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Abstract. We give a survey of recent asymptotic results in renewal theory.
Earlier investigations of renewal sequences, constructed from random walks
with multidimensional time, lead to an equivalent definition of the renewal
process which, in turn, resulted in other (generalized) renewal functionals.
The techniques for dealing with these generalized renewal functionals are
purely analytical, and they provide a link between renewal theory and some
new developments in the theory of regular variation (of functions).

1. Introduction

Academician Imre Katai wrote three papers on renewal theory, ie. [12-
13], joint with J. Galambos, and [11], joint with J. Galambos and K.-
H. Indlekofer. The papers deal with the asymptotic behavior of the renewal
sequence constructed from a random walk with multidimensional time (precise
definitions are given below). Katai, as a well-known number theorist, has
been attracted by this probabilistic problem, since, in the first place, there
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is a remarkable relationship between renewal theory in multidimensional time
and the problem of Dirichlet divisor functions in number theory. Moreover,
the precise rate of convergence in certain renewal asymptotics depends on a
corresponding one for Dirichlet divisors which, in turn, depends on the Riemann
conjecture on the zeta function. This has clearly been understood in those
papers, where a “... lack of knowledge in number theory imposes limitations
on our (probabilistic) results ...” [11]. Nevertheless a new estimate for Dirichlet
divisors in a small growing interval and a deep local central limit theorem allow
I. Kétai and his coauthors to obtain in [11] a final (in a certain sense) result
on the renewal function.

Below we give a short account of Katai’s results for renewal sequences
constructed from random walks with multidimensional time. Then we show
how further generalizations of his results give rise to the definition of a new
class of (so-called) pseudo-regularly varying (PRV) functions, generalizing the
notion of regular variation. Another way, leading to similar classes of functions,
is to study the asymptotic behavior of generalized renewal processes. We
describe both approaches leading to the PRV functions mentioned before. A
comprehensive study of PRV functions and other similar classes is given in [2-
5]. A recent survey of analytic properties of these functions can be found in
[6]. Some other applications of PRV functions can also be found in [2-6].

The paper is organized as follows. Section 2 contains a brief list of
properties of renewal processes in the classical setting. Sections 3 and 4
deal with earlier results on renewal sequences and functions constructed from
random walks with multidimensional time. The equivalence between strong
limit theorems for random walks and renewal processes is described in Section
5. Generalized renewal processes are treated in Section 6. A link between
renewal theory and (extended) regular variation is discussed in Section 7.

2. Some definitions and results of the classical theory for renewal
processes

Let us first discuss some classical results for random walks in one-
dimensional time and their corresponding renewal processes, renewal functions
and renewal sequences (see the definitions below).

Assume X, {X,, n > 1} to be independent, identically distributed (i.i.d.)
n

random variables, and put S, = Y. Xi. The sequence {S,,n > 1} is called
k=1
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a random walk. The renewal (counting) process N is defined via the random
walk as follows:

(2.1) N(t) =max{n: S, <t} t>0.

The process {N;, t > 0} is well defined if, for example, the random
variables X,, are nonnegative with probability one and nondegenerate, that
is
(2.2) X >0 as. and P(X=0)<1,
where “a.s.” stands for “almost surely”. In what follows we assume that
condition (2.2) holds. Other useful assumptions in renewal theory are the
Kolmogorov condition
(2.3) 0<pu=EX <o,
or the Marcinkiewicz-Zygmund condition
(2.4) EX? < co.

A special case of the latter condition is v = 2, i.e.

(2.5) 0? = var[X] < oo.

Below we list some almost sure properties of the renewal process as t — oc.
"T'he proofs can be found, e.g. in [14] or elsewhere.

(a) If (2.2) holds, then N(t) < oo almost surely for all t > 0;
(b) if (2.2) holds, then N(t) — oo a.s.;
(c) if (2.3) holds, then
(2.6) N ~L as
. p 8.

(the strong law of large numbers);
(d) if (2.2), (2.3) and (2.4) (31 < v < 2) hold, then

(2.7 N(t) - % =o0 (tl/") a.s.

(Marcinkiewicz-Zygmund strong law of large numbers);
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(e) if (2.2), (2.3) and (2.5) hold, then

(2.8) liminf M =-—7 a.s
' t—oo /2tInlnt 3/ o
t) — L
(2.9) lim sup MOy =7 as

t—oo V2tlnlnt w3/?

(law of the iterated logarithm).

3. Asymptotic behavior of renewal sequences for multidimensional
time

One-dimensional case. Let X, {X,,n > 1} be independent identically
distributed random variables, and put S, = X; +...+ X,, n > 1. The classical
renewal theorem by Erdés, Feller and Pollard [8] says that, if X is nonnegative,
integer-valued and aperiodic, then

u(ls:)—-»l as k— oo
1

provided 0 < p < oo, where p = EX and

(3.1) u(k) d_;ifip(sn = k).

n=1

The aperiodicity means that Ee*®*X # 1 for any 8 # 0. Later Chung and Pollard
[7] relaxed the assumption of non-negativity of X.

Multidimensional case. Let N” be the space of vectors @ = (nq,...,n,)
with positive integer coordinates nj,...,n,. The space N" is equipped with
the partial ordering “<” acting coordinate wise, that is m < 7 if and only
if my < nig,...,m, < n,. Further let X, {X (@), 7= € N"} be a family of
independent identically distributed random variables and let {S(%), 7@ € N"}
be the collection of their partial sums

Sm) =Y X(k).

k<@
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In the case of r = 2, the function

ur(t) = Y P(S(m=t)

neN”

has been considered by Ney and Wainger [25] for integer ¢ and for integer valued
random variables X (7). They called u, the renewal sequence constructed by a
random walk in multidimensional time. 'The name for u, is intuitively clear in
view of the analogy with the corresponding definition in case of r = 1, where
u; = u. The sequence u,, for r = 1, has a definite applied meaning, while that
for r > 1 is defined in a purely analytic way. The problem for 7 > 1 mimics the
one for r = 1, namely it is to investigate the asymptotic behavior of u,(t) as
t -» oo (t integer). The difference between the cases r = 1 and r > 1 is obvious
from the definition, since there is no “renewal” process behind u, if r > 1. 'This
is not the biggest difference, however, from an analytic point of view.

It was realized by Ney and Wainger in [25] that the asymptotic behavior
of u,, for r > 1, is different from what is seen in the case of r = 1. For
example, u, is no longer bounded. It is also mentioned in [25] that the classical
method of a difference equation satisfied by u(t) does not work for 7 > 1, since
“... there does not appear to be a natural analog of this equation in dimension
two, mainly because the lattice points of the plain are not linearly ordered
under the natural order”. The same, of course, is true for higher dimensions.
Using Tauberian methods in [25], it was nevertheless possible to derive the
asymptotics for both u, and

(3:2) Ur(t) = un(k),

k<t

for the case of r = 2, and under some additional conditions (which, later
on, turned out to be too restrictive). In case of r = 1, the function U,
is the mathematical expectation of the renewal process, while no stochastic
interpretation is mentioned by [25] in the case of 7 > 1. We state one of the
main results of [25] for the sake of completeness.

Theorem 3.1. Let 7 = 2. IfE|X|* < 00 and EX = p > 0, then
log k

3.3 ur(k) ~ , k — oo.
(3.3) (k) N

The proof of (3.3) given in [25] is based on the following relationship:

(3.4) us(k) = Y da(n)P(Sn = k),
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where da(n) is the divisor function, i.e the number of divisors of n.

Ney and Wainger [25] were perhaps the first to mention explicitly the
relationship between the Dirichlet divisors problem in number theory and limit
theorems for multiple sums in probability theory (see [17] for other examples
of such relationships). One can even say more, namely that any improvement
in the solution of the Dirichlet divisors problem will result in an improvement
in the asymptotics of the renewal functions for multiple sums.

The technical tools used in [25] for the proof of (3.4) are a uniform local
limit theorem (to obtain an approximation of P(S, = k) in (3.4)) and the
following estimate for the divisor problem:

Z da(n) =zln(z) + 2y — 1)z +o (xl/s) ,

n<z

where « is Euler’s constant.

The conditions of [25] are weakened by Maejima and Mori in [24]. More-
over, the case of general r is considered in [24]. It is also true that the conditions
of [24] work effectively only for r = 2,3. However, they mention that “... our
results might be true for r > 4 if an order estimate in the divisor problem is
improved for such r”. Note also that the methods of proof in [24] are the same
as in [25], except for making use of better (nonuniform) estimates of the rate of
convergence in the local central limit theorem, which allow them to relax the
conditions of [25]. Below is the main result of [24].

Theorem 3.2. Let E|X|3 < 0o andr =2 orr =3. Then

(log k)

S k — oo.

(3.5) ur (k) ~

Further developments of the topic are due to Galambos and Katai in [12}-
[13]. By a new method of proof, Galambos and K4tai [12] establish the following
extension of the result of [24].

Theorem 3.3. Let X be integer valued, aperiodic and such E|X|? < oo
and EX = p > 0. For an explicitly given polynomial P of order r — 1

ur(k) = P(In(k/p)) + Re + O(1),
where R, — 0 for r = 2 and 3. Furthermore, for arbitrary r,
2N

1
limsup — Z |Ri| < oo.
N—oo Nk=N+1
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It is mentioned in [12] that, under the assumptions of Theorem 3.3,

l r
S ¢ langery Y <>
k>p )

In what follows we consider renewal sequences u, constructed from random
walks with different distribution functions. 7To distinguish between these
sequences we use a subscript denoting the underlying distribution function.
That is, u, r denotes the renewal sequence constructed from a random field

of independent identically distributed random variables {X(7)} having a
distribution function F, and

[e)
1 (z—a)?
Up a(t) = dr-(n no2(k), T) = ——e 2% |
T,‘I’() ; 'f‘( )‘pnu. 2( ) CPa,b?( ) \/m‘z—

The relation of u, r and u, ¢ is made more precise in [13]. As a matter of
fact, the following result is proved in [13].

Theorem 3.4. Let X be integer valued, aperiodic, and such that EX =
=u>0. If

/ 2 dF(z) = 0(z™%), z — 00,
|zi >

for a suitable 0 < a < 1, then

ur p(t) = uro(t) + o(1).

Moreover
ur.o(t) > c1(log k)’"“l

for a suitable ¢; > 0 which may depend on T.

Galambos, Indlekofer and Kétai [11] made a successful attempt to describe
the asymptotics of u, g via the asymptotics of u, s, where ® is the standard
Gaussian distribution:

(3.6) up,F(t) = ure(t) +o((Int)"" 1), t— 00

(t is integer).

Theorem 3.5. Let X be integer valued, aperiodic, with finite positive
mean p and finite positive variance o%. Then (3.6) holds for any fized r > 2.
Consequently,

ur,p(t)

— 1, t — 0o0.
u,@(t)
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In particular, (3.5) holds for r =2 and r = 3.

The idea of approximations in terms of the Gaussian distribution is
common in probability theory. In the context of the renewal theorem in
multidimensional time, it not only made it possible to relax conditions up
to the existence of the second moment of X (72) but also worked for all » > 1.
It is also worthwhile mentioning that the asymptotics of u, ¢ still depends on
the asymptotics of the remainder term in the Dirichlet divisors problem.

4. Renewal functions and processes for multidimensional time

The results for renewal sequences u, in multidimensional time can be
completed with the corresponding counterparts for renewal functions and
processes.

Renewal function in multidimensional time. In contrast to u,, the
asymptotic behavior of U, (see definitions (3.1) and (3.2), respectively) can be
evaluated for all r > 1. Moreover, the conditions for the asymptotics of U, are
weaker than those for u,. For example, it is shown by Klesov in [19] that

(4.1) lim

provided the first moment exists and is positive. This result can also be derived
from general studies on weighted renewal functions (see, e.g. [27]). The direct
probabilistic methods developed in [19] allow one to prove the result for all
r > 1 (not only for r = 2 or r = 3 as in Theorems 3.2 and 3.5 for u,). A
sharpening of (4.1) (also proved in [19]) reads as follows.

Theorem 4.1. Let 0 < p < 00 and
(4.2) t(logt)2~UP(X >t) -0, t— oo.

Then there is a polynomial P of degree r — 1 such that

(4.3) lim

t—o0

2P (ne/)| = o

For r = 1, (4.3) simply coincides with (4.1) called the elementary renewal
theorem in this case. For r > 1, (4.3) is much more informative than (4.1).
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The first term in (4.3) is the same as in the case of 7 = 1, however the second
one increases to infinity if 7 > 1, while it approaches the constant 1/ if r = 1.

The polynomial P is strongly related to the polynomial in the decomposi-
tion of the number of divisors in the Dirichlet problem. Namely, let

Dy(x) =Y dr(k).

k<z

As is well known (see, for example, [28], p. 263) there is a polynomial Q of
degree r — 1 such that

(4.4) D, (z) = zQ(In(z)) + o(z?), z — 00,
1
for some 0 < p < 1. The leading coefficient of Q is known to be m
The coefficients of Q can explicitly be evaluated from the Laurent series of the
Riemann zeta function at z = 1 (see [23]). If ag,...,ar—; are the coefficients
of Q and by, ..., b-_1 are the coefficients of P, then
=Hm i
b = ' Z (—1)%la;, 0<m<r-1.
m!
0<i<r-1

1

Since b,_1 = a,_1, we obviously have b,_; = (r——l_)f and thus (4.3) implies

(4.1). Condition (4.2) is much weaker than the existence of the second moment.
Moreover, the latter condition is even weaker that the main assumption (2.3)
in the case of r=1.

The approach of [19] differs from those in the preceding papers dealing
with multidimensional time. It is based on a direct application of probabilistic
methods that allow to reduce the problem for the renewal function to a study
of the law of large numbers for the original sums S(%).

A closely related problem is considered by Klesov and Steinebach in [22].
Namely, let D be a domain in N” and

Up(t) =) P(S(m) <t).

neD

To relate the new notation with the old one we note that U, = Un-. The renewal
function Up is defined with respect to a random walk whose multidimensional
time is restricted to the domain D. Put

(4.5) Ap(t) =card{m e D: [n| <t}.
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Then under appropriate conditions on X (%) and on the function A

(4.6) lim _Un®)_ =1

t—oo Ap(t/p)

The proof in [22] is completely “probabilistic” in the sense that (4.6) is derived
from the law of large numbers for sums S(7) (similarly to [19]). Conditions
posed on A are discussed below.

Renewal process in multidimensional time. Up to now we were
talking about the renewal function U, and its density u,. Nothing has been said
about the renewal process itself. The reason is that relation (2.1) is meaningless
for r > 1, since the set N" is not linearly ordered, and thus the definition of
the renewal process is not straightforward if r > 1. Another representation of
the renewal process N via the sum of indicator functions (easily obtained for
the case of r = 1) serves as the definition for an arbitrary r > 1:

N,(t) = card{m: S(m) <t} = IS(m) <t.
neN”

The asymptotics of N, defined in this way is studied by Klesov and Steinebach
in [21]. Again the proof in [21] is based on the idea of reducing the problem to
known results in probability theory, namely to the strong law of large numbers
for multiple sums. An expansion like (4.3) is also obtained in [21], however
it holds for » = 2 and r = 3, while, for » > 3, it holds only under a (yet
unproved) conjecture on the underlying rate of approximation in the Dirichlet
divisors problem. However, a “rough” asymptotics of N, is available for all r.

Theorem 4.2. Let 0 < u < 0o and
EX (In* X)™" < oo.

Then
N (t) 1
1m 1 = 7 a.s.
t—oo ¢ (In(t)) p(r—1)!

Just for the sake of completeness we state below a particular case of the
result of [21], for r = 2, where the conjecture mentioned above is known to be
true.

Theorem 4.3. Let r = 2. Assume that 0 < pu < oo and

EX" (ln“LX)T_1 <oo  for some 1<v<2.
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Then

[t (o1 )]0 e

t00 1179 | Tn(t) In(?)

The case of 7 = 1 in Theorem (4.3) is contained in (2.7). A similar result
holds for all » > 1. The difference between r < 3 and r > 3 is that not all
1 < v < 2 are allowed in the latter case. What can be said is that there exists
a vg < 2 such that, if 1 < v < vy and the assumptions of Theorem 4.3 hold,
then L[N0 i

. I (t t
Jim ) ;P(ln(t/,u))J =0 as.

for some polynomial P of degree r — 1.

Restricted domain. Let D C N” and put

(4.7) Np(t)=card{me D: S(m) <t} = » I{S(@) <t}.
nebD

Since there will be no confusion in notation we will omit the subscript D and
write N (t) rather than Np(t). The result below is due to Indlekofer and Klesov
[18]. It holds for all 7 > 1 and all domains D for which the function Ap defined
by (4.5) is pseudo regularly varying (see the defining property (4.9) below). The
subscript D is also omitted for the function A.

Theorem 4.4. Assume that X, {X(@), ®m € N} are nonnegative
independent identically distributed random variables such that condition (2.3)
holds together with

(4.8) EX (In* X) ™" < co.

Let D C N" be an infinite domain of N™ for which

- Alct)
(4.9) lclf?h?li‘o’p AD) =1,

where the function A is defined by (4.5) (we omit the subscript D). Then

lim N()
t—oo A(t/p)

where the process N is defined by (4.7) (we omit the subscript D).

=1 a.s.,
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For D = N", Theorem 4.4 reduces to Theorem 4.2, since

A(t) ~ G—:ll—)!t(lnt)"l, t — oo,

(see (4.4)). The latter is a rough estimate in the Dirichlet divisors problem.
Indeed, in this case, A(t) represents the number of solutions (in N") of the
inequality |[7i| < t. Several proofs of these results are known in the literature;
an elementary proof is given in [22].

5. Equivalences in renewal theorems

Two branches of probability theory, namely random walks and renewal
processes, were often developing independently of each other, although many
results look very similar in both fields. In this section, we collect some of the
equivalences between laws of large numbers and laws of the iterated logarithm
for random walks and renewal processes obtained by Gut et al. in [15].

Renewal processes with linear drift. 'This case relies on condition
(2.2). With EX = u we get ES,, = nu. The latter property is one of the
reasons for the notion “linear drift” in this case. Another explanation comes
from the strong law of large numbers in (2.6).

It turns out that the sufficient moment conditions in (a)-(e) are, in fact,
also necessary. This has been obtained in [15] by showing that these strong limit
theorems hold simultaneously for both processes {S,, n > 1} and {N;, t >
> 0}. So, necessary and sufficient moment conditions, which are well-known
for {Sp,n > 1}, carry over to the renewal process {N t > 0}, too. The
results essentially follow from the fact that the two processes are inverses of
each other. Hence it is natural to expect that strong (or weak) laws should
hold simultaneously, and that even their normalizations should be inverses of
each other. The latter idea has been extensively exploited in the monograph by
[14]. An inspection of the proofs in [15] actually shows that the results, in fact,
hold simultaneously for arbitrary positive summands and for (almost) arbitrary
nonnegative summands. Earlier references developing this technique are e.g.
[29], who proved invariance equivalences for the LIL for processes and their
inverses, and [16] who derived functional central limit theorem equivalences for
renewal processes.

Theorem 5.1. (SLLN) [15] The following statements are equivalent:
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N(t
lim (®) =a a.s. (30 <a<o0);
t— o0 t
S 1
lim () = - a.s. (30<a< o)
n—oo n a
1
EX:E (30<a<o00).

In order to prove equivalence of the first two assertions of Theorem 5.1 the
assumptions on the independence and identical distribution are not necessary.
Moreover, the only assumption needed is that

(5.1) lim L} =0 a.s.,

n—oo 1N
together with N(t) — oo a.s. (t — 00) and S,, — 400 a.s. (n — 00), where
max{k: Xnt1 == Xntk}, if Xpny1 =0,
0, if X,41 > 0.
In the case of independent identically distributed random variables condition

(5.1) is easily checked.

Moreover, if, in particular, the X,,’s are strictly positive, then we actually
have the following, more general results.

Theorem 5.2. Let {X,} be arbitrary strictly positive random variables.
The following statements are equivalent:

limmza a.s. (30<a< o)
t—oo t

lim le a.s. (30<a< ).
nooo 1 a

The assumption of positivity can be relaxed.

Theorem 5.3. If {X,} are arbitrary nonnegative random variables such
that (5.1) holds, then the following statements are equivalent:

tlim N =a a.s. (30<a<o0);
lim g@:l a.s. (30<a< ).

n—oo N a
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There is also equivalence of the rate of convergences.

Theorem 5.4. (Marcinkiewicz-Zygmund SLLN) Let 1 < v < 2. The
following statements are equivalent:

limN—(Q:—tg:O a.s. (30<a< o)
t—00 tl/’l}
. S(n) —ng
nlirrgo YT 0 a.s. (30<a< )
1

EX=>, EX'<co (30<a<o0)

Furthermore, laws of the iterated logarithm for random walks and renewal
processes are also equivalent.

Theorem 5.5. (One-sided LIL) The following statements are equivalent:

N(t) —ta

li b L2 i oS & s, (30<ab<oo);
MU ot loglog t as.  (30<ab<oo)
S. —ni b

liminf ———0— = ——

fkes Vv2nloglogn ad/?
1 b

EX = =, var[X] = — (30<a,b<o0);

a a

a.s. (30<a,b< )

... N(@)—ta . .
lltlggf m =-b a.s. (3 0< a,b < OO),
S —nl
lim sup —— " b a.s. (30<a,b< ).

n—-oo 2nloglogn T &2

Remark 5.1. By combining the statements of Theorem 5.5, it is obvious
that the following “two-sided” versions are also equivalent:

. |N(t) — ta]
1 —_—t = S. 30 <a,b< o)
]?lsol;p 2tloglogt &S ( “ )
S _pl
limsupM— —b—~ a.s. (F30<a,b<oo).

nooo V2nloglogn  a3/2

Renewal processes without linear drift. The equivalence statements
concerning the SLLN, in fact, carry over to the case of infinite expectation
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EX = +4o0o. Marcinkiewicz-Zygmund and LIL type strong limit theorems,
however, turn out to be entirely different here.

Theorem 5.6. The following statements are equivalent:

N(2)

lim —= =0 a.s.,
t—oo 1t
lim =2 = 400 a.s.,
n—oo T
EX =+

Theorem 5.7. Let v > 1. The following statements are equivalent:

lim —w =0 a.s.,
t—o0 f,l/'U
lim Sn =400 a.s.,
n—oo N
OQ1
/EP(N(t) > ct'/?) dt < oo (V0 < ec< oo);
1
= 1
ZEP(Sngcn”)<oo (V0 <c<o0).
n=1

Remark 5.2. If one of the conditions of Theorem 5.7 is satisfied (and,

hence, all of them), then EX 1/v — 40, but, in general, the converse does not
hold for v > 1.

Theorem 5.8. The following statements are equivalent:

. N(t)
limsup ——-=—=1b
(6a) ntilzlép Vitloglogt !

a.s. (30<b; <o0);

.. . SploglogS, 1 )
(6b) llrfggf R a.s. (30<b <o)

(6¢c) 7

| =

P(N(t) > cy/tloglogt)dt < oo (30<c<o0);
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1 n?
(6d) Z; ( loglogn) <o (30<c< ).

Remark 5.3. a) If one of the conditions of Theorem 5.8 is satisfied (and,

hence, all of them), then E\/X log™ log™ X = 400 but, in general, the converse
does not hold.

b) The constant b; is determined as follows: b; = cl_l/ 2

, where
¢1 = sup{0 < ¢ < 0o : (6d)holds}.
c) Note that, in case b; = 0, the equivalence of (6a) and (6b) means that

N@®) =0 as. iff lim M:oo a.s.

lim ——
t—oo /tloglogt n—oo n?

Theorem 5.9. The following statements are equivalent:

N
(7a) hmmf _N® = by a.s. (30 <by < o0);

t—oo +/tloglogt

Sy loglog Sy, l

(70) lim sup 2 a

n—oc

(7¢c) Ey/ X logtlogt X < oo.

Remark 5.4. In fact, if one of the conditions of Theorem 5.9 is satisfied
(and, hence, all of them), then necessarily by = +oo in the statements (7a)
and (7b), where 1/00 = 0. This is an immediate consequence of Feller’s (1946)
strong law of large numbers. Moreover, liminf and limsup in (7a) and (7b),
respectively, turn into lim’s again.

a.s. (30<by<o0);

Remark 5.5. The proofs of Theorems 5.1-5.9 make use of some classical
results for partial sums. For some recent equivalence statements in the general
case confer also [9].
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6. Generalized renewal processes

A possible interpretation of the sequence {X,,n > 1} is that X, represents
the time between the (n — 1)-th and n-th replacement (renewal) of (say) a
machine part, so that N(t) counts the number of replacements (renewals) up
to time t¢.

In Section 5 we discussed limit theorems for the counting process { N (t), ¢t >
> 0}. It turned out they are consequences of their corresponding counterparts
for the underlying random walk via the following “duality”:

(6.1) {N(t)=n} <= {Sp<t, Spy1 >t} forall t>0 and n € Nj.

This method works perfectly under condition (2.2). Much less is known about
renewal processes for which either identical distribution, or independence, or
nonnegativity, or all of these assumptions are dropped. Note also that certain
regularity assumptions are sometimes crucial for the applicability of a duality
argument. There are situations in which a limit theorem for the renewal process
is almost immediate from its partial sum counterpart. But there are other cases
where the desired inversion requires more sophisticated techniques. Finally,
there are also examples in which a duality argument does not work at all
because either the partial sum sequence satisfies a certain limit theorem, but
not so its corresponding renewal process, or vice versa.

Assuming that S,4+; ~ Sy, condition (6.1) can be rewritten in a nonrig-
orous way as S(N(t)) ~ t, where S(z) = S; for integer . This observation
suggests that S and N are perhaps “close” to be “inverses” to each other. Two
questions arise:

(i) What is a rigorous explanation of the word “inverses” above?
(i1)) What means “close”?

Some steps toward answering these questions are made by Klesov et al.
in [20], where a general approach to deriving limit theorems for “renewal
processes” from their corresponding counterparts for the underlying “partial
sum sequence” is developed. In this section, we collect some results obtained
in [20].

In order to avoid confusion with the independent identically distributed
case, we change notation from now on and let {Z,,,n > 0} be a general sequence
of real-valued random variables. We then define a general renewal process
{N(t),t > 0} pointwise as

oo

(6.2) N(@t)=) I{Z,<t}, t>0.

n=1
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In case of Z,, — o0 a.s., as n — 0o, N(t) is finite a.s. for every t > 0, since only
a finite number of summands in (6.2) is nonzero. Along with {N(t),t > 0} we
introduce two other general renewal processes, that is

M(t) =sup {n >0: max(Zy, Z1,...,2,) <t} =

6.3 °°
(6.3) =Y Hmax(Zo,Zy,....Zn) <t},  t20,
n=1

sup@ = 0, i.e. M(t) + 1 is the first-passage time of the sequence {Z,,n > 0}
from the set (—co, t], and

L(t)=sup{n>0:2, <t} =

(6.4) >
' = I{inf(Zn, Zn41,...) < t},  t20,

n=1

i.e. L(t) + 1 is the last-ezit time of {Z,,n > 0} from (—oo,t]. Similar to N(t),
also M(t) and L(t) are both finite a.s. for every ¢ > 0, provided Z, — oo a.s.

Formally speaking, both {M(t)} and {L(t)} are particular cases of {N(¢)}
with Z, replaced by max(Zy, Z1, ..., Z,) and inf{Z,, Zp41,. .., ), respectively.
Moreover,

M(t) < N(t) < L(t).

Note also the following inequalities being true for finite M(t) and L(t),
respectively:

(6.5) Zm@y St < Zp)+1s
(6.6) Zrwy <t < Zpy4-

Remark 6.1. If 0 = Zy; < Z; < Z; < - -+, obviously
M(t) = N(t) = L(t).
But if (say) Z,, > Zp41 for some n, then for Z,,; <t < Z,,
{max(Zy, Z1,...,2Zn41) <t} =0, {Zpt1 <t} =1,
where I{A} is the indicator of a random event A. Therefore M(¢) < N(t), and

also
I{Z, <t} =0, Hinf(Zn, Znt1,...) <t} =1,

so N(t) < L(t).
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Strong laws of large numbers. Assuming a strong law of large numbers
for {Z,,n > 0}, corresponding results for the general renewal processes are
immediate from the inequalities (6.5) and (6.6) if the normalizing sequence
satisfies certain regularity condition.

Theorem 6.1. Assume
(6.7) — -1 a.s.,

where {an,n > 1} is a nonrandom sequence such that a, — 0o as n — oo and

. An41
6.8 — - 1.
(6.5) o,

Then, as t — o0,

MO 1 L
t e
M_,l a.8
; 8.

Moreover, if {an,n > 1} is nondecreasing, also

N -1 a.s.

Introducing some more notation we obtain the strong laws of large numbers
for the renewal processes. If {a,,n > 0} is strictly increasing, let {a(t) : ¢ >0}
be an extension of it, i.e. a(n) = a, for all n =0,1,2,..., such that

a(-)is continuous and strictly increasing with
a(t) - o0, t— o0.

(6.9)
Define the generalized inverse function

a~(u) = inf{t: a(t) = u}, u > ug = ag.

Obviously a~1(-) is also continuous and strictly increasing, with a=!u — oo as
u — 0.

Assume

-1
(6.10) li{g lim sup o (@xe)y) 1| =0.

t—00 a—l (t)

Then, the following strong laws hold true:
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Corollary 6.1. Assume (6.7) and (6.8), (6.9), (6.10). Then, ast — oo,

(6.11) 1\:[1(&)) -1 a.s.,
(6.12) % -1 a.s.,
(6.13) Iyl(g) -1 a.s

Remark 6.2. Condition (6.10) can be rewritten in several equivalent
forms. Denote a! by f. In terms of f, (6.10) is rewritten as follows

flet) ‘

6.14 lim li -1/ =0.
@1 fm e | 765
In turn, (6.14) is equivalent to
(6.15) lim f*(c) =1,

cll
(6.16) lim fi(c) = 1,

cl1

where

fet) -
f@ @ =lmht ey

Other sets of conditions, equivalent to (6.14), are

o= hm nSup =2

lclﬁlf ()= lclﬁl file) =1,

and

lim £*(c) =lclglf*(0) =1
(see [1]). If one assumes that f is nondecreasing, then conditions (6.15) and
(6.16) become equivalent and each of them is equivalent to (6.14).

Example 6.1. Any regularly varying function a of positive index satisfies
condition (6.10). Any quickly growing function, like a(t) = et also satisfies
(6.10). A less trivial example of a function f satisfying (6.14) is given by

0, t=0,
0-}

taesin(ln(t))’ t>0.
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Note that f is not regularly varying for a« > 0, however f is increasing,
unbounded, and continuous if @ > 1. On the other hand, f is not monotone if
0 < a < 1, although it is still continuous and unbounded in this case.

So, the growth condition (6.10) on the normalizing sequence {a,, n > 1}
is crucial for deriving the strong laws of Corollary 6.1 from their counterparts
in Theorem 6.1. Yet, this condition can be avoided, and thus the regularity
assumptions can be weakened, by applying a totally different technique of
proof. Such a method was introduced in [21] for the case of renewal processes
constructed from random walks with multidimensional time.

Theorem 6.2. Assume (6.7), (6.9) and (6.10). Then, as t — oo,
assertions (6.11)-(6.13) retain.

Remark 6.3. Unfortunately, there are also situations in which the
inversion techniques applied in Theorems 6.1-6.2 and Corollary 6.1 cannot
work at all. Consider, for instance, a max-scheme of independent identically
distributed random variables X, {X,, n > 1} with distribution function
Fit) =P(X <t),t € R. For Z, = max(X1,...,Xpn), n > 1, Zg = 0, the
corresponding renewal processes {M;, ¢t > 0}, {N, t > 0} and {L¢, t > 0}
coincide. Moreover, for any ¢ > 0, N(t) has a geometric distribution, i.e.

P(N(t) = n) =P(max(X1,...,Xn) <t, Xnt1 >1t) = F*(t)(1 - F(2)),
P(N(t) > n) = F(t), n=0,1,....

So, if F(t) <1 for all ¢ > 0, then for all fixed x >0
P(N(®) > 2/(1- F(9)) =P (N(®) > [z/(1 - F())] +1) =

=exp {zx(log F(t))/(1 — F(t)) + O(1)log F(t)} .

Since log(1 — z)/z — —1, as z — 0, the right-hand side tends to exp{—z} as
t — 0o. Hence ‘
NH)(1-F(@t)=E,  t— oo,

where E has an exponential Exp(1l)-distribution. In view of this fact it is
impossible that
w —1 as., t— o0,
b(t)
for any (nonrandom) normalizing family {b(t),t > 0}. Because otherwise, for
each e > 0,
P(N(t) > (1 +¢)b(t)) — 0, t — oo,
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which requires b(t)(1 — F(t)) — oo, t — oo, by the consideration above. This,
however, in turn implies

P(N(t) < (1-¢€)b(t)) =1,  t— oo,

so that not even a weak law of large numbers applies to { Ny, ¢ > 0}.

Nevertheless, the underlying “renewal sequence” {Z,, n > 1} may satisfy

a strong law of large numbers. For example, in case of an Exp(1)-distribution,

ie. F(t)=1—etfort >0, and F(t) = 0 otherwise, it is well-known (cf. [10])
that

Zn  max(Xy,...,Xn)

logn logn

-1 a.s., M — 00.

Note that, in the latter case, all assumptions of Theorems 6.1-6.2 and Corollary
6.1 are fulfilled with a,, = logn, a(t) = logt, a~1(t) = e?, with the exception of
(6.10). So, the latter condition cannot be dropped in general.

Another example would be F(t) = ®(t), t € R, a standard normal
distribution function, in which case

Zn _max(Xl,.,.,Xn)_)1 s, T 0o

V2logn V2logn

(cf. [10]). Here a~!(t) = exp{t?/2} also violates assumption (6.10).

So, there are (renewal) sequences {Z,, n > 0} satisfying a SLLN for which
their corresponding renewal processes { Ny, t > 0}, { M, t > 0} and {L;, t > 0}
do not possess any (nondegenerate) strong limiting behavior.

Remark 6.4. Just for the sake of completeness we should like to mention
that there are also cases in which the renewal process satisfies a SLLN, but not
so its sequence of renewal times. Consider, for example, a nonhomogeneous
Poisson process {N;, ¢t > 0} with cumulative intensity function {)\;, ¢ > 0},
i.e. A(t) = EN(t),t > 0. If e.g. A(t) is continuous and strictly increasing to
infinity, it is well-known that

{N,, t >0} 2{N(\®)), t >0},

where {Nt, t > 0} is a homogeneous Poisson process with renewal times §0 =0,
Sp=X1+4+...+X,, n > 1, based on a sequence {X,, n > 1} of independent
identically distributed Exp(1)-random variables.

Choose
logt, t>e,
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Then, from the SLLN for {N(t), t >0}, as t — oo,

N() N(logt)
= — a.s.
logt logt

But, since Z, = exp(§n) are the renewal times of {N(t), t > 0}, it holds, in
view of the LIL for the partial sums {S'n, n > 1}, that

gnﬁ =exp{§n —n}

oscillates between 0 and +o0 a.s., as n — o0.

Convergence rate results. It may also be interesting to collect general
conditions under which convergence rate statements hold for the laws of large
numbers in Theorems 6.1-6.2 and Corollary 6.1.

Theorem 6.3. Assume that, as n — oo,

Dn — Qp

(617) —b— —0 a.s.,
where
(6.18) an — oo, but ap,—an_1 =o(by),
(6.19) 0<b, =00, but by, =o0(ay),
bn+1
(6.20) =0(1).
br,

Then, as t — oo,

ame —t

(6.21) 0 a.s.,
bas(t)
—t
(6.22) O Lo as
br(t)

Moreover, if {an} is nondecreasing, then

aN(1) —t

6.23 max(brriey. brim)
(6.23) max(bas¢), br(e))
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Now assume that a(-) has a continuous derivative a’(-) on (¢, 00) satisfying
(6.24) a'(t)y <ad(s) if txs,

i.e. |d/(t)/a’(s)| is bounded away from 0 and oo, if |t/s| is bounded away from
0 and oo, as t,s — co. Moreover, let {b;, t > 0} be an extension of {b,} such
that

(6.25) b(t) < b(s) if txs.

Corollary 6.2. Assume (6.17) together with (6.9), (6.10), (6.18), (6.19),
(6.24) and (6.25). Then, ast — oo,

a'(a”*(t)) -1

(626) W(M(t) —a (t)) — 0 a.s.,
a'(a”'(t) -1
a’(a”'(t)) -1

(628) b(a‘—l(t))(L(t) —a (t)) — 0 a.s.

Corollary 6.3. Assume that, for some a >0 and r > 1, as n — 00,

Zn —na

Then, as t — oo,
M(t) —t/a

(6.30) — -0 a.s.,
N(t) —t/a

(6.31) — 0 a.s.,
L(t) —

(6.32) L) —t/e -0 a.s.

tl/r
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Similar to Theorem 6.2 the regularity assumptions of Corollary 6.2 can be
considerably weakened if a different technique of proof is applied.

Theorem 6.4. Assume (6.17) together with

(6.33) b(t) Too as t— oo,
(6.34) Z—Eg T as t— oo,
(6.35) d (a7'(t)) <a' (a7'(s)) if txs,
(6.36) b(a™'(t)) <b(a"M(s)) if txs,

where a(t) be continuously differentiable on (to, 00) with
(6.37) a'(t) = o(b(t)) as t— oo.

Then, as t — 00, assertions (6.26)-(6.28) retain.

Example 6.2. There are still situations in which the assumptions of
Theorems 6.2 and 6.4 are not fulfilled, but yet a strong law of large numbers
may be available. Consider, for instance, a sequence {Z,, n > 1} satisfying

Zn
logn

-1 a.s.
as n — 0o, and assume a rate of convergence therein, e.g.

Zn, —logn
lim sup ’n—ogn

< B,
n—s | b(n)

with some nonrandom constant B > 0. Let the function {b(t), ¢ > 0} be such
that, for any A > B,

a4 (t) =logt £ Ab(t)

have inverse functions (say) a3’ (t) satisfying

az'(t) =€ Fo(e')
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as t — 0o. Then the SLLN for {/N;, t > 0} retains, i.e.

lim M =
t—ooo et

1 a.s.

(&2}
The proof is similar to that of Theorem 6.4 by dividing N(t) = > I{Z, <t}
n=1

into four subseries according to the conditions 1 < a;l(t), a;l(t) <n <€
et <n <aZl(t), a;'(t) < n. Details are omitted.
Note that the function a(t) = logt with a=!(t) = e! violates conditions

(6.10) and (6.35), so that neither Theorem 6.2 nor Theorem 6.4 is applicable
in this situation. Nevertheless, a SLLN for the renewal process holds true.

Below we demonstrate possible applications of the above results. Some
further examples can be found in [20].

Example 6.3. (Nonlinear renewal process: cf. [14], pp. 133-138)
Consider, as before, a sequence X, {X,, n > 1} of independent identically
distributed random variables with EX = a > 0, but set now Z, = S,/a(n),
where {a(t), t > 0} is a positive, continuous function such that

t
ETOO, fTOO.

For example, the first-passage time
M@t)+1=inf{n: Z, >t} =inf{n: S, > ta(n)},

inf ) = +o0, is of some statistical importance in sequential analysis and plays a
key role in what is called nonlinear renewal theory (cf., e.g. [30], [26]). Now, by
Theorem 6.2, if a(t) = ta/a(t) with inverse function a~!(t) satisfying (6.10),
then, as t — oo,

N(t) _

L(t)
=0 a ()

t—oo a~1(t)

1, =1 a.s,

where L(t), M(t), N(t) are as in (6.2)-(6.4).
If, additionally, E|X|" < oo for some 1 < r < 2, then, with b(n) =

=n!/"/a(n), as n — oo,

Zn—a(n) Sp,—na
b(n) —  nl/r

— 0 a.s.,
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so that, by Theorem 6.4,

L OM® —aTl) _ N@—aTl() _ LB —eTiE)
I Ty A ey T A Ty S0 e

as t — oo (cf. [14], Theorem 5.5 in Chapter IV).
7. Renewal theory and regular variation

It is a rare case in probability theory that an almost sure limiting behavior
can effectively be studied “pointwise”, that is, for individual w’s from a random
set 1 with P(Q,) = 1. The strong law of large numbers for renewal processes
is such a case, since, as we shall see below, if w is such that the strong law of
large numbers holds for the underlying partial sums, then w is also such that
the strong law of large numbers holds for the corresponding renewal process.
Before we give some exact results we collect some definitions introduced in the
paper [1] by Buldygin et al.

Definition 7.1. Let f be a function such that limsup f(t) = c0. A

t—o0
function f(-1 is called a quasi-inverse function for f, if

(f1) f&1 is nondecreasing,
(f2) fEH(s) — 00 as s — oo.
(f3) there exists so such that f (f(=V)(s)) = s for s > so.

For any continuous function f with tlim f(t) = 0o, a quasi-inverse exists.
—00

One version of a quasi-inverse in this case is given by fl(-l)(s) =min{t: f(t) =
= s}. Another version is fg(-l)(s) = max{t: f(t) = s}. If f is not monotone,
then fl(_l) and fz(_l) do not coincide. This shows that a quasi-inverse is not
unique.

Definition 7.2. A function g is said to be of positive order of variation
(POV) if

t

lim inf 9(ct)

> 1 forall ¢ > 1.
t—oc g(t)

Any regularly varying function g of positive order is POV. Any quickly
growing function like f(t) = ¢t is POV. On the other hand, any slowly varying
function is not POV. In what follows such functions g appear as normalizations
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in limit theorems. We require that they are POV, therefore the case of slowly
varying normalizations is not covered by this approach.

Definition 7.3. Let {z,, n > 1} be a sequence of real numbers. Put
zg = 0. The function

z(t) = ([t] + 1 = )z + (¢ — [t]) 2y, t >0,

is called the (piecewise) linear interpolation of the sequence {z,, n > 1}.

Theorem 7.1. Let g be a function and let {x,, n > 1} be a sequence.
Assume that the function g is continuous, increasing, unbounded and POV.
Assume that the sequence {zn, n > 1} is such that

limsup z, = oo.
n—00

By & we denote the linear interpolation of the sequence {x,, n > 1}. By z(~V
we denote a quasi-inverse function for . Then

Tn

lim =a€ (0,00c) = lim Mi =
n—oo g(n) - ’ S5— 00 g(“l)(s/a) -

Below we describe a typical application of Theorem 7.1 to renewal pro-
cesses.

Example 7.1. Let {S,, n > 1} be partial sums of nonnegative random
variables {X,, n > 1} such that

(7.1) lim S, = infty a.s.
n—00

Let a function g be given as in Theorem 7.1. Assume that the strong law of
large numbers holds, that is

(7.2) lim —= =a € (0.0) a.s.

Denote by ©; the random event, where both (7.1) and (7.2) hold. Fix w € Q.
Starting from the sequence Sp(w), n > 1, construct its linear interpolation S
and then a quasi-inverse function S-1 for S. Now, apply Theorem 7.1 with
Zn, = Sp(w) and obtain

lim _S(_l)(s) =

n—o0 g(=1)(s/a)
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at this point w. Finally, if {N(t)} is the renewal process constructed from the
partial sums {S,, n > 1}, then

SEVW < N@E) < 8D @) + 1

and therefore, at the point w.
(7.3) lim ———2— =1

Since w € Q, is arbitrary and P(Q2;) = 1, the relation (7.3) holds almost surely.

The simplest case is given by a power function g(¢t) = ¢, » > 0. An
application of the above reasoning to this case shows that, if

S
lim — =a€ (0,00) as.,
n—oo N’

then
N(t) 1

lim = a.s.
t—oo tL/T all/r

In particular, if

lim Sn _ i € (0,00) a.s.,
n—oo T
then N
lim - (*) = 1 a.s.
t—oo t u

In the case of independent identically distributed random variables {X,, n >
> 1}, the latter result coincides with (2.6).

Other renewal processes. The approach described above works well for
other functionals of partial sums. The renewal process defined in (2.1) is only
one of them.

Another one is
F(t) = min{n : S, > t}.

For every t > 0, N(t) describes the last time, when the random walk belongs
to the set A = (0,¢), while F(t) is the first moment when the walk exits from
the set (0,t).

These definitions can be extended to the case of an arbitrary sequence or
function. Let f be a continuous function. The functionals we define below
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depend on the underlying function f, but we omit f in the notation, since it
will be clear to which function the functionals correspond to. Define

F(t) =inf{s: f(s) >t} =inf{s: f(s) = t},
L(t) = sup{s: f(s) <t} =sup{s: f(s) =t}.

Another functional of interest is the time spent in the set (0,¢]:
T(t) = meas{s: f(s) <t} = / I(f(s) <t)ds,
0

where “meas” is the Lebesgue measure and I(A) is the indicator of a set A.

"The fourth functional of interest is M constructed from the monotonization f
of f,ie. f(t) = max f(u). Then
0<u<t

M(t) = sup{s : f(s) <t} =sup{s: f(s) =t}.

It is clear that
F(t) < M(t) <T(1) < L(t).

The functional M is an obvious analog of the renewal process V. The reasoning
of Example 7.1 of applies to both F and L, and therefore for M and T, too.

An application to stationary sequences. The results above apply
to random limits as well. Let X,,, —0o < n < oo, be a strictly stationary
sequence of random variables such that E|Xo| < oco. Let F be the o-algebra

of shift invariant events and let E [Xo|F] 4l 0 > 0 with probability one. Put
Spn=X1+...+X,. Then

Applying an appropriate extension of Theorem 7.1 we derive that

limF—(fz=limﬂs—)=l

a.s.,
s—00 8§ s—oo 8§ a

where the functionals F' and N are constructed from the sequence {S,} as
explained above and a may be random. The same result holds for the time
spent by the sequence {S,} below a certain level.
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