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LIMIT DISTRIBUTION
OF @Q-ADDITIVE FUNCTIONS
FROM AN ERGODIC POINT OF VIEW

G. Barat and P.J. Grabner
(Graz, Austria)

Dedicated to Prof. Imre Kdtai on the occasion of his 70th birthday

Abstract. We use methods from ergodic theory to prove new versions of
distribution results for additive functions with respect to some numeration
systems.

1. Introduction

Let (an)n>0 be a sequence of positive integers with a, > 2. One defines a
so-called Cantor numeration system @ = (gn)n>0 by go = 1 and, for any non-
negative integer n, ¢n41 = angn, hence g, = an—_1 - -a1a9. With the standard
convention that an empty product is equal to 1, that formula holds for n = 0,
too. Then, any positive integer m possesses a unique expansion with respect

to this numeration system by

(1.1) m= Zej(n)qj with 0<e¢e;(m) <a;—1.
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The partial sum ) £;(m)g; is the smallest non-negative representative of the
j<e

residue class m (mod ¢;). In particular, if a,, = ¢ is constant, one retrieves

the usual g-adic numeration. The Cantor numeration system is said to be

constant-like if the sequence (an)n>0 is bounded.

An arithmetic function f : N — R is called Q-additive, if f(0) = 0 and it
satisfies the relation

(1.2) P eme | =S rema).
3=0 7=0

In the g-adic case, such functions were introduced in [13]; some specific
examples were studied earlier (cf. [6, 26]). In [9], H. Delange proved that
a g-additive function f admits an asymptotc distribution function, if and only
if the two series

13) 5 (z f(eqj)> and 35 f(eql)?

=0 \e=0 j=0€=0

converge [9, Théoréme 3]. This result can be seen as the g-adic version
of the Erdds-Wintner theorem on classical additive functions. Delange’s
investigations have found many generalisations in various directions: g-additive
functions on subsequences of the integers have been studied by Katai and
others in [17, 18, 19, 22|, additive functions with respect to more exotic
number systems have been investigated in [3]. Furthermore, asymptotically
normal distribution of g-additive functions such as the sum-of-digits function
was studied in [5, 10, 11] and very precise fractal-type asymptotic estimates of
their mean value have been given in [31].

The principal purpose of this paper is to give a new proof of Delange’s
theorem in terms of ergodic theory and probability theory and to extend
it to constant-like Cantor numeration systems. The nature of the limiting
distribution is also investigated. Furthermore, we extend this technique to more
general numeration systems, namely Ostrowski numeration using denominators
of convergents of irrational numbers as base sequence (cf. [4, 32]) and linear
recurrent ones; in the latter case, we give a refinement of the results on
the existence of asymptotic distribution functions of more general additive
functions obtained in [3]. The method we present has the advantage to prove
Delange’s theorem much faster than by using the original Fourier analysis tech-
niques (Delange’s proof is based on Lévy’s theorem on characteristic functions
and thus needs quite long investigations on mean values of g-multiplicative
functions). However, it does not allow to prove results along subsequences of
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zero density such as studied in [5] for polynomial subsequences and {21, 23] for
the sequence of primes. Nevertheless, in Section 3 we present some results for
special subsequences of positive density.

Similar to the investigations in the present paper, H.N. Shapiro {30] gave a
purely probabilistic proof for the classical Erdés-Wintner theorem. In [27], E
Manstavicius constructed Kubilius-models for the study of g-additive functions.

2. Ergodic proof of Delange’s theorem

Let us first fix some notation. As usual, Zg = limZ/q,Z denotes the

profinite compact group of (Q-adic integers and pqg its Haar measure. We
will freely identify elements of Z¢ and sequences z = (2o, 1,...) with z; €

o0
€ {0,1,...,a; — 1} or use Hensel’s representation = )_ z;q;. As topological
=0
probability space, Zg is identified with the product [] {0,1,...,an — 1}
n>0

endowed with the product topology and the product measure. A general
reference for these compact groups is [16, p.109).

For a given Q-additve function f and n € N we define the random variables
fniZg — Rby fo(z) = f(xngn). Finally, recall that by definition f admits
an asymptotic distribution function, if the sequence of empirical distribution
functions

(2.1) Fiv( Z xt(f(n))

n<N

converges to some distribution function F', where x; is the indicator function
of the interval (—oo,t]. We have the following theorem.

Theorem 1. Let f : N — R be a Q-additive function with respect to a
constant-like Cantor numeration system. Then the following statements are
equivalent:

(1) the function f admits an asymptotic distribution function F;

(2) the series

aj—1 a,—l
Z (Z fled? ) and Z Z feg?)?

_0]50 0-75'—0
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both converge.
_ 00
(8) The series f(z) = Y. fn(x) converges for almost all x € Z,.
n=0

Moreover, every point y € Zg, for which () converges is generic for x; o f
for every continuity point t of F, i. e.

lim 3" xSy + ) = F()

N—o0 |
n<N

Proof. Condition (2) is clearly equivalent to the convergence of the series
in (1.3) if (a,), is constant equal to g. The idea of the proof is to circumvent
the direct proof of the equivalence between (1) and (2) by introducing a
further condition, and by showing that both of them are equivalent to this
last condition.

We first prove that (2) implies (3), and therefore assume that (2) holds.
Let us first notice that (2) can be interpreted as the convergence of both series
S E(fn) and Y. E(f2). Since 02(f,) < E(f2). the series Y 0?(f,) converges
as well. Moreover, it follows from the convergence of > E(fZ) and from the
boundedness of (a)n that ||f|lec tends to 0. Hence the convergence of any
series of the type > po(|fn] > a) for a > 0. Finally, the random variables f,
are independent. Hence the assumptions of Kolmogorov’s three series theorem
are satisfied, and the series ) f, converges almost surely with respect to pg.

Conversely, assume (3). Again by Kolmogorov’s three series theorem, both
series Y E(f,) and ) o02(f,) converge. However, using f(0) = 0, Cauchy-
Schwarz inequality yields

]E(fn)z = ai2 (Zn f(EQn)) < fn 1]E(fn)2'
n e=1

(20

Then :
an —
E(2) = E(n)? +0%(fn) < 2 VE(2) +0%(a),
‘T
hence E(f2) < an,0?(fn). Since (an)n is bounded, we get the convergence of
E(f?) and (2) is proved.
We now prove that (1) implies (3). Assume (1). Then in particular,

Foult) = = 3 el (4)

" k<gn
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tends to a distribution function F(t) in any continuity point of F' when n
tends to infinity. Translated in terms of random variables, this means that the

random series ) f, converges in distribution. Since the random variables f,
n

are independent, this is equivalent to (3) (see [25, Section 17.2 ”convergence
and stability”]).

It remains to prove that (3) implies (1), which is the crucial part of the
argument. Roughly speaking, one has to show that it is enough to take the
limit along the g,’s to get the limit in general. It is achieved by a technique
from ergodic theory using Birkhoff’s individual ergodic theorem to approximate
an orbit by an other one that we can control. Notice that the argument below
replaces Lemmas 1, 3, 4, as well as Propositions 1 to 6 and Theorem 1 of [9].

Definition and uniqueness of Haar measure ensure that the dynamical
system (Zg,7) with 7 : © — z + 1 (the so-called odometer) is uniquely ergodic
with invariant measure pg. Since f is measurable, one has x; o f € L'(Zg) for
any t € R. Then Birkhoff’s ergodic theorem asserts that

Jim 5™ xu(f(n + 7)) = po({y € Zai f3) < 1)) = F()
n<N

for almost all € Zg. Therefore, in other words it remains to prove that z = 0
is a generic point for every x; o f where ¢ is a continuity point of F'. Actually,
we will prove directly that every point y, where the series defining f in (3)
converges, is generic.

Let t € R and n > 0 such that t & 7 are continuity points for F. Then
the above application of Birkhoff’s theorem ensures that there exists x € Zg
both generic for x¢—n o f and x¢4+, o f. For any positive integer IV, let m be
the non-negative integer such that ¢, < N < gn+1; then we define

m m+1
M =M(N)=gmis+ > _&;W)g; — Y €5(z)a.
J=0 j=0

By construction, we have that €;(z + M) = ¢;(y) for all j < m. Since we
already have proved that (3) implies (2), we know that ||fm| e tends to O.
Since the negative integers have measure 0, we can assume that x has infinitely
many digits €;(x) # a; — 1 (this means that x is not a negative integer). Then

for n < N we have

m o0
z+M = ZEj(y)q]‘+€m+2($)qm+2+(€m+s+1(z)+1)Qm+s+1+ Z £j(2)g,
j=0 j=m+s+2
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T+ M+n=
m+1
= Z €j(y +n)gj +em+2(T)gmt2 + (Em+st1(2) + 1)gmistr + Z £j(z)g;
j=0 j=m+s+2

for some s > 2 given by the carry in addition. Similarly, we have

( o0
Y. &(W)g; if there is no
g=m+1
carry beyond j = m

i € + 1)gm4r+ if there is a carr
y+n=26j(y+n)qj+{ (em+r(y) )Gm+r y

(e
=0 + > &g fromj=mtoj=m+r,
j=m+r+1
0 if there is a carry
\ from j = m to oco.

The indices r and s depend only on z,y, and N, but not on n. Then, for N
sufficiently large, we have

[flx+M+n)— f(y+n)|<n
by the convergence of the series
[e o]
> fEi©)a)
=0

for £ =z and £ = y and the fact that lim f(e;¢;) = 0 by (2).
j—oc

Thus, for N large enough, we have

(2 2)
= Z Xt-n(f(z+M+n)) < = Z xe(f(z+n)) ]—V 3 Xean(f(@+M+n)).
n<N n<N n<N

It just remains to prove that both left and right sides of (2.2) converge
respectively to F'(t — n) and F(t + n) and then use the continuity of F in
7. This is done by a barycentric consideration:

Y ) = o (2 2 xes(f(a 4 m)
N+ M N+M

n<N+M n <M

(2.3)
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N
N+ (L[ n;,m”(f(g” +M +n))> .

By definition of M, we have N < M < 2 (max{an; n € N})> N. Thus M < N
and if two of the three sums present in the expression (2.3) converge to the
same limit, so does the third one as well. Indeed, that is the case for the two
first sums because of genericity of z, that converge to F(t £ n). Therefore,
N71 5" Xtan(f(z + M + n)) converges to F(t & n), too, and we have

n<N

F(t—n) < liminf % TKZNXt(f('!H—n)) < limsup % Z;Vm(f(y%)) < F(t+n).

Since the set of continuity points of a distribution function is countable,

hence dense, we can make 7 tend to 0, which shows the convergence of

N=1' Y xi(f(y+n)) to F(t), provided that F is continuous at t. Thus all the
n<N

agsertions of the theorem have been proved.

(e
It is natural to ask under which conditions the series Y fn(z) converges

n=0
everywhere. Besides, as noticed in [3, Proposition 5] an immediate application
of Birkhoff’s ergodic theorem proves the existence of an asymptotic distribution
function in this case (the continuity of f ensures that x; o f is Riemann-
integrable and unique ergodicity of (Zg,7) yields uniform convergence of
the ergodic means). An application of Cauchy’s criterion gives the following

equivalences.

Proposition 2. Let Q be a constant-like Cantor numeration system and
f : N — R be a Q-additive function. Then the following statements are
equivalent:

(1) 3 fa(x) converges for all x € Zg;

(2) SE(ful) < o;

(3) >_ fn converges normally;

(4) f is continuous at 0;

(5) f can be extended to a continuous function on Zg.

Remark 1. It follows from Proposition 2 that the function f is either

continuous in every point or nowhere continuous. Moreover, in the second
case, we have

Vz € Zq : limsup |f(y)| = +o0.
y—z

In any case the second condition in (2) of Theorem 1 ensures that f € L%(Zg).
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The nature of the limiting distribution can be easily solved. Let dF be

the limiting distribution of the @-additive function f. Then dF is the weak
ak—l

limit of dFy * - - - x dF},, where dF}, = ﬁ Zo Of(eqr) and dq the Dirac measure
E=

concentrated in a.

Proposition 3. Let Q be a Cantor numeration system and f a Q-additive
function with limiting distribution dF. Then dF is of pure type (that is either
purely atomic, purely singular continuous or purely absolutely continuous).

Let k,, be the cardinality of the largest subset A C {0,...,a, — 1} such that
the values f(eqn) do not depend of € € A. Then dF is atomic if and only if the
series 3 (1 — kn/ap) converges. In particular, if Q is constant-like, then dF is
purely atomic if and only if f,, is the zero function for n sufficiently large.

Proof. The random variables f, are discrete and independent. Hence, by
a theorem of Jessen and Wintner [20], the law of their infinite convolution is of
pure type. Moreover, a result of Lévy [24] asserts that dF is purely atomic if

[e.e]
and only if [] d, converges, where d,, denotes the maximal jump of f,, that is
n=0

dn = mgﬁc(Fn(:r) — Fp(x —0)) (both results of Jessen-Wintner and Lévy are [12,
T

Lemma 1.22]). For the discrete random variable f,,, one has d, = k,/an, and
the second part of the proposition follows. If (a,), is bounded, and f, is not
zero, then f, is not constant (because f,(0) = 0). Then 1—k,/a, > 1/ maxa,.
Therefore, (1 — kn/an))r tends to 0 if and only if it is ultimately 0, that is if
frn is ultimately 0.

Remark 2. It seems to be hopeless to obtain a complete characterisation
of additive functions admitting an absolutely continuous limiting distribution.
This is supported by the results on the nature of Bernoulli convolutions, which
correspond to the 2-additive functions f(2™) = A~". In this case the properties
of the measure depend heavily on the arithmetical nature of A (cf. [28]).

Non-constant like Cantor numeration systems. If (a,), is not
bounded, then (1) and (2) (independently) still imply (3) in Theorem 1. The
inequality of Cauchy-Schwarz that has been used does not ensure that (2) and
(3) are still equivalent. A counterexample can be easily constructed as soon
(an)n is not bounded. Furthermore, there is no logical dependence between (1)
and (3):

Example 1. Let Q be a non constant-like Cantor numeration system.
Since the sequence (an, ), is unbounded, there exists a subsequence (a,(n))n such

that the infinite product [](1—-1/ag(n)) converges, with [] (1-1/ac(n)) > 1/2.
n>0

Define f(gy(n)) = 1, and f(egm) = O otherwise. Then E(f,(,)) = E(fg(n)) =
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;( ny and E(fm) = E(f7 f2) = 0 otherwise. Hence 3 f, converges almost
surely (in that case, this is also an immediate application of the Borel-Cantelli
lemma, since ) fn(x) converges if and only if £,(»)(x) = 1 only finitely often).
Since x1/2(f(n)) = 1 if and only if f(n) =0, we have that

Y xp(fk) = nﬁl ( aa(;)> > H (1 - ag())) >1/2.

QU(n) k<2q<r(n) j=0

On the other hand, we have that

—— 3 apl®) <172
o(n) k<24a(n)

so that the limit in (2.1) cannot exist for t = 1/2. Since f is integral-valued, its

limiting distribution would be continuous at ¢t = 1/2. Thus f does not admit

a limiting distribution.

Example 2. We use the same construction as in Example 1 for the
subsequence and consider g((aq(n) — 1)4o(n)) = 1, and g(egm) = 0 otherwise.
Clearly, the moments of f and g are equal. Therefore g is defined almost surely
on Zg. We claim that g possesses a limit distribution.

Since g takes only integral values, it is sufficient to look at Ijx) o g. Let

mg(N) = %#{n < N; g(n) = k}. We have

- 1
we@=k=ST]I ,(m)ﬂ(l‘ ),
10 mel mgl

1
mk(gn) = (1 - > .
lc[ozl\; 1 ,,IEI[ ao'(m) l;[l a’a(m)

=k a(m)<N

Furthermore, we have my(eqn) = mi(gn) for any digit € < ayn, and, more
generally,
mk(EnQn +E€n-1qn-1+ -+ 50) =

_ €ndnMk(qn) + €n-1Gn_1Mk—s,(Gn-1) + - + Mk—s; (Qn—j) +-
€ngn + En-1Gn-1+ - + €0

b

where s; is the number of digits £,_¢ with £ < j that are of the form a,(m) — 1,
with the further convention that a negative index for m gives 0. Using that
m(gn) tends to pug(g = k) when N tends to infinity and limay(m) = 0o, one
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obtains that my(engn+€n-1gn-1+---+€0) — Mk (gn) tends to zero when n gets
large, which means exactly that m (V) tends to pg(g = k). This is equivalent
to 0 being a generic point.

3. Consequences

For this section we recall that two dynamical systems are called spectrally
disjoint if the intersection of their respective spectra is {1}. Theorem 1 in (8,
Chapter 10. §1] states that the direct product of two dynamical systems is
ergodic if and only if the two dynamical systems are ergodic and spectrally
disjoint.

Proposition 4. Let Q be a constant-like Cantor-numeration system. Let
A be a compact abelian group, a € A, and 1, : g — g + a be the rotation by .
Assume that Ty, is ergodic and that

Vn : gpa # 0.

Let A4 denote the Haar measure an A and let I be a subset of A of positive
Haar measure and such that Aa(0I) = 0. Finally, let f be a Q-additive function.
Then the distribution function

. 1
NI < N; TEEET) 2 xlf)=F@)

n< N
rreel

exists, if and only if the conditions of Theorem 1 are satisfied.
Moreover, every point (z,£) € Zg x A, for which f(x) converges is generic
for xi o f for every continuity point t of F, i.e.
Jim 1 Y xi(f(n+2) = F(t)
Nooo B{n < N; Tgee I} 4= =S

TREE!

Proof. We recall that the spectrum of the dynamical system (Zg, )
equals (cf. [29])
{z€C; 3n:2" =1}.

On the other hand the condition on o € A is equivalent to

Vx € A\{1}, Vn:x(e)™ #1,
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which shows that the two dynamical systems (Zg, 7) and (A, 1y ) are spectrally
disjoint.

We consider the dynamical system (Zg x A, 7 x T,). Assume that (y,£)
is a generic point for x; o f ® 1;, i.e.

(3.1) Jim 3 ulfln+ )T = FOAMD,

"T'his is equivalent to

lim = 3" x(f(n+ y)xna+€) =0

N—oc
n<N

for all x € A\{1}. The equation x(na + £) = x(na)x(€) immediately implies
that this limit is uniform in £ € A and therefore the limit in (3.1) is uniform
in &.

Then following the same lines as the proof of ”(3) = (1)” in Theorem 1
yields that (z,n) is generic for any n and any = such that f (z) is defined.

The proof of the necessity part follows the same lines as the proof of [19,
'I'heorem 2].

Remark 3. Proposition 4 should be compared to [19, Theorem 2], where
necessary and sufficient conditions for the existence of a distribution function
for n ranging in F C N defined by irrational rotations on a torus are given.
Proposition 4 gives a slight generalisation in terms of the group rotation and the
underlying number system as well as a characterisation of the generic points.
"The necessity part still depends on (19, Theorem 2].

4. Extension to more general numeration systems

Let us recall that if (G,), is an increasing sequence of positive integers
with Go = 1, we can expand every positive integer with respect to this sequence,
i.e.

oo
VneN, n= Zska,
k=0
this expansion being finite and unique, provided that
K-1

(4.1) VK : Y exGy < Gk
k=0
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The digits £; can be computed by the greedy algorithm. The sequence (Gp)n
defines a so-called numeration system.

The notation of @-additive function naturally extends to this of G-additive
function, namely

K K
(4.2) f <25k0k> =Y f(eGr)
k=0 k=0

for which one may investigate the existence of

(4.3) F(t) = Jim = 3 x(f() = Jim Fy().

n<N

In Sections 5.1 and 5.2, we will partially extend the results of Section 2 to
some families of numeration systems. Our approach uses ideas similar to
those introduced in Section 2 to give sufficient conditions for the existence
of an asymptotic distribution. The present section is devoted to the common
framework of the study below.

For this purpose, we will use the G-adic compactification s of N as
introduced in [14] and the embedding v : N <> K. Again, 7 will denote the
"addition of 1” map (extended to K¢g). For £ = (z,), it can be defined as
T(z) = lirrzn(u(:coGo + -+ x,Gp + 1)) (see [1]). Although there is no group

structure on K¢, it is possible to endow the dynamical system (K¢, 7), the
so-called odometer, with a 7-invariant probability measure ug which shall play
the role of the Haar measure. For convenience, we will occasionally denote this
measure by P.

The first tool needed is a version of Kolmogorov’s three-series theorem for
dependent random variables (it is not surprising that only the sufficiency part
is at disposal).

Lemma 1. [25, Section 29, Theorem D] Let Y,, be a sequence of uniformly
bounded random wvariables. Denote F, the o-algebra generated by Yy,..., Y,
and assume that

(4.4) i]E(Yn | Faer) and iE [(Yn —E(Yn | Fro1))?]

n=0 n=0

o0

converge (almost surely for the first series). Then the series Y Y, converges
n=0

almost everywhere.
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In terms of Theorem 1, the assumptions of Lemma 1 ensure the existence
of f. Thus the lemma gives the implication (2) = (3). Since the existence of
the distribution function does not imply the existence of f anymore (by the lack
of independence), it remains to investigate the key part of the theorem, that
is (3) implies (1). Hence we will get a sufficient condition for the distribution
function to exist (we restrict ourselves to the genericity of 0). The proof works
mautatis mutandis, provided that two conditions hold. The first one is that the
sequence (Gn4+1/Gn)n is bounded. With the notation of the proof, this ensures
that M(N) <« N. Actually, it is already the reason for which the implication
(3) = (1) can fail for non-constant like Cantor numeration systems. The second
condition is more technical and ensures that if the expansion of x + M begins
with m zeroes, say, then the addition of a small number n does not change the
digits beyond m, so that we have f(zx + M +n) = f(n) + f(z + M). That
is obvious for Cantor numeration system, but not true in general, since the
propagation of carries is considerably more complicated in the general case
(see [1]). This condition is stated as the hypothesis below.

Hypothesis (H). Let G = (G,), be a system of numeration and K¢ the

underlying odometer. For z € K¢ and m € N, let z(>™) = A>2 lej(z)Gj.
j>m+
Then we say that G satisfies Hypothesis (H) if:

3k eN, Vz € Kg, Vm >k, Vi > m:e;(rCm*(a>™)) = g;(x).

Corollary 5. Let (Gr)nen, be an increasing sequence of integers satisfying

) G
lim sup kil
k—oo Gk

< 00

and Hypothesis (H). Let f : N — R be a G-additive function. Assume that
the series (4.4) converge for fn(z) = f(znGr). Then f admits an asymptotic
distribution function.

Proof. Hypothesis (H) implies that liminf(Gn41/Gn) > 1. Hence, by
[2, Théoreme 7], the dynamical system (K¢, ) is uniquely ergodic. Using the
notation of the proof of Theorem 1, take M = M(N) = Gpys— . ¢€j(x)Gj,
j<m+1
where T is a generic point belonging to K¢\ L>J1 77"(0). The proof is then an
nz

immediate adaptation of the Cantor case.
In order to study the purity of the limiting distribution, we define a
sequence (X,), of random variables on the probability space (Kg,pc) by

Xn((zo,Z1,Z2,...)) = Tn. The following proposition shows that the sequence
of random variables (X,,) satisfies a Kolmogorov 0-1-law.
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Proposition 6. Let G = (Gp)nen be a numeration system and (K¢, 7)
be the underlying odometer. Assume that (K¢, T) admits a T-invariant ergodic
measure pg. Then for any A € T = () o(Xn, Xn+1,...), €ither ug(A) =0

neN
or ug(A) =1 holds.

Proof. Let A € 0(Xn, Xn41,...). Then we claim that AAT™1(A) C
C U [w(Gm —1)], where

W(Gm —1)] ={z = (zn)n € Kg;z0 = €0(Gin = 1), ... ,&m-1(Gm — 1) }.

To prove that we assume that z € AAT7!(A). Then 7(z) € Aand z ¢ A
orz € A and 7(z) ¢ A. This means that for all n, the operation z — z + 1
has changed at least one of the digits ,,Zn+1,. ... By definition of 7, this can
only happen if the word €o(G, — 1) -+ -em—1(Gm — 1) is a prefix of z for some
m > n. Hence for A € 7 we have

Asr=H(A) € () U W(Gm = D] = 77 ({O})).

neENm>n

Since g is non-atomic (cf. [2, Theorem 8 (a)]), this implies ug(AAT~1(A)) =
= 0. By ergodicity of ug this yields either pug(A) =0 or ug(4) = 1.

The following proposition is an analogue to the theorem of Jessen and
Wintner [20].

Proposition 7. Let G = (Gp)nen be a numeration system and (Kg,T) be
the underlying odometer. Assume that (K¢, 7) admits a T-invariant ergodic
measure pg. Then the distribution function (if it exists) of a G-additive
function is of pure type (either purely atomic, or singular continuous, or
absolutely continuous).

Proof. The proof is the same as the proof of [12, Lemma 1.22] using
Proposition 6 instead of Kolmogorov’s 0-1-law for independent random vari-
ables.

The second part of Proposition 3 cannot be generalised offhand. Indeed,
Lévy’s proof is based on concentration inequalities, where the assumption
of independence is hardly dispensable. Nevertheless, we will see a different
approach in Proposition 9, that also works in that special weakly dependent
setting.



Limit distribution of Q-additive functions 69

5. Special systems of numeration

Quite contrary to the series (1.3), the series (4.4) are poorly explicit, and
their convergence is not easily investigated: because the fist series of (4.4) is a
series of conditional expectations whose convergence has to hold almost surely,
and because both use invariant measure, which is itself rather inexplicit. In
this section, we examinate special numeration systems allowing to give explicit
conditions.

5.1. Ostrowski expansions. Let a be an irrational number in the
interval [0,1/2] and write & = [0:a1, a2, ...] its continued fraction expansion.
Define as usual (pn)n, and (gn). to be the sequences of numerators and
denominators of the convergents of a. They are given by gy = 0, ¢op = 1
and ¢n = @ngn—1 + gn-2. Then (gp)n>0 is increasing and defines a so-called
Ostrowski numeration system in the sense of Section 4. The corresponding
compactification is denoted K, (for Kg), whose elements z = (z,), are
characterized by the inequalities

Tg<ap—1,
(5.1) V3 <1, zj < ajy1,
V] <1 (:l] =Qaj+1 = Tj—1 = O)

Recall that ||z|| is the distance to the nearest integer. In the context of
continued fraction, ||gnc| = |gna — pnl.

Lemma 2 ([4, 32]). Let P be the invariant probability measure on the
odometer. Then, for any cylinder C = [zo---x,] and for the n-th projection
X, on Ky, we have:

llgnall + lgnrrall  if £, =0,

(5.2) P([C]) =
llgnal| if T, #0;
gn(llgnell + llgns1cl]) fa=0,
(5.3) P(Xn = a) = QnHQna” ifl1<a<an—1,

QH—IH(Ina“ Zfa = On+41-
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From now on, we consider an Ostrowski numeration system associated with
an irrational number a with bounded partial quotients (that is the analogue
of the hypothesis to be constant-like for the Cantor numeration systems). As
before, f denotes an additive function with respect to (gn)n. We begin with
the second series of (4.4).

Lemma 3. Let F, be the o-algebra generated by Xo,...,X, and fp, =
= f(XnGr). Then the following statements are equivalent:

(1) The series i E [(fn — E(falFn-1))?] converges.
n=0

(o3

(2) The series Y. E(f2) converges.
n=0
o0 Gn+1

(8) The series Y, 5. f(egn)? converges.

n=0 e=1

Proof. It is clear that (2) implies (1). Since f, € L?(Kg), we have

(5'4) E [(fn - ]E(fnu:n—l))z] = E(fr%) - lE(an(fnl}-n—l))-
Using f(0) = 0 and the Cauchy-Schwartz inequality, we get
E(an(fn|]:n—l)) =

=P(Xn > 0)E(frE(fn|Fn-1)| Xn >0) <

< P(Xn > 0)[E(fz| Xn > O)*[E(fnE(fn| Fn1)| Xn > 0)]'/2 <

< P(Xn > 0)E(£3).
Since P(X,, > 0) is bounded away from 1, this shows that (1) implies (2). The
equivalence with (3) is then immediate, noticing that 1€n7t; P(X, =€) > 0 by the
boundedness of the partial quotients a,. ,

Less immediate is the first series, which is a series of random variables and
not a numerical one. For z = zoz,--- € Ky and n € N, let C2 = [zo- - 2]
and, for k€ N, C¢ = Cl'}(k). Using Lemma 2, we compute

Qn_l

1
(5'5) E(fn|-7:n— ) = o7y fn( )d]P’( )I[ v =
V= P<ck>04 Petiello
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gn—1 Any1

= Z ]p(("n) Z f(eqn)P([e0(k) - "En—l(k)a])HC,’; =

-1 ”q a” an +1
n
N 3 ]IC"+
kgo ||qn—1a||+||qnau§f< an)lc;
gn—1 ans1—1

HQna” ~
" Z Ian o] ; f(egn)lcy =

lgnell
- €qn) | Iix,_=0)+
(llqn_lan + llgne|| ; f(egn) | Iix,._s=0)

~

~~

Qrn

n4+1—1
gnedl ¥ I
\Tgoral 2y f60) ) Toxaasor

v

Bn

where the equalities hold almost surely.

Lemma 4. Let a = (an)n and b = (Bn)n be two real (or complex) valued
sequences. Let a® b be the set of the sequences (un)n, such that, for all n € N,
one has un € {an,Bn}. Then

(Vu Eadb, Z u, converges ) &

neN

& Z Qn, Z Bn and Z |om — Br|  converge.

neN neN neN

Proof. We present the proof for real sequences; the extension to complex
sequences is obvious. The sequences a, b, max(a, b) and min(a,bd) are elements
of a®b. Hence so does the sequence |a—b| = max(a, b) —min(a, b) € adb, which
proves that the condition is necessary. Conversely, assume that the three series
of the right-hand side converge. Let u € a®b; define v = (vp)n by v, = ap—0n
if up = an, and v, = B, — an if up = By. Then |v| = |a — b], hence Y v, is
(absolutely) convergent. Moreover, u = 3(a + v + b), hence the convergence of

> Un.

We get the following result:

Proposition 8. Let (¢,)n, an Ostrowski numeration system associated to.
an irrational number a, and assume that o has bounded partial quotients (ap)n,.
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Let f be a (gn)n-additive function. Let a, and B, be as in 5.5. Assume that
the four series below converge

00 Qn+1 0 (e ] o<
Z Z f(E‘In)za Zam Z//jns Z|an“5nl~
n=0 e=1 n=0 n=0 n=0

Then f admits an asymptotic distribution function.
We now generalise the second part of Proposition 3.

Proposition 9. Let (gn)n an Ostrowski numeration system associated to
an irrational number «, and assume that o has bounded partial quotients. Let
f be a (gn)n-additive function admitting an asymptotic distribution dF. Then
dF is purely atomic if and only if f, is ultimately 0.

Proof. We now prove the second assertion of the theorem. Assume f, =0
for n > ng. Then f only takes finitely many values. Therefore dF is atomic.

Assume now that f,, # 0 for an increasing sequence (ng),. Without loss
of generality, we may assume that nxy; — np > 3 and that sup || fn,,;llc <
721

< %min(Ak, By), where

(56) Ak = min{|f(8nkan)]; O S Enk S ank+17 f(enkan) 7& 0}7

and
(5.7 By = min{|f(5nk—1‘an—1) + f(Ene+19nc+1));

0 S Enk—l S Qn,y 0 S Enk+1 S ank+27 f(snk—1an—1) + f(enk-l-lan-l»l) 74 0}

Let t € R and set A = {z € K; f(z) =t}. We define maps ®; on A by
@) ((zo, 21, ...)) = (xp, ) .. .) as follows:

o if f(Zn,qni) # 0, then 2 = z; for j # ny and z;,, =0,
¢ if f(Zn,qni) = 0 and f(Tn,-19n,—1)+f(Tni+1qn,+1) = 0, then 2 = z; for
|7 —nkl > 2,2, | =z, 4, =0and z, is chosen so that f(x;, gn,) # 0,

o if f(Zn,qn,) =0 and f(zn,-1n,-1) + f(Tni+1Gni+1) # 0, then .’E; =zx;
for |j —nkl|#1land z;,, ; =27, ,, =0.

Then, (5.6) and (5.7) ensures that ®x(A) N ®;(A) = 0@ for k # j.
Furthermore, we have by construction u(A) < cu(®x(A)), where the constant
c is positive (it is possible to compute explicitly one value for ¢ from (5.2): one
gets

¢ = min qn—l”‘]n+2a” ]
n gn(llgnt2e] + llgnt3c))
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It follows that u(A) = 0. Therefore, dF is not atomic.

5.2. Linear recurrent bases. An other case of special interest is that
where the numeration system is given by a recurrence sequence arising from the
(B-numeration with decreasing coefficients. Namely, ag > a; > --- > aq_1 > 1,
and

(5.8) Gn+d = a0Gpag-1 + -+ +a4-1Gn, forn >0 with

Go=1 and G =aoGr_1+ - +ar_1Go+1 for k <d.
'The initial values are chosen as the ”canonical initial values” from [15]. In this

o0
case, a finite sum ) €4Gy is the expansion of some integer if and only if
k=0

(5.9) (Ek,.,.,So,OOC) < (ao,...,ad_l _l)oo

(< being understood as the lexicographical order) for every k. The strings
(€0,€1,...) that verify this condition are called admissible strings. The
dominating root of the characteristic equation X4 — ag X4 1 — ... —aq_; =0,
say @, is a Pisot number; these equations have been studied by Brauer [7]. In

. . Gn .
particular, lim — exists and is non-zero.
n—oo M

It was proved in [14] that (Kg,7). Furthermore, the measure pg was
computed explicitly there: let C = [x¢ - zx] be a cylinder in K¢, and Fp, =
= #{< Gm;v(k) € C}. Then

(5.10) P(C) =

_ Fepa® 4 (Fryo — aoFkq1) + - + (Frgd — 0Fkqd—1 — - — @a_2Fq1)
N akftl(ad-1 +.. +a+1) ‘

In [3, Theorem 4] it was proved that a G-additive function f admits an
asymptotic distribution function, if the series
(5.11)

oo |as—1

Z z flaoGnyd—1 + - +as-1Gnyd—s + €Gryd—s—1)| fors=0,...,d-1
n=0| £=0

ao

(5.12) i f(0G)?

n=0¢=0

converge.
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In the sequel, we look at the case d = 2, and write G 12 = aGpy1 + G,
where a > b. With the notation of (5.10), we have Fi4; =1, and Fxi2 =a+1
if g < b, Fy42 =a if b <z < a. Hence

a~k-1 if zx < b,
P([zozy - xk]) =

—— ifb<z <a.
ak(a+1) ifb<zp<a

We shall now turn our attention to E(f, | Fn—1) and use the notation of
Section 5.1.

gn—1

E(fn | Fn-1) = Z i C") /fn(z)d]P’(a Iy =

Gn,—-1
- Z IP(C Zf (eGr)P([so(k) - - - en—1(K)e])lcp =
k=0

= (Zf(EG )a~"" 1+Zf(EGn) ' (a +1)> cr+

gn—1 b—1 a-1
+ Z an—l(a + 1) (Z f(EfGn)a—n—] + Zf(eGn)an(;+ 1)> ]IC;' =
e=b

k:bG,,_l e=1
= a
<_ f(eGn) Zf(EGn)) Iix, _<b)+
@ e=1 ta e=b
a+ 1 1432
+ ( - ; f(eGn) + — zz;) f(an)> L(p< X _1<a)»

where the equalities hold almost surely. Lemina 3 can be immediately adapted:
the assertions (1) and (2) are still equivalent and are also equivalent to an
appropriate form of (3), which now reads off

(5.13) (8" The series Z Zf(s(; converges.

n=0¢e=1
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Hence we get the proposition below.

Proposition 10. Let G = (Gy)n be a linear recurrent numeration system
given by Gpy2 = aGp41 + bG,,. Let f be a G-additive function. Assume that
the four series below converge.

3
/N
QI+

o

L
\
Y
Q
2
+
&‘5
o
Q
2

\_/

n=0 e=1

oc a_+1b—1

(25 s+ LS s,

n=0 e=1

) 1 b—-1

2 (qz 2 JCG+ o +1)Zf( P TAC S

Then f admits an asymptotic distribution function.
Similar to Proposition 9 one can prove the following proposition.

Proposition 11. Let G = (Gp)n be a linear recurrent sequence. Let f
be a G-additive function admitting an asymptotic distribution dF. Then dF is
purely atomic if and only if f, is ultimately 0.

Example 3. Let Gpi2 = aGp41 + aG,.  Then the conditions of
Proposition 10 can be slightly simplified. The function f admits an asymptotic
distribution if the following series converge:

S 3 feG) 33 JGn)

n=0e=1 n=0e=1
oo |a—1 a—1
Z Z f(eGr) — af(aGy) Z (a > feGn)+a f(ac,,)> .
=0|e=0 n=0 e=0

Example 4. The case a = 1 is interesting and can be easily generalized to
obtain the so-called Multinacci sequence G,4q = Gpnyd—1+Gnya—2+---+Gn.
For this numeration system, we get P([zg - --01°]) = (a?+- - -+ a%~%)a*+4 and
the sufficient conditions are the convergence of the series

D 1f(Gr)l and D |f(G)
n=0 n=0
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In particular, under this condition, the function f can be continuously extended
to the odometer Kg, for which case the existence of the limit distribution is
obvious. The series in (5.11) yield the same trivial sufficient condition in this
case.

The arguments used above for linear recurrent numeration systems of
degree 2 are straightforward to extend to higher degrees. However, the explicit
computation of the measures of the cylinders using (5.10) and the subsequent
computation of the conditional expectations E( f|F,_-;) become more and more
unpleasant, due to the rapidly increasing number of cases to distinguish.
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