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Abstract.  Let Fg(n) be the number of digits needed to write the
factorization of n in base gq. Several authors have studied the cardinality
of the set of economical numbers, that is those integers nm for which

Fy(n) < [%E—ZJ + 1. The fact that the set of economical numbers is

of zero density in the set of integers reveals nothing about the normal
behavior of Fg(n). In this note we study the central distribution of the
function Fy(n) and show that it is Gaussian.

1. Introduction and notations

Let Fy(n) be the number of digits needed to write the factorization of n
in base g. For example, Fjo(125) = Fio(5%) = 2 and Fjo(30) = Fjo(2-3 -
:5) = 3. In 1995, Santos [7] introduced the notation of economical numbers

in base ¢, ¢ > 2, namely those integers n for which Fy(n) < “%‘;—ZJ +1,

meaning that the number of digits needed to write the factorization of n is
smaller or equal to the number of digits appearing in its digital expansion
in base g. Since then, several authors have studied the counting function of
economical numbers, in particular De Koninck and Luca (3], {4], and more
recently De Koninck, Doyon and Luca [5]. Here, for a fixed ¢ > 2, we study
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the distribution function Hy(x,y) :=#{n < x : Fy(n) < y} and more precisely

the case where y = y(z,c) = Bg_q + % loglogz + cy/loglogz. We show that

in this case, the expression G(c) = hm 1H,(z,y) is well defined and that
Tr—00

Yy o 2
G(c) = ®(v/3c), where ®(y) := \/% J e dt is the distribution function of
—oo

the standard normal law.

For real number y > 0, we let |y] stand for the largest integer smaller
or equal to y and we write {y} := y — |y] for its fractional part. As usual,
the letter p will always denote a prime number, while 7(z) will stand for the

—u2
number of prime numbers p < z. On the other hand, ¢(y) := \/—;2;6_’3_ stands

for the density function of the standard normal law. Moreover, we let w(n)

stand for the number of distinct prime factors of n and we let y(n) := [] p be
pln

the kernel of n. Finally, by log log z we mean max(1,loglog z).

2. The main results

It is clear that

o -] ) 5 (5] )

P2 in

The first sum counts the number of digits needed to write the prime factors of
n while the second counts the number of digits needed to write the exponents
> 2. Using the identities

logp _logp flogp Z logp log v(n)
log q loggq log q logg  logq '
it is easily seen that

A =S (1 {er ) + 5 (| rees] 1)

n
Pl p®lin

which can also be written as

(1) Fy(n) = l°g

— hl(n) + hg(’n) + h3(n)’
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where
) o= B2
ogq

o= 3 (155

Pl

-2 {2

pin

’

Let Hq(z,y) be the distribution function of Fy, that is
Hy(z,y) :=H{n < z: Fy(n) <y}

and consider the function

T—00 T

1 log x
G(c) = lim ~H, <,r. 10;:; + %loglogz‘. +c\/loglog:r> .
(§)

Theorem 1. For each real number c,
G(c) = ®(V3c).

Remark. The fact that the function G(c) is well defined is in itself an
interesting result.

The following theorem reveals the interval in which the function Fy(n)
takes its values.

Theorem 2. For each integer q > 2 and each integer n > 2,

[log log (nt/«(M) logn

J +w(n) < Fy(n) < [ng + 2w(n).

log g

3. Preliminary results

The first lemma contains classical estimates on powerful numbers. Recall
that a positive integer is said to be a powerful number if p|n implies that p?|n.
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But first, some notation. Given a positive integer n, we shall write n = uwv,

where
u=u(n):= IIp

rlin

and n
v=uv(n):=—.

(n) =~

so that u is the square free part of n and v its powerful part.

Lemma 1. Asy — oo,

. 1 1
(i) Z i < \7;,

n>y
pln=p2|n

. z

21 n<zx:vn) >y <K —,

(i) #{ (n) >y} 7

where the implicit constant does not depend on z.
Proof of Lemma 1. For (i), see De Koninck and Katai [2].
To establish (ii), we simply observe that it follows from (i) that

H{n <z:v(n) >y} < Z %<<\/i§

ple=ple

Lemma 2. There exist two positive constants ¢; and cy such that, as
T — 00,

Z 1o loglogz +¢; + O <exp{—cz(log:c)3/5}) .
p<z
Proof of Lemma 2. It is known (see Vinogradov [8]) that
H (1 - l) _ e (1 +0 (exp{—-cz(logz)3/5})) ,
ot D log x

where « is Euler’s constant. Taking logarithms on both sides, we easily see
that

5L ctogsztn= 5 oL bios(140 (epiaatoss) ) -

psz p<z, v22
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=loglogz + v — Z L +0 (%) + 0 (exp{—cz(logz)s/s}) =

p vz P
=loglogz +¢1 + O (exp{—cz(log 1)3/5}) ,

as required.

Lemma 3. (Central limit theorem) Let X;, X5,... be independent
random variables and let

Hi = E[Xi],
of = E[(X; — mi)?],
) = B{(Xi — m)®).

If
n 1/3
(£
lim —~=1 =0,
n—00 n
>0}
=1
then

n n
lim P| E =L <y | = (y).

n—oo n
2
g3

=1

=

Proof of Lemma 3. This is Lyapunov’s condition in the Central Limit
Theorem. For a proof this classical result, see Bernstein [1].

Lemma 4. For each fized integer ¢ > 2 and each fized integer r > 1, we
have, as x — 00,

1 flogp| loglogz
Zp{logq}— 2 oW

p<z

’ /log1
Zl{iogp} :loglog1z+0( log ogm).
p<2p ogq T+ r

Proof of Lemma 4. We first establish the second relation. To do so, we
call upon the following inequality which is valid for all positive integers k and
T
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The sum on the right hand side can be written as

1 logp " < 1 logp r
3 1 flogp\" _ 1 |
K "Z p{logQ} eg; ; 2 .\ P llogg
%S{{%E%}<l{_l qK'I‘.FSp<min(q“'Tyz)

On the other hand, observe that

@ Y =G5 o

I +1 j j+1
gtk <p<g’tF gt <pegtt

End Pa

for some real £ such that || < 1. Using Lemma 2 (replacing the error term by
0(1/log® z), say), we obtain

1 i j 1
E — = loglog (q“'_t'l) —loglog (q“’f) +0 ( — ) =
; i P £?log” q
¢ E<p<gttTE

(5) - it W | L\
log { £+ 5 log | £+ A +0 Zlog’q
1 1 1
=—+0(— ).
gt (kf?) O ([2 log2q>
Combining relations (3), (4) and (5), we obtain that

Q > et -

p<x

Fs{igg <
r L1655 ]

A | 1 1
k*k) 2 (E?J“O(W)'*O(e?logzq))'
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Observe also that

Lrks )

) Z (,clé + O (kﬁ) +0 (m)) = %loglogz+0(1).

£=1

Combining relations (2), (6) and (7) with the identity

i &\ 1 riG+ 17!
(Wz) 'F”)(T)’

we obtain

® 5o {iee) -

p<z

- r(7+1 r—1 op
Zo <kr+1 loglogz + O <‘(Jkr—+310g10g$) +0 (%;)) +O(1).

The right hand side member of (8) is equal to

+ 1)

k
9) loglogz +O< e, Ioglogz) +0 (;) + O(1).

Choosing k = |/rToglog z|, the proof of the second relation of Lemma 4 then
follows from relations (8) and (9).

In order to prove the first relation of Lemma 4, we first observe that, using
the Prime Number Theorem in the form ) J-E =logz + O(1), we have

p<z
Zl{logp}zzllogp Z {long
sip llogg) = plogg 2=~ p|logg
loga: 1]|logp
= +o(1) - - [—— .
logq P log q
Moreover,
1|logp Sl 1
25 lloqu R Y

p<z 7=0  ¢i<p<min(z,gi*?)
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Using Lemma 2 (replacing the error term by O(1/log® z), say) we obtain

1 ; ; 1
Z — =loglog¢’*! —loglogg’ + O <—T)
. , j3log® ¢q
¢ <p<qj+1
1 1 1
=-—-—+0|= > 1).
T (jd) G=1

We may therefore conclude that

Siltl- S (g o) on-

p<z Iqu i=1
logz loglogx
= — — log log 1
e — 250 + Ollogloga) +0(1),

which proves the first equation of Lemma 4 and thus completes the proof of

the lemma.
Let = be a large fixed positive integer and set

R:=xH;u.

p<zx

We consider the set U = {n < R} with the probability measure

P(S) = %, for each S CU.

For each prime number p < z, we introduce the random variables

1 .
%g—g } if pin,

&(n) == - {

0 otherwise.

Lemma 5. For each prime number p < x, the following equalities hold:

)
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Proof of Lemma 5. Since for each prime number p < z, we have p|R,
the random variables £, are independent. Moreover, one can easily verify the

following equalities:
logp 1
o)
( 7 log g p
P

From these, it follows immediately that

- - {152))-
s o {52)"

SR )

All three equalities of Lemma 5 then easily follow from (10), (11) and (12).

Lemma 6. For each real number y,

Zlgp— 5 loglogz
lim P | 22 <yl =9@).

g \/ 3 loglogz

Proof of Lemma 6. This result follows from Lemmas 4, 5 and 3 (Central
Limit Theorem).
On the same probability space {n < R}, we define the random variables

1- {13-2 if pla,
Xp(n) := e

0 otherwise.

where a is the smallest positive integer such that a =n (mod z).
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Lemma 7. As xz — oo,

26D x»
p p

E
xr log z

%zmzw_o(n_

Proof of Lemma 7. We need to observe that

(o {iz]) o= 2] -2

Indeed, it then follows that

~ logp\\ L|z| _ !/ _[logpl), ¢
E[X”]_<1_{@}>E{EJLP (1 {logq}>+$

for some |£| < 1. Hence

| Blxe] - Bl <+

and therefore

E

pr _ZXP
I3 P

] < Z |E[Xp] - EKP” < @,

p<z

which completes the proof of Lemma 7.

Lemma 8. As x — oo,
P(Zﬁp“ZXp

p<z p<zx
Proof of Lemma 8. This result is an immediate consequence of Lemma
7 and the Markov inequality (see for instance Galambos [6], p.150).

log x

> 1) < 1+0(1).

Lemma 9. Given a fired integer N > 2, let o > t > NVWV-1 for

i=1,...,N. Then
14
Zai SEH(%,

=1 i=

—_

N-1

h = .
where c N
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Proof of Lemma 9. Assume that a; >t > NY®WV-D gor 3 =1,...,N

and that
N

N
Z(k,; > éHai.
i=1

=1

We then have

N

N = .
Za¢> tN_—Tz_l_ Qa; (]=1,,N)
=1

Observe that, using the fact that a; > t,

We therefore obtain that for each integer j =1,..., N,

N
Zai > Naj,
=1

which contradicts the fact that
N
ZQ,- > N max q;,
1
i=1

thus completing the proof of Lemma 9.
4. The proofs of the main results

Proof of Theorem 1. Assume that n < x satisfies the inequality
v(n) < loglogn.

By Lemma 1 (ii), we thus omit at most \/ﬁ integers n < z. By the

definition of the function h;(n), we then obtain

(13) hi(n) = O(logloglogn).
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Moreover, by definition, we have

log [ lo&2(n)
ha(n) < w(v(n)) (lﬂl—g—?—)J + 1) .

log q

It follows from this that

log v(n)
——=——_loglog v(n) <« logloglogn.
(14) ha(n) < Toglog v(n) oglogv(n) < logloglogn

Hence, combining (13) and (14), we have
(15) hi(n) + ha(n) = O(loglog logn).
Assume also that m <n <z, so that

logn  logz

(16) logg logq

+ O(logloglogz).

Combining (1), (13), (15) and (16), we obtain

(17) ﬂ{n<x:Fq(n)< 11‘;; +w}=

=t#{n <z :hs(n) <w+ O(logloglogz)} + O (ﬁ) '

Calling upon the identity

(18) ha(n) = Y xp(n),

<z

it follows from (17) and (18) that

(19) H{n<x:Fq(n)<loﬁ+w}=

log q

=ﬂ{n <z: ;Xp(n) < w+O(logloglogx)} +0 <——\/®> .
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By the definition of the x,(n), we have that

(20) f {n <z: Z xp(n) < w+ O(logloglog:v)} =

p<z

= %” {71 <R: pr(n) <w-+ O(loglog]ogx)} .

p<zx

On the other hand, by Lemma 8, we have that

(21) ti{n <R: pr(n) <w +O(10gloglogz)} =

p<z

=n{n <R: Zﬁp(n) < w+O(logloglogm)} -+-O( R ) .

= log =

From (21) and Lemma 7, it then follows that

(22) 4 {n <R: pr(n) < %loglogz‘ +-cy/loglogxz + O(logloglog:r)} =

p<z
= R(1 + o(1))®(v/3¢).
Combining (19), (20) and (22), we finally obtain

u{n <z:Fy(n) < lﬁf’:—m + é loglogz + c\/loglogx} = z(1 + o(1))®(V3c),

logg

thus completing the proof of Theorem 1.

Proof of Theorem 2. We first proof the upper bound. We have

o (52 (5]

n pelin
pl o

log ( 11 ap)
< e /oy 2w(n).

log q
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Since a1 < 2 for each a > 2, we have that ap < p® for each prime p > 2.
Hence,
logn

log g

Fy(n) <

+ 2w(n),

thus establishing the upper bound.
We now prove the lower bound. As before, we write n = u(n)v(n). Since

(u(n),v(n)) = 1, we have
logp (. loglogp®\
Fy(n) > Z max (1, @> + p{%(:n) max (2, Toga )

plu(n)

1 .
= Z max(log g, log p) + Z max (]ong,loglogpa) 2
ogq p|u(n) pllv(n)
1
> Z max(log g, log log p®) =
logg <
pIn
1
- ,log p?
logqlog; I max(q.logp®)

p*|in

Using Lemma 9, we then have

1 qw(n)—l .
Fy(n) > Togq log o) Z max(q,logp®) | >
plln
1 ) qw(n)-—l \
~ loggq og( w(n) & n) N
_ loglogn tw(n) -1 l_o_gw(n)
log q log q

loglog ntn

Moreover, since is not an integer for n,q > 2, it follows that

log g
r 1
loglogn=t
Fon)> | ———+wn)-1| =
r 1
log I w(n)
_ &lj.ég%_] toln)— 1=
r 1
_ | loglogn=t
= Tog g ] + w(n),
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thus establishing the lower bound and completing the proof of Theorem 2.

5. Final remarks

The study of the behavior of the function Hy{z,y) is still very much
uncharted. For instance, for any fixed value of y, Theorem 2 only reveals that
Hg(00,y) < co. Hence obtaining a general fairly good estimate for Hy(z,y)
is certainly an interesting challenge. On the other hand, we believe that the
result for economical numbers could be generalized to yield

H log x loglogz ) — — T ‘ 1
g\ Tog g +cloglogx | = (]Og_];)R(q'C)+o(l) T — 00, —0<c< 3)

To prove or disprove this claim and moreover to describe the behavior of the
function R(g,c) in the eventuality that the claim is true would also be very
interesting.
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