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Abstract. In this paper our discussion attaches the R-max- and the
extended R-max-rational decision mechanisms which save the choices on
the sets of the given optional set system. We execute under what condi-
tions will reveal an R-max-rational or an extended R-max-rational decision
mechanism nonempty choices for the sets not included into the optional
set system. We give conditions for the existence, decisiveness and stability
of these structures.
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1. Introduction

The early phase of the theory of choice is due to Samuelson [10], [12] and
Houthakker [5]. They applied it for the analysis of the consumer demand on
competitive markets introducing the revealed preference. This line of research
which is based on the revealed preferences has been continued by lots of re-
searchers, e.g. Bossert-Sprumont-Suzumura {3], Hansson [4], Richter [8], [9],
Sen [13], Suzumura {14], etc. In our days this theory plays role in decision
theory and the different fields of behavior sciences, too.
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Our investigation is motivated by the decision theory, namely by tender-
evaluation. In the tender-problem there is a task for which a solver is demanded.
From the possible solvers is built the set of alternatives. The different solvers
can use different technologies to solve the subproblems, the prices and the
termination times for the subproblems may also be different. So, on the base
of the mentioned characteristics as decision standpoints it is possible to classify
the alternatives. The subsets composed by this classification will be the subsets
of the optional set system, from which the decision maker chooses. (Remark,
that the economist often refer to the optional set system as budget set, but we
do not use this terminology because we want to avoid the illusion that the basis
of the choice can only be the money.) The question is whether is it possible to
build such preference on the base of choices, which decides about the choice of
the most appropriate alternative.

There are a lot of papers dealing with this problem, which characterize the
revealed by the choices preferences. The advantage of the revealed preferences
is the following: The optional set system can be incomplete, only a subset of all
possible subsets of alternatives, nevertheless by the revealed preference derives
the set of the best elements of the subsets not included into the optional set
system.

However, the incompleteness of the optional set system propounds new
questions:

e Is it suitable for the choice from the whole set of alternatives, i.e. when
the revealed preference will be decisive for the whole set of alternatives;

e Is there such revealed preference which derives nonempty choice for all
subsets of the alternatives, i.e. when the revealed preference will be
stable;

o If the revealed preference is not decisive or not stable, is there any weak-
ening of this preference making it to be decisive, and what is more to be
stable without changing the choice on the set of optional set system.

These problems will be in the focus of our investigations. Mainly the last
problem is essential, because the positive answer makes possible to take into
the best alternatives new alternatives using new decision standpoints.

2. Preliminaries

In this section we survey the basic definitions and well known theorems
related to the decision structures and mechanisms, mainly those which are
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connected with the choice functions. We touch upon only those earlier results,
which will be used in our investigations.

Let Q be a final set of alternatives with the cardinality | and let denote
2! the powerset of 2. Let B C 27\ § be given. We will refer to this set system
as optional set system.

In the practice the elements of the optional set system are such subsets of
the alternatives, which can be treated by the same decision standpoints. For
example, in a tender-problem we can collect those alternatives into an element

of the optional set system, which use the same technology in the solution of a
subtask of the project.

Definition 2.1. The set-to-set function C : B — 2% C(X) C X will be
called choice function on B. If C : B — B, then we say, that C injective.

For illustration of the choice function let again refer to a tender problem.
The choice function on the subset of alternatives using the same technology in
the solution of a subtask of the project tells us, which alternatives are more
appropriate for the user. The terms of the tender in this question can be, for
example, the choice of the cheaper variants or the alternatives realizing the
shorter production time.

Definition 2.2. The decision structure given by the triplet D = (,B,C)
will be called real decision mechanism if it satisfies the following conditions:

1. 0 ¢ B;

2. The optional set system B C 22 covers the set Q ie. Q= |J X;
XeB

3. C(X)#£0 VX e B;

4. The optional set system may contain a set of B C 2 at most once.
Moreover, if the condition

5. B=2%\0
is also fulfilled, then we say about perfect decision mechanism.

Definition 2.3. We say that the decision structure D = (Q,B,C) is P-
max-rational, normal or free of P-max-contradictions if there erists a binary
relation P on Q such that for all X € B the choice C(X) is the set of the
mazimal elements of X, i.e.

C(X) = CMAX(X) VX €B,
where the set of mazimal elements is defined by the following formula:

(2.1) CMAX(X)={x € X :zPy Vy € X}.
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We say that the relation P which corresponds to the definition is a rationaliza-
tion of the decision mechanism D = (2, B, C).

Here and in the following P will denote an arbitrary binary relation on §2
and P will denote its complement. If we use a special relation, the notation
will be indicative of this speciality.

In this paper will be used some relations with special property, namely

- P is reflexive if aPa for all a € Q;

- P is complete if for all pairs (a,b) € 2 x § either aPb or bPa or both
hold.

A great part of publications deals with only the perfect decision mechanism.
Since in this paper we analyze the effect of the modification of the optional set
system for the rationality of the decision structure, therefore we always assume
that B # 2%\ @, and what is more, we usually assume that ¢ B. This latter
condition is meaningful from practical point of view. Indeed, the task of the
decision making is to choose the best alternative(s) from the set of all possible
alternatives using the given decision. If the mechanism directly can define this
choice for the whole set of alternatives, then the task of decision making looses
its meaning.

Every real decision mechanism reveals two binary relation on 2, namely
(see in [8] and [11]):

Definition 2.4. R is the C revealed Richter-relation on B if
(2.2) zRye 3IX eB:ze€ C(X), ye X.

Definition 2.5. S is the C revealed Samuelson-relation on B if
(2.3) zSye3X eB:xeC(X), ye X\ C(X).

The revealed relations depend very much on the optional set system B which
defines the real decision mechanism, and on the choice function C(X), X € B
given on the optional set system.

Otherwise, we have to mention that a real decision mechanism given by
D = (R, B,C) is not always rational by neither the Richter- nor the Samuelson-

relation. However, we have the following easily verifiable lemmas (see, e.g. in
[3] and [7]):

Lemma 2.1. If P is a P-max-rationalization of the real decision mecha-
nism D = (Q,B,C), then R C P, where R is the revealed Richter-relation by
D = (Q,B,C). Consequently, if the real decision mechanism D = (Q,B,C) is
R-max-rational, then R is the weakest max-rationalization of D.
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Lemma 2.2. Let D = (,B,C) be a real decision mechanism. Then for
all X € B the following inclusions are valid

(2:4) CEP(X) C C(X) € CA¥(X),
where
(2.5) CYP(X)={z€ X :ySz Vye X},

Let us remark that for any relation P
CRP(X) = CMAX(X) VX € B,

where P4 = P—1 is the dual of the relation P. So (2.5) can be defined as the
set of maximal elements corresponding to the dual relation S¢ of S.

According to the Definition 2.3 the terminology R-max-contradictory will
be used not only for the real decision mechanism D = (Q, B, C) if

3X € B such that C(X) c CH¥AX(X),

but also for those subsets from B, where the strict inclusion accomplishes.
The revealing power of the Richter- and Samuelson-relations resides in that
they can assign choice to those subsets of alternatives which do not appear in
the optional set system. This fact will be used in the following discussions of
the rationality and rationalizability of the decision mechanism, but our inves-
tigation will be restricted to the R-max-rationality.
Lots of papers deal with the problem of the rationality of a decision mecha-

nism. Without the claim to the entirety we cite some significant papers, namely
(1}, (31, 14, {71, [8], [9), [13], [14], etc.

3. Characterization of the extended R-max-rationalizations

The starting point of our discussion will be an R-max-rational decision
mechanism.

Definition 3.1. Let D = (Q,B,C) be an R-max-rational real decision
mechanism. The relation Pr will be called extended R-max rationalization
revealed by D, if R C Pg and CMAX(X) = CHAX(X) VX € B. The set of all
eztended R-max rationalizations revealed by D will be denoted by Pg.
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It is not too difficult to find such R-max-rational real decision mechanism,
which has no extended R-max rationalization revealed by D. Otherwise, it is
possible that a real decision mechanism has several different R-max extensions
revealed by D.

These situations are illustrated with the Examples 3.1. and 3.2.
Example 3.1. Let us consider the real decision mechanism D = (2, B, (),

where: Q = {a,b,¢,d}, B and C(X) for all X € B and the revealed Richter-
relation are given by the Table 1.

Table 1:

XeB C(X)
a b b

b ¢ c

c d c d

Decision structure Richter relation
of Example 3.1 for Example 3.1

It is easy to see, that this real decision mechanism is R-max-rational and
one can also verify that any modification of the Richter-relation can not be
max-rationalization.

Example 3.2. Let us consider the real decision mechanism D = (Q, B, C),
where: @ = {a,b,¢,d}, B and C(X) for all X € B and the revealed Richter-
relation are given by the Table 2.

Table 2:
XeB C(X)
a b c c ) E
a b b a
b ¢ c b
b c d d c
a dla d
Decision structure Richter relation

of Example 3.2 for Example 3.2
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One can control that in the Example 3.2 the Richter-relation is a max-
rationalization, but it has three other max-rationalizations saving the choice
on B. These rationalizations are given in the Table 3.

Table 3:

P | a b c d P2J a b c d Ps | a b c d
all 01 1 all 0 0 1 a|ll 01 1
b1 100 b1 1 01 b1 1 0 1
cll1 110 c|ll 110 c|l1 110
d|{0 111 djo 1 1 1 d|{o 111

P;-max- Py-max- P3-max-
rationalization rationalization rationalization

for Example 3.2

From these examples it can be seen that there are some pairs (z,y) € 2 xQ
of alternatives such that zRy stands between them, but can not be changed in
P after all. To find the condition of this fact let us introduce the relations on
Q x Q given in the following two definitions.

Definition 3.2. We say that the relation Ps. on Q X § is the strict com-
plementary part of the relation P if

(3.1) zP,.y & zPy and
' Y eB:z.ye Y,z ¢ CHAX(Y), but zPzVz €Y \ {y}.
The strict complementary part of a relation P defines those pairs of alter-
natives between which the complement relation can not be changed without
changing the P-max-choice on the sets of B.

Definition 3.3. We will cell atomization of a relation P the set Q con-
taining the not empty relations Q*®, which are defined as follows:

(3.2) tQ®y o r=a, y=> and aPb.

For the Example 3.2 the strict complementary part of R and the atomiza-
tions of R N R,. are shown in the Table 4.

Proposition 3.1. Let D = (2, B,C) be an R-max-rational real decision
mechanism. Pg is an R-max-estended rationalization revealed by D = (Q, B, C)
if and only if there exists a finite chain of R-max-relations { P, i =0,...,k},
with k > 1 such that

1. PO =R, Pi-D PO i=1.  k P® = Pp;
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Table 4:

Qla b cd Q|ab cd
al0 0 1 0 2|0 0 0 0
b0 0 0 O b|0O 0 0 1
c|0 000 c|0 000
d{o 00 0 dlo oo o

Atomizations of RN R,

for Example 3.2

2. foralli=1,...,k there exists a pair of alternatives (a;, b;) € Q x Q such
that
P® N PGE-1) = Qb

where Q%°, is the atomization of PU -1 n Ps(ci—l) belonging to the pair
(a,b) and P8 s the strict complementary part of PG,

The length k of the chain will be called the distance between R and Pg and will
be denoted by d(R, Pr).

Proof. Sufficiency. Let P be defined as it is given in the proposition.
According to the definition of the strict complementary part forall i = 1,...,k
the atomization Q%% changes the relation in P(:=1) only such pair, which does
not effect for the choice from the sets of the optional set system B. Therefore,

CMAX(X) = CMAY (X) for all X € B and for all i = 1,...,k. Consequently,

C(X) = CHAX(X)=CHAY(X) = ... = CHAS(X) = CHAY (X) =
= ...=CMAX(X)=CMAX(X) VX eB
So, for all i = 1,..., k the relation P is an extended R-max-rationalization.

Necessity. Let Pr be an extended R-max-rationalization. Then

k
0#PrNR=JQ"" CR«NR,

=1
where Q% is an atomization of R, N R. Otherwise,

RU (0 Q‘“bi) =

=1

Pg

= (RUQUD)UQ™™)...uQh.
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Introducing the relations
PO =pR, pP-D=pOyQut j=1.. k P® =py

we get a sequential generation of Pg. Since Pg is an extended R-max-rationaliza-
tion, the changes in R can not change the choice from the set of optional set
system B, therefore no one P) can change them, so Q%% must be the atom-
ization of PG-D NP forall i =1,...,k, ie. Q¥b% = Q%% for all
i=1,...,k. ]

To create the set Pg of all possible extended R-max-rationalization we can
follow the Algorithm 1.

Algorithm 1 Create all extending R-max-rationalizations

Pr <=0 {initialize the set of all R-max-rationalization}
P «< {R} {start with the Richter relation}
while P # () do
select P € P
define Ps.
Q <= the set of atomizations Q" of PN Py,
while # 0 do
select Q¥ € Q
Pr < PRU(PNQY)
Pr < PrU{Pr}
P <« PU{Pr}
end while{atomizations}
P < P\ {Pr}
end while{rationalizations}
return Pgr

The next question is, when the extended R-max-rationalization revealed by
D = (Q,B,C) does not exist. We give a sufficient condition to answer this
question.

Proposition 3.1. Let D = (Q,B,C) be an R-max-rational real decision
mechanism, where B satisfies the following conditions:

1. B contains all subsets of two elements of ;

2. For all a € Q there exists X € B such that a € C(X).
Then Pr = 0.

Proof. Firstly, let us observe that R is a reflexive relation. Indeed, let
a € ) be an arbitrarily chosen alternative. From the second assumption of the

proposition follows that there exists X € B such that a € C(X), then according
to the definition of the Richter-relation aRa.
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Let us now assume on the contrary, that there exist Pg O R such that

CHAX(X)=CHAX(X) VX € B.
Pr O R means that there exist a,b € Q such that aPgb, but aRb and aR,.b.
From the reflexivity follows that a # b. But, {a,b} \ {b} = {a} and aRa, and
this leads to the contradicting aRs.b. O

Corollary 3.1.1. Let D = (,B,C) be an R-max-rational real decision
mechanism, where B contains all subsets of one or two elements of Q0. Then
Pr = 0.

Proof. Trivial. O

4. Decisive and stable R-max-rationalizations

In this section we will execute how effect the R-max-rationalization and
the extended R-max-rationalization revealed by the real decision mechanism
D = = (9, B,C) for the revealed choice from the subsets not included in the
optional set system B. A specific interest has the revealed choice from the
whole set 2 of alternatives since the final aim of the decision maker is to tell
which alternatives are the best or the most acceptable from all alternatives.
For any alternative x* € Q let us introduce the set systems

@) = {XeB:z"€ X},
)

B
B*(z*) = {XeB:z*cCX)}

and the sets
Z*) = J{Y :Y € B'(a")}.

In this and the following sections we will use the following assumptions:
(A-1) For all a € Q {a} € B with the choice C({a}) = {a}.
(A-2) |Q]>2.

(A-1) guaranties that Z(z*) # 0 for all * € Q and the Richter relation is
reflexive. However, for the simplicity, in the examples we omit the one element
subsets from the description of the real decision mechanisms.

(A-2) is technical assumption which excludes the trivial, in the practice
uninteresting cases.
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Proposition 4.1. Let D = (2, B,C) be an R-max-rational real decision
mechanism satisfying the assumptions (A-1) and (A-2) and let X € 29\ 0.
Then CMAX(X) # O if and only if there exists z* € X such that X C Z(z*).

Proof. Necessity. Let z* € CMAX(X). Then z*Ry Vy € X. It means
that for all y € X there exists Y € B(y) such that z* € C(Y). Consequently,
for all y € X we have that y € Y € B*(z*), therefore

XC|J{Y Y e B (")} = Z(z").

Sufficiency. Let us now assume that there exist z* € Q such that the inclu-
sion Z(z*) 2 X holds. Then

z*Ry Yy €Y and VY € B*(z*).
From it we obtain that

z*Ry Yy € U Y = Z(z").
YeB*(z*)

Consequently, *Ry Vy € X, ie. z* € CMAX(Q). O

Definition 4.1. Let D = (Q,B,C) be an R-max-rational real decision
mechanism  satisfying the assumptions (A-1) and (A-2), where Q ¢ B. It
is R-max-decisive if CMAX () # 0.

Proposition 4.2. The real decision mechanism D = (2, B,C) satisfying
the assumptions (A-1) and (A-2) is R-max-decisive if and only if there exists
z* € Q such that Z(z*) = Q.

Proof. The proposition is a corollary of the Proposition 4.1 applying it for
the set X = Q. O

The real decision mechanisms defined in the Example 3.1 and Example 3.2
are not R-max-decisive.

We have to remark that the decisiveness does not imply that the revealed
R-max-choice CMAX(X') # @ if X' ¢ B. To see it let us consider Example 4.1.

Example 4.1. Let us consider the real decision mechanism D = (2, B, C),
where Q = {a,b,c,d}, B and C(X) for all X € B and the revealed Richter-
relation are given by the Table 5.

In this example the real decision mechanism is decisive, since C¥4X (Q) = {c},
but C¥4X({a,d}) = 0.
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Table 3:

XeB C(X)
a b c b ¢
b cd c d
Decision structure Richter relation
of Example 4.1 for Example 4.1

Definition 4.2. Let D = (Q,B,C) be an R-max-rational real decision
mechanism. It is R-max-stable if CHAX(X) £ 0 for all X € 29\ .

Proposition 4.3. Let D = (2, B, C) be an real decision mechanism, which
satisfies the assumptions (A-1) and (A-2). It is R-max-stable if and only if
for all X € 2%\ Q there erists 2% € X such that X C Z(x%).

Proof. The proposition is a consequence of the Proposition 4.1 using it for
all X €29\ 0. O

Proposition 4.4. Let D = (Q, B, C) be an R-max-stable real decision mech-
anism satisfying the assumptions (A-1) and (A-2). Then R is complete.

Proof. Let us assume on contrary that R is not complete. Then there
exists at least one pair (z,y) € Q x Q such that 2Ry and yRz. Then neither
nor y can not be chosen from the subset {x,y} € 2%\, i.e. C¥4X({z,y}) =0
contradicting to the stability.

As it has been seen in Example 4.1 the decisiveness does not imply, in gen-
eral, the stability. But it is obvious, the absence of the decisiveness implies the
instability. To see an R-max-decisive R-max-stable real decision mechanism let
us consider the Example 4.2.

Example 4.2. Let us consider the real decision mechanism D = (Q, B, C),
where Q = {a,b,¢,d}, B and C(X) for all X € B and the revealed Richter-
relation are given by the Table 6.
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Table 6:
XecB | CX)
a b c b ¢
a b d b
b ¢ b oc
a c c
a d d
Decision structure Richter relation
of Example 4.2 for Example 4.2

5. Weakly R-max-decisive and weakly R-max-stable real decision
mechanisms

In the most practical models neither the decisiveness nor the stability can
not be guaranteed. Therefore we formulate the analogous concepts of decisive-
ness and stability for the extended R-max-rationalizations.

Definition 5.1. Let D = (,B,C) be an R-max-rational real decision
mechanism, where Q ¢ B. It is weakly R-max-decisive if it is not R-max-
decisive but there exists an extended R-max-rationalization Pr O R such that

CMAX(Q) # 0 and the distance d(R, Pr) is minimal.

Definition 5.2. Let D = (Q,B,C) be an R-max-rational real decision
mechanism satisfying the assumptions (A-1) and (A-2). It is weakly R-max-
stable if it is not R-max-stable, but there exists an ertended R-max-rationali-
zation P O R such that CHAX(X) # 0 for all X € 2\ 0 and the distance
d(R, Pr) is minimal.

Proposition 5.1. Let D = (Q,B,C) be a real decision mechanism satis-
fying the assumptions (A-1) and (A-2). Let X € (2%\ 0) \ B. There exists
extended R-max-rationalization Pr O R with minimal distance d(R, Pr) such
that CMAX(X) # O if and only if there exists z* € X for which one of the
followmg conditions fulfills:

1. X C Z(z*) = Q and 3(x,y) € Q x Q such that = # =*, cRy and TRscy;

2. X C Z(z*), Q\ Z(z*) # 0 and there ezists y € Q\ Z(z*) such that z* Ry
and x* Rs.y;
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3. X\Z(z*) # 0 and for allY € B if x* € Y, then either Y C Z(z*) or
Y\ Z@E@ N\ (X\ Z(=z")) #0.

Proof. According to the Proposition 4.1. if X C Z(z*) then CMAX (X) #
0, therefore the minimal distance d(R, Pg) = 1. It means that

PO = pOUQIY = RUQEY,

where QY can be any atomization of the relation R N R;. belonging to the
pair (z,y) € Q x Q satisfying the relations Ry and zRs.y.
If Q@ = Z(z*) then it is necessary that (z,y) € Q x (Q\ {z*}), and if
Q C Z(z*), then the pairs (z,y) € ({z*} x (Q\ Z(z*) are possible for changes.
Let now X \ Z(z*) = {v1, - .., ¥x}- The minimal number of changes in R to
guarantee z* € CM4X(X) with some P D R may only be realized by the chain

PO — R, pt-1) — pd) Uta‘y', Pr = p(k)’
where the relation Q*? is defined by (3.2), i.e.
(5.1) Ppr=RJC | @™
yeX\Z(z*)

This relation will be an extended R-max rationalization if and only if there
does not exist Y € B for which z* ¢ C(Y) = CH4X(Y), but z* € CHAX(Y).
Since

Y=FnzZ()u(Y\Z(z")n(X\Z(")u (Y \Z(")\ (X\ Z(z"))),

we have

(5.2) =" Ry YyeYnZ{z),

(5.3) z*Ry but z*Pry Yy e (Y \ Z(z*)) N (X \ Z(z*)),
(5.4) z"Ry but z'Pry Yy € (Y \ Z(z")\ (X \ Z(z")).

From this follows that the choice from Y does not change in and only in the
following two cases:

IfY\Z(z*) =0,ie. only (5.2) holds. In this case Y C Z(z*) and according
to the Proposition 4.1. z* € C(X).

If there exists y € (Y \ Z(z*))\ (X \ Z(z*)), i.e. at least one y € Y satisfies
(5.4) then z* Py, so z* ¢ CHAX(Y). O

Proposition 5.2. The real decision mechanism D = (Q,B,C) satisfying
the assumptions (A-1) and (A-2) is weakly R-max-decisive if and only if there
ezists z* € Q such that for allY € Bifz* € Y then'Y C Z(z*). In this case
the eztending R-max-rationalization is given by (5.1) and (3.2).
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Proof. This proposition is an outcome of the Proposition 5.1 applying it

for X = Q. The other than Y C Z(z*) conditions given in that proposition
never hold. O

Proposition 5.3. The real decision mechanism D = (2, B,C) satisfying
the assumptions (A-1) and (A-2) is weakly R-max-stable if and only if for all
X € (29\ 0) \ B there exists % € X such that for all Y € B if 2% € Y then
either Y C Z(z%) or (Y \ Z(z%))N(X\ Z(z*)) # 0.

Proof. This is a direct outcome of the Proposition 5.1. applying it for all
X =0, O

Proposition 5.4. LetD = (Q, B,C) be a weakly R-max-stable real decision
mechanism satisfying the assumptions (A-1) and (A-2). Then the extended
R-max-rationalization Pg is complete.

Proof. The proof is analogous to the proof of the Proposition 4.4. d

To see weakly decisive and weakly stable real decision mechanisms let us
consider the following examples:

Example 5.1. Let D = (2,B,C) be a real decision mechanism, where
0 = {a,b,¢,d}, B and C(X) for all X € B, the revealed Richter-relation and
the extended R-max-rationalization are given in the Table 7.

Table 7:
XeB C(X)
a b c a Rla b c d
b cd b a|l1 1 10
a c a b0 1 1 1
b d b d c{0 1 10
b ¢ b ¢ d|0 1 01
Decision structure Richter relation Extended R-max-
of Example 5.1 for Example 5.1 rationalization

for Example 5.1

The real decision mechanism given in the Example 5.1 is weakly decisive
with CH¥AX(Q) = {a}, but it is not weakly stable since CYAX ({c,d}) = @ and
neither ¢Pgrd nor dPrc can not be involved since cR;.d and dRscc.
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Table 8:

XeB C(X)
a b a
b ¢ b ¢
c d d
Decision structure Richter relation Extended R-max-
of Example 5.2 for Example 5.2 rationalization

for Example 5.2

Example 5.2. Let D = (Q,B,C) be a real decision mechanism, where
Q = {a,b,c,d}, B and C(X) VX € B, the revealed Richter-relation and the
extended R-max-rationalization are given in the Table 8.

The real decision mechanism given in the Example 5.2 is weakly decisive
and weakly stable.

6. Concluding remarks

The obtained results show that to reach the stability by weakening the
revealed preference can lead to the inclusion new decision standpoints into the
decision mechanism. However, it is possible, that weakening of the revealed
preference relation is not unique, and in such a way the choice-set from the
whole set of alternatives can also be not univocal. In this case we can speak
about the possibility of the corruption.

References

{1} Aizerman M. and Aleskerov F., Theory of choice. North Holland,
1995.

[2] Arrow K.J., Rational choice functions and orderings, Economica, 26
(1959), 121-127.



On the stability of R-rational choice function 95

[3] Bossert W., Sprumont Y. and Suzumura K., Consistent rationaliz-
ability, Economica, 72 (2005), 185-200.
|4] Hansson B., Choice structures and preference relations, Synthese, 18
(1968), 443-458.
[5] Houthakker H.S., Revealed preference and the utility function, Eco-
nomica, 17 (1966), 635-645.
[6] Kovacs M., Radonyi A. and Rézsa K., The application of valued
choice functions in group-decision, Proc. MS’2000 Int. Conf. of Modelling
and Simulation, Las Palmas de Gran Canaria, 2000, 933-940.
[7] Magyarkiti Gy., Note on generated choice and axioms of revealed pref-
erences, Central European Journal of Operation Research, 8 (2000), 57-62.
(8] Richter M.K., Revealed preference theory, Econometrica, 34 (1966),
635-545.
[9] Richter M.K., Rational choice, Preference, Utility and Demand, eds. J.S.
Chipman et al., Harcourt Brace Jovanovich, New York, 1971. 29-58.
[10] Samuelson P.A., A note on the pure theory of consumers’s behavior,
Economica, 5 (1938), 61-71.
[11] Samuelson P.A., Foundation of economic analysis, Harvard University
Press, 1947.
[12] Samuelson P.A., A consumption theory in terms of revealed preference,
Economica, 15 (1948), 243-253.
[13] Sen A.K., Choice functions and revealed preference, Review of Economic
Studies, 38 (3) (1971), 307-317.
[14] Suzumura K., Rational choice and revealed preference, Review of Eco-
nomic studies, 43 (1976), 149-158.

B. Bodé Mailing address:
Department of Operations Research Bodo6 Beata
Eo6tvos Lorand University Temets u. 631.
Pazmany Péter sétany 1/c. Gab¢ikovo
H-1117 Budapest, Hungary 93005 Slovakia
M. Kovacs Mailing address:
Department of Operations Research Kovacs Margit
Eotvos Lorand University Bankit u. 53/a.
Pazméany Péter sétany 1/c. H-1154 Budapest

H-1117 Budapest, Hungary Hungary






