reach
a proper decomposition, a precise description of the higher arity relationship
must be achieved in advance. Complexity of these kinds of relationships
can be high and different types of ternary, quaternary relationships are not

Graphs representing sets of functional dependencies 215

characterized (as opposed to well-known binary cases: one-to-one, one-to-
many and many-to-many). The complete and unambigous specification can
be achieved by recalling database constraints, relationship construction can be
made through relation schema design. To achieve this, the database developer
must master semantics acquisitior. The traditional formal notation considers
dependencies one-by-one including trivial and redundant ones. The implication
is not effective enough in most cases. There is usually a strong inter-dependence
among constraints that is not visualized. All these lead to an inconvenience
in using the formalism with the traditional axiomatization. Therefore, simple
and sophisticated means of representation and reasoning for constraint sets are
needed. In [20] and [21] we have proposed novel approaches for graphical and
spreadsheet representation of sets of functional dependencies for small relation
schemata that supports reasoning. In this paper we present the graphical
framework, parallel with the semilattice approach of closed attribute sets
discussed in [18]. More details on the graphical and spreadsheet representations
can be found in our technical report [19)].

The proposal of graphical representation of constraint sets provides a
possible solution of the problem of defining a pragmatical approach that
allows simple representation of and reasoning on database constraints. The
constraint acquisition method below can be refined and adopted into this
framework. Solution of the problem is crucial since typical algorithms such
as normalization algorithms can only generate a correct result if specification
is complete, therefore, the database design process may only be complete of all
integrity constraints that cannot be derived by those that have already been
specified.

The simplified formalism behind our representation allows to determine
the number of different closed sets of functional dependencies for small arities,
i.e. the number of possible relationship types.

1.1. Functional constraints, excluded functional constraints and
their dimension

We use the traditional functional dependency notation with some re-
strictions. Besides functional dependencies (FDs), we use ezcluded functional
constraints (also called negated functional dependencies) as well: X /4 Y states
that the functional dependency X — Y is not valid.

In our notation, a trivial constraint (a functional dependency or an
excluded functional constraint) is a constraint with at least one attribute of

216 J. Demetrovics, A. Molnadr and B. Thalheim

its left-hand side and right-hand side in common or has the empty set as its
right-hand side. Furthermore, a canonical (singleton) functional dependency
or a singleton excluded functional constraint has exactly one attribute on its
right-hand side.

Our graphical representation deals with non-trivial canonical functional
dependencies and non-trivial singleton excluded functional constraints only.
We can perform this restriction without loosing relevant deductive power on
functional constraints.

In most of the cases, we focus on closed sets of functional dependencies. A
finite (singleton, non-trivial) constraint set F is closed iff F* = F, where F*
is the (singleton, non-trivial) closure of F, i.e. contains all implied singleton,
non-trivial constraints.

Dimension of a constraint is simply the size of its left-hand side, i.e. the
number of attributes on its left-hand side.

For a single attribute A, given a set of functional dependencies 7 C D},
the dimension of A is denoted by [A]r (or just simply [A]) and defined as

def .
Alr = X].
47 = min, 1X]

This definition is extended with [A]x 4<f 50 for the case when no X — A exists in
F*. The dimensions of attributes classify the sets of functional dependencies.

1.2. Constraint set development

The main task is determining the validity of all possible functional de-
pendencies given an initial set, i.e. to get the closure of the constraint set.
This constraint acquisition is usually performed by a step-wise extension of the
constraint set. The approach is based on the separation of constraints into:

The set of valid functional dependencies X; : All dependencies that
are known to be valid and all those that can be implied from the set of valid
and excluded functional dependencies.

The set of excluded functional dependencies L, : All dependencies
that are known to be invalid and all those that are invalid and can be implied
from the set of valid and excluded functional dependencies.

This pragmatical approach leads to the following simple elicitation algo-
rithm illustrated by Figure 1:

1. Basic step: Design obvious constraints.

Graphs representing sets of functional dependencies 217

2. Recursion step: Repeat until the constraint sets £o and £, do not change:

- Find a functional dependency o that is neither in £y nor in &y. If
is valid then add a to 1. If a is invalid then add a to Ly.

- Generate the logical closures of £y and 3.

Xy 2 2 Xy
Unknown Unknown | | Unknown
validity validity validity
Zo 20 20 20
Initial step Intermediate steps Final step

Fig.1. Constraint acquisition process

The number of constraints may however be exponential in the number
of attributes [17]. Therefore, specification of the complete set of functional
dependencies may be a task that is infeasible. This problem is closely related
to another well-known combinatorial problem presented during MFDBS’87 [25]
and that is still only partially solved: What is the size of sets of independent
functional dependencies for an n-ary relation schema?

2. Sets of functional dependencies and their graphical representa-
tions

There have been several proposals (e.g. [2], [28] and [8]) for graphical
representation of sets of functional dependencies. Nevertheless, these graphical
notations have not made there way into practice and education. The main
reason for this failure is the complexity of representation. We use a notation
which reflects the validity of functional dependencies in a simpler and better
understandable fashion, at least for ternary and quaternary attribute sets [20].

Since our main focus is on schema design and relationship types, we ignore
cases with zero-dimensional constraints (specifying constant attributes) while
presenting sets of dependencies. Moreover, we treat equivalent sets as one
single case (for two equivalent sets there exists a permutation of attributes
transforming one set to another) when counting the closed sets.

218 J. Demetrovics, A. Molnar and B. Thalheim

2.1. The ternary case: Triangular representation

A set of canonical, non-trivial functional constraints is represented by a
diagram. Functional dependencies and excluded constraints are indicated as
nodes of a triangle and endpoints of line sections parallel to its edges. Nodes of
the triangle as a 2-dimensional shape are placeholders for 2-dimensional con-
straints and nodes at the segments correspond to 1-dimensional constraints.!
Filled circles represent the basic (initial) dependencies while empty circles
denote implied dependencies. The circle of a constraint is placed at the
location of the attribute on its right-hand side. Crossed circles denote excluded
functional constraints in the same fashion. Nodes without a circle or with
a small circle correspond to unknown constraints (or excluded constraints if
the set is closed and the closed world assumption holds regarding to positive
constraints).

Fig.2. Examples of the triangular representation

Figure 2 shows some examples of the triangular representation. Graphs of
all different ternary cases of closed sets (relationship types) can be found in [19].
The functional dependency {A} — {B} and the implied functional dependency
{A,C} — {B} are shown in the left part. The functional dependencies {A} —
— {B}, {B} — {C} and their implied functional dependencies are pictured in
the middle triangle. The negated functional dependency {A,C} 4 {B} and
the implied negated functional dependencies {A} /4 {B} and {C} 4 {B} are
given in the right picture.

The total number of closed sets given three fixed attributes is 45. If
permutation of attributes does not matter, sets equivalent up to permutation of
attributes are treated as one single case with a representant set presented. We
get the number of different types of ternary relationships which is 14. Graphs
of these are shown on Figure 3.

1 If attributes are allowed to be constants, an extra node is needed for
each attribute as a placeholder for zero-dimensional constraint referring to the
attribute.

Graphs representing sets of functional dependencies 219

2.2. The quaternary case: Tetrahedral and quadratic representation

Considering the triangular representation for the ternary case, it is viewed
as a triangle with its three edges repeated (or drawn separately). Each vertex
of the triangle as well as each endpoint of the (repeatedly or separately drawn)
edges correspond to a placeholder of a constraint of matching dimension.
It is straightforward that the quaternary case contains four nested ternary
cases with their one-dimensional parts (edges) shared. Additionally, three-
dimensional constraints ca be represented as vertices of a three-dimensional
shape which is actually a tetrahedron. This way we get a representation in 3D
space, where each node is a placeholder of a functional dependency or excluded
constraint (see Figure 4). For better visibility, separate edges are drawn outside
the tetrahedron where possible.

Generalization of the triangular representation can be performed in an-
other direction by constructing planar (2D, quadratic) representations. We use
the same approach as before in the case of three attributes. An example is
displayed in Figure 5 (implication is explained later).

All possible sets of functional dependencies for 4 attributes are presented
in a tabular form grouped by value combinations of attribute dimensions in
[19]. The total number of sets is 2271, treating equivalent sets as one case we
get 165 cases.

2.3. Higher arity cases

The higher-dimensional representation for 5 attributes exists in the 4D
space with 5 nested quaternary cases, 10 ternary and 10 binary cases. Each
of the edges (corresponding to a binary case) has 3 neighbouring ternary cases
(which the binary case is nested in) and 3 neighbouring quaternary cases, while
each of the triangles (corresponding to a ternary case) has 2 neighbouring
quaternary cases. The frame of the four-dimensional object is shown on Figure
6 as projected to three dimensions. To get the full representation, 5 tetrahedra,
10 triangles and 10 edges formed by the nodes of attributes should be added
separately to the figure.

A two-dimensional version can be constructed the same way as the
quadratic representation for the quaternary case and is shown on Figure 7.
Each node of the graph is a placeholder of a functional constraint (dependency
or negated constraint) placeholder is not redundant. Each trapezoid corre-
sponds to a tetrahedron and the bounding pentagon corresponds to the whole
body in the 4-dimensional representation. Although this representation may
seem complicated (and it actually is, the number of constraint placeholders is
75), one can easily discover which 3 edges belong to a specific triangle or which

220 J. Demetrovics, A. Molnir and B. Thalheim

B

#5 iA

C B
#8 QA
AB

#9 A #10 QA #11 @A

C B C B

C B

#12 ah #13 ah

Fig.3. All sets of functional dependencies in ternary relationship types

Graphs representing sets of functional dependencies 221

B

Fig.4. A tetrahedron as the 3D graphical representation for the attributes
(stripped lines indicate invisible edges from the front)

O

Fig.5. The tetraherdal and quadratic representations of the set generated
by {B—C,B— D,B — A AD — B,AC — B}

222 J. Demetrovics, A. Molnar and B. Thalheim

Fig.6. A three-dimensional projection of the frame of the four-dimensional
object for the representation of FD sets over 5 attributes. The five tetrahedra
corresponding to nested quaternary cases can easily be discovered, sharing their
surface triangles (they represent the ten nested ternary cases) and edges (ten
nested binary cases)

A

Fig.7. The pentagonal representation for sets of functional dependencies
over 5 attributes

Graphs representing sets of functional dependencies 223

4 triangles belong to a specific trapezoid (or corresponding tetrahedron) by
looking at the parallel lines and directions of attributes.

For more attributes, the graph becomes rather complex due to the com-
binatorial explosion. The more attributes we have (n), the higher is the
dimension of space (n — 1) where simpler and symmetric generalization of the
triangular representation exists. Complexity can be handled by seeking possible

decompositions or by looking at the appropriate translations of schemes ([14],
(15], [16]).

2.4. Summary of the number of closed sets

Denote by SD, the set of closed sets of functional dependencies for
a relation schema with n attributes (with constant attributes disallowed).
This corresponds to the different relationship types among entity classes
with fixed roles (asymmetric types counted more than once). Further-
more, let 7 the equivalence relation on these sets classifying them into
different types or cases (for two equivalent sets there exists a permutation
of attributes transforming one set to another). The number of different
classes (SD,/T) exactly correspond to the number of relationship types if
the attributes do not have a fixed role (an asymmetric relationship type
is counted only once). If we allow attributes to be stated as constants
(which is, however not likely in schema design), it yields a larger set that
is exactly the set of Moore families [23] for n, denoted by SDY and its
equivalence classes SD°/7. For each n € N¥, |8Dg+1/7| = |SDpy1/7| +
n
+|SDY /7| easily follows, as well as |SDS| = 3 (7)|SD;| where |SDq| = 1.
0

1=

With these notations, Table 1 shows the number of different cases for
known arities and demonstrates the combinatorics of the search space. The first
five rows were computed by our PROLOG program [20,19] and the third column
was also obtained by [24]. The number of Moore families for six elements was
presented in [23] and the first column can be calculated from that by the
summarization formula above. The number of different equivalence classes for
the sixth row is still unknown.

Although the number of different relationship types for n attributes is still
unsolved,? the table shows the complexity is high even for small arities. It is
not surprising from the point of view of constraint sets. However, most works
that consider non-binary relationships give surprisingly small attention to this
complexity and some notations used in practice are ambiguous. Therefore,

? Estimations exist, see [7, 18].

224 J. Demetrovics, A. Molnar and B. Thalheim

suitable tools are sought for a complete specification of a relationship with
functional dependencies.

1373 701 14 480 1 385 552 14 664
75 965 474 236 2 75973 751 474 ?

n[_18Dal _[I8Da/7l[[8Du] [I8Da/7l]
1 1 1 2 2

2 4 3 7 5

3 45 14 61 19

4 227 165 2 480 184

5

6

Table 1. Number of closed sets of functional dependencies for n attributes.
The column printed in italics contains the number of basic relationship types
of arity n

2.5. Representation by the semilattice of closed attribute sets

We present an alternative way of graphical representation of constraint
sets that can be used in parallel with the above described triangular notation.

We know from [18] that the set of closed attribute sets wrt a set of func-
tional dependencies is closed under intersection so they form an intersection-
semilattice (meet-semilattice, SL). This can be reversed: each set of attribute
sets containing the full set (of all the attributes of the schema) that is closed
under intersection forms an SL and there exists a set of functional dependencies
whose closed attribute sets are exactly the items of the SL.

The semilattice can be represented by a graph [15, 9]: labelled nodes
correspond to closed attribute sets and the (nontransitive instances of) set
containment are represented by edges. Since the attributes are ’inherited’ along
the edges, it is enough to indicate the new attributes at each node only. For
the sake of clarity, we indicate all the attributes but put the inherited ones in
brackets.

Figure 8 shows the semilattice graphs corresponding to examples of Figure
2 with appropriate application of the closed world assumption as follows. In the
first two cases where positive constraints are indicated, negated dependencies
are assumed for missing constraints. In the third case, negated dependencies

Graphs representing sets of functional dependencies 225

are represented, therefore, each nonnegated candidate constraint is assumed to
hold as a functional dependency?.

(ABC) A(BC)

B(AC)
A(B) (BC) B(C)
l l | AC
B\ /c T |
o g 8

Fig.8. Semilattice graphs of closed attribute sets for examples of Figure 2

The upper bound of the semilattice is the full set of attributes while the
lower bound is usually the empty set (the lower bound contains the constant
attributes if there are any). Neighbours of the full set are called coatoms or
antikeys ([27], [22], [15]). Equivalent attributes (A,C such that A — C and
C — A both hold) always occur together in a node.

The more dependencies we have, the less vertices the graph has. This is of
course not a strict proposition since we may have redundant dependencies.
However, adding a nonredundant dependency always destroys at least one
closed set, i.e. removes one or more nodes from the graph. The simplest
case is a hierarchical chain (if all the attributes contribute to the hierarchy).
As the opposite, if all attributes are independent, we get a complete lattice
graph. The semilattice graph notation may become complex in some cases
while considering the set of functional dependencies is simple. In other cases
the situation may be reversed. Therefore, by designing or surveying a relation
schema, both representations may be used in parallel, focusing on the one more
convenient.

Anyway, there are cases where both ways yield rather complex repre-
sentations. Dealing with complexity can often be done by performing a
suitable decomposition or separation on one of the representations. Separation
can either be based on the functional dependency notation (or the graphical
representation of it) or on the closed attribute sets approach (semilattice or its
graph representation).

3 If some dependencies remain unknown due to different semantics, a semi-
lattice graph can still be constructed, but some closed attribute sets will be
(and must be marked as) uncertain.

226 J. Demetrovics, A. Molnar and B. Thalheim

3. Reasoning on sets of constraints

3.1. Implication systems for functional constraints

Traditional axiomatization of functional dependencies is the Armstrong
implication system and its extended version for negated dependencies [26].
However, these systems have inherent redundancy by considering trivial and
non-singleton (right-sided) dependencies®. We use a restricted syntax with
nontrivial and singleton constraints only and give a sound and complete

axiomatization of it.

In the following rules, Y denotes a set of attributes (allowed to be empty)
and A, B, C are different attributes not occuring in Y.

Y - B Y —-A YA—-B YC 4B
) g () TEHTE RS
YA YAB YA—B, Y 4B
(Q)W (R) Y 4 A U)~(Y - B, Y 4 B)

- The ST implication system for positive constraints contains rules (S) and
(T) and no axioms,

- The PQRST implication system for both negative and positive constraints
has all the presented rules and the symbolic axiom (U), which is used for
indicating contradiction.

These systems are proved as sound and complete for the appropriate
universes of dependencies [19]°.

3.2. Graphical reasoning on sets of functional dependencies

The rules presented above can directly be applied for deducing conse-
quences of a set of constraints for small schemata given in terms of the graphical
representation.

4 A non-singleton functional dependency can be decomposed into singletons.
A non-singleton negated dependency, however, represents a disjunction. We do
not consider such dependencies since their relevance is usually not high and by
using our implication system they are not needed as intermediate results either
(during derivation of singleton constraints.

5 For contradictory cases, U can be derived.

Graphs representing sets of functional dependencies 227

Fig.9. Graphical versions of rules (S), (T) and (P), (Q), (R)

Graphical rules for the triangular representation. Rules of the
PQRST implication system support graphical reasoning by their graphical pat-
terns shown on Figure 9 for the triangular representation (Y = {C}). The small
black arrows indicate support (necessary context) while the large grey arrows
show the implication effects. Rule (S) is a simple extension rule (extension of
the left-hand side) and rule (T) can be called as "rotation rule” (rotating a
dependency, i.e. changing its right-hand side by the support of a dependency
one dimension higher) or ”"reduction rule” (alternative interpretation: reducing
the determinant of a dependency by a lower-dimension support). We use the
rotation interpretation.

For excluded functional constraints, rule (Q) acts as the extension rule
(needs support of a positive constraint, i.e. functional dependency) and (R)
as the rotation rule (needs a positive support, too). These two rules can also
be viewed as negations of rule (T). Rule (P) is the reduction rule for excluded
functional constraints, with the opposite effect than rule (Q) (but without the
need of support). Rule (P) is also viewed as the negation of rule (S).

These graphical rules can be generalized to higher dimensional cases, where
the number of attributes is more than 3. In such a case, a single rule may have
different patterns (e.g. depending on the size of the attribute set Y or the
layout of the graph, see [19]).

Recall Figure 2 for three examples of the ternary case. The triangle on
the left-hand side shows an example of the application of graphical (triangular)
rule (S). On the right-hand side, rule (P) is used twice while in the middle one

228 J. Demetrovics, A. Molnar and B. Thalheim

rule (S) is used twice followed by (T). The middle one also demonstrates that
no explicit rule for transitivity is needed. For an example of the quaternary
case, Figure 10 shows how transitivity can be simulated with these rules for
the non-singleton case {C — BD, BD — A} + C — A in both quaternary
representations. C — BD is first decomposed into singleton constraints {C —
— B, C — D}. Numbers on the figure show a possible order of deduction:
1. BD—’A*‘(S)BCD—*A; 2.C—>B|"(S)CD—-*B; 3.CD - B
(supported by) BCD — Ak() CD — A; 4. C — D (supported by) CD —
— Ak) C — A. Note that the set is not closed.

1. Initial set

= 0 A,_w ;
| X IX]
AN ANy4

Fig.10. An example of tetrahedral or quadratic representation and reasoning:
Simulating transitivity (numbers show a possible order of deduction)

When attributes are allowed to be declared as constants, graphical rules
for zero-dimensional constraints are to be introduced. Implication systems ST
and PQRST are capable to handle these types of constraints and the graphical
representations can easily be extended (one extra vertex for each attribute) as
well as the graphical patterns of derivation rules.

Elicitation of the full knowledge by the ST and STRPQ algo-
rithms. The implication systems introduced above have the advantage of the
existence of a specific order of rules which provides a complete algorithmic

Graphs representing sets of functional dependencies 229

method for getting all the implied functional dependencies and excluded
functional constraints starting with an initial set, allowing one to determine
the possible types of relationships the initial set of dependencies defines:

1. Starting with the given initial set of non-trivial, singleton functional
dependencies and excluded functional constraints as input,

2. extend the determinants of each dependency using rule (S) as many times
as possible, then

3. apply rule (T) until no changes occur,

4. apply rule (R) until no changes occur,

5. reduce and extend the determinants of excluded constraints using rules
(P) and (Q) as many times as possible.

6. Output the generated set.

The above method is called STRPQ algorithm and can be used for
reasoning on sets of functional constraints, especially in terms of the graphical
representations. For positive dependencies only, steps 4 and 5 can be skipped,
resulting the ST algorithm.

It can be fine-tuned by taking dimensions into account: start with lower-
dimensional instantiations of rule (S) and move towards higher dimensions.
When applying rule (T) the opposite should be done: start with the highest-
dimensional rotations possible and end with the lowest-dimensional.

There are other reasoning methods in terms of the PQRST axiomatization.

For example, the method of inserting and deleting a constraint can be found
in [21].

3.3. Conversion between representations

Obtaining the closed attribute sets from a closed set of functional
dependencies. Whether or not a specific attribute set is closed can be seen
from the graphical representation of a closed constraint set. To construct the
semilattice graph of all the closed sets needs systematically collecting the closed
sets. It is performed on the basis of the following rules:

1. The set of all attributes is always closed.

2. If a set X is closed and no dependency Y — A holds, where Y C X and
A€ X\Y, thenY is closed.

3. If two sets X and Y are closed then X NY is closed.

We start with the full set with size n (first rule). Then look at each
attribute set with size n — 1 whether the dependency holds whose left-hand side
is that set (simply displayed as the nodes of the outermost shape of the graph,
i.e. with the highest dimension). If the dependency does not hold, the set is

230 J. Demetrovics, A. Molnar and B. Thalheim

added to the closed attribute sets (second rule). Then add the intersections of
the obtained sets as closed sets (third rule). This process is repeated with the
possible sets in decreasing order by their sizes. The third rule ensures once a
closed set is found, determining whether a subset of it is closed needs only to
check existence of dependencies completely inside (and not pointing outside)
of the set. The whole process can very easily be done also by hand for small
relation schemata using the graphical representation.

Refer to the first two cases of Figures 2 and 8 as examples. In the first
case, the only two-dimensional dependency holds is AC — B. So {4, B} and
{B,C} are the closed sets of size 2. Their intersection gives {B} as a closed
set. What remains is to consider the set {A} wrt {A, B} and {C} wrt {B,C}.
A — B holds but C — B does not, therefore, {C} is a closed set. The empty
set is closed since no zero-dimensional dependencies hold. The second case can
be transformed easily in a similar way.

Transforming the semilattice graph into a closed set of functional
constraints. Given the semilattice of the closed attribute sets, negated
functional constraints can be obtained: if a set X is closed, then X A A
holds for each A ¢ X. These are declared as initial constraints. All other
negated constraints can be derived afterwards by the negated reduction rule
(P). All the remaining nodes correspond to positive functional dependencies.

Refer to the third case of Figures 2 and 8 as an example. {A4,C} is the
only 'real’ closed set (the full set is trivially closed, the closeness of the empty
set means no constant attributes must be declared). It causes AC 4 B hold,
indicated by a crossed circle. By using rule (P), we derive A /4 B and C 4
#» B. The unmarked nodes should be treated as positive constraints (functional
dependencies).

4. Conclusion, future work and open problems

We have proposed a graphical representation and reasoning framework
for sets of functional constraints as well as conversion methods between this
type of representation and the semilattice of closed attribute sets. The main
focus is on considering sets of constraints as a whole instead of constraints one-
by-one as in the traditional notation. Inherent redundancy of the traditional
syntax is eliminated by not considering trivial and nonsingleton dependencies.
A simple and powerful implication system PQRST convenient for the graphical
and spreadsheet representations is taken as a basis for reasoning. There exists
a specific order of rule application to derive all implied dependencies.

Graphs representing sets of functional dependencies 231

Implementation of the discussed methods will give a software tool support
for designing relationships by sets of functional constraints. Future work
includes incorporating different types of constraints like cardinality constraints,
multivalued and inclusion dependencies.

One open problem is developing convenient graphical representations or
attribute separation, grouping methods for cases with more attributes. An-
other, still unsolved, problem is determining the number of different closed sets
of functional dependencies for n > 6 attributes®. However, a deeper analysis
of the known cases (ternary, quaternary, quinary) is also promising in order to
have more sophisticated reasoning facilities on types of relationships.

References

[1] Armstrong W.W., Dependency structures of data base relationships,
Information Processing 74. Proceedings of IFIP Congress 74, Stockholm,
Aug. 5-10, 1974, ed. J.L. Rosenfeld, North-Holland, Amsterdam, 1974,
580-583.

[2] Atzeni P. and De Antonellis V., Relational database theory, Addison-
Wesley, Redwood City, 1993.

[3] Biskup J., Boyce-Codd normal forma and object normal forms, Informa-
tion Processing Letters, 32 (1) (1989), 29-33.

[4] Biskup J., Foundations of information systems, Vieweg, Wiesbaden,
1995. (in German)

(5] Biskup J., Demetrovics J., Libkin L.O. and Muchnik M., On re-
lational database schemes having a unique minimal key, J. of Information
Processing, 27 (1991), 217-225.

[6] Biskup J. and Polle T., Decomposition of database classes under path
functional dependencies and onto constraints, Proc. FoIKS’2000, LNCS
1762, Springer Verlag, 2000, 31-49.

[7] Burosch G., Demetrovics J., Katona G.0.H., Kleitman D.J. and
Sapozhenko A.A., On the number of databases and closure operations,
TCS, 78 (2) (1991), 377-381.

(8] Camps R., From ternary relationship to relational tables: A case against
common beliefs, ACM SIGMOD Record, 31 (2) (2002), 46-49.

6 Estimations exist, see 7, 18].

232 J. Demetrovics, A. Molnar and B. Thalheim

[9] Caspard N. and Monjardet B., The lattices of closure systems, closure
operators, and implicational systems on a finite set: a survey, Discrete
Applied Mathematics, 127 (2003), 241-269.

[10] Chen & Associates, Baton Rouge, LA, ER-designer reference man-
ual, 1986-1989.

[11] Chen P.P., The entity-relationship model: Toward a unified view of data,
ACM TODS, 1 (1) (1976), 9-36.

[12] Proc. 1st Int. ER Conf., ER’79: Entity-Relationship Approach to Systems
Analysis and Design, Los Angeles, USA, 1979, ed. P.P. Chen, North-
Holland, Amsterdam, 1980.

[13] Codd E.F., A relational model for large shared data banks, CACM, 13
(6) (1970), 197-204.
[14] Demetrovics J. and Huy N.X., Structure of closure in relational

databases, Conference on intelligent management systems, Bulgarian
Academy of Sciences, Varna, 1989, 148-154.

(15] Demetrovics J. and Huy N.X., Translations of relation schemes and
representations of closed sets, PUMA Ser.A, 1 (3-4) (1990), 299-315.

(16] Demetrovics J. and Huy N.X., Closed sets and translations of relation
schemes, Computers Math. Applic., 21 (1) (1991), 13-23.

(17] Demetrovics J. and Katona G.0.H., Combinatorial problems of
database models, Colloguia Mathematica Societatis Janos Bolyai 42, Alge-
bra, Combinatorics and Logic in Computer Science, Gyér, Hungary, 1983,
331-352.

[18] Demetrovics J., Libkin L.O. and Muchnik I.B., Functional depen-
dencies and the semilattice of closed classes, Proc. MFDB’89, LNCS 364,
1989, 136-147.

[19] Demetrovics J., Molnar A. and Thalheim B., Graphical and spread-
sheet reasoning for sets of functional dependencies, Technical Report 0402,
Kiel University, Computer Science Institute, http://www.informatik.uni
-kiel.de/reports/2004/0402.html, 2004.

[20] Demetrovics J., Molnar A. and Thalheim B., Graphical reasoning
for sets of functional dependencies, Proceedings of ER 2004, Lecture Notes
in Computer Science 3288, Springer Verlag, 2004, 166-179.

[21] Demetrovics J., Molnar A. and Thalheim B., Relationship design

' using spreadsheet reasoning for sets of functional dependencies, Proceed-
ings of ADBIS 2006, Lecture Notes in Computer Science 4152, Springer
Verlag, 2006, 108-123.

[22] Demetrovics J. and Thi V.D., Some results on functional dependen-
cies, Acta Cybernetica, 8 (3) (1988), 273-278.

Graphs representing sets of functional dependencies 233

(23] Habib N. and Nourine L., The number of Moore families on n = 6,
Discrete Mathematics, 294 (3) (2005), 291-296.

[24] Higuchi A., Note: Lattices of closure operators, Discrete Mathematics,
179 (1998), 267-272.

[25] Thalheim B., Open problems in relational database theory, Bull.
EATCS, 32 (1987), 336-337.

[26] Thalheim B., Entity-relationship modeling - Foundations of database
technology, Springer Verlag, Berlin, 2000. See also http://www.informat
ik.tu-cottbus.de/~ thalheim/HERM.htm.

[27] Thi V.D., Minimal keys and antikeys, Acta Cybernetica, 7 (1986), 361-
371.

[28] Yang C.-C., Relational databases, Prentice-Hall, Englewood Cliffs, 1986.

J. Demetrovics A. Molnér

Computer and Automation Institute Department of Information Systems
Hungarian Academy of Sciences Eotvos Lordnd University

Kende u. 13-17. P4zmaény Péter sét. 1/C

H-1111 Budapest, Hungary H-1117 Budapest, Hungary
demetrovics@sztaki.hu modras@elte.hu

B. Thalheim

Computer Science and Applied Mathematics Institute
University Kiel

Olshausenstrasse 40

D-24098 Kiel, Germany
thalheim@is.informatik.uni-kiel.de

