LAUDATIO TO
Professor Imre Katai

by A. Jarai

Imre Kéatai was born in Kiskunlachdza, May 13, 1938. He was three years
old when he decided to live with his grandparents. His father died during
World War II near the village of Osmolka (today belonging to Ukraine). After
finishing primary school in Dunavarsany (1946-1952) he went to secondary
school Fazekas Mihdly Gimnédzium, Budapest (1952-1956). His teacher Miklds
Nagy recognised his extraordinary mathematical talent. He started his studies
at Jézsef Attila University in Szeged. After one year he moved to Eotvos
Lorand University and got his diploma as a mathematician and secondary
school teacher in 1961.

He obtained his scientific degree C.Sc. (higher than Ph.D.) in 1966 and
his D.Sc. degree in 1969. He became a corresponding member of Hungarian
Academy of Sciences in 1979 and an ordinary member in 1985. His university
carrier started at Eotvos Lorand University (ELTE) as a lecturer (1961-
1963). During the years 1963-1965 he got a scholarship to work on his C.Sc.
dissertation. Then he was assistant professor until 1966, associate professor
until 1970, and the full professor. During 1970-1977 he served as the Dean of
the Faculty of Sciences. From 1970 to 1983 he was the head of the Department
of Numerical Analysis and between 1980 and 1993 the Director of Computer
Center of ELTE. From 1993 to 2003 he was the Head of the Department of
Computer Algebra and from 1995 to 1998 the Head of Department of Applied
Mathematics and Computer Science at Janus Pannonius University, Pécs.
Since 2005 he has been the Director of ELTE IK KKK. While serving as dean he
introduced computer science as a new curriculum and was later the principal
behind establishing the Faculty of Computer Science. He received the Gold
Order of Labour (1978), the ”Pro Universitate” Award (1978), Széchenyi Prize,
the highest award possible to receive in Hungary for scientific work (1995), the
Award of ELTE (2005), Commander’s Cross of Civil Division of the Order of
Merit of Hungarian Republic (2005) and the Award of ELTE IK (2007).

Professor Katai started his scientific work as a student of P. Turdn. He
wrote wrote more than 320 scientific papers; the exact number cannot be
determined because while you are counting them, he has already written a



new one. Although most of the papers he wrote alone, he cooperated with 41
coauthors practically all over the world.

1. Comparative number theory: )-type theorems

Turan and his students have developed a method to investigate the change
of signs of m(z) — li(z) and also of n(z,q,l1) — n(z,g,l2), the difference of the
number of primes in the different residue classes [y mod ¢ and /> mod q. Turdn
called these kinds of investigation as comparative number theory. They are
also called Q-type theorems: we say that the function f is Q(g), if

liﬁsgp If(z)|/g(x) >0

if this is satisfied without taking the absolute value, we say f is Q% (g) and if
it is satisfied for — f, then we say that f is Q7 (g).

For several number theoretical functions it is relatively easy to prove Q*-
type theorems, but hard to prove effective results for change-of-sign intervals.
Such theorems were proved by Turdan, Knapowski and W. Stas with the help of
the so-called "method of power sums”. Katai found a new and very powerful
method based on a formula of Rodossky. An example of his results is the
following theorem:

Suppose that the zeta function ((s) is different from zero if for s = o +17
we have 0 > 1/2 and |7| < B + 20. Then there exist effectively computable
constants c1, c2, k and 8, such that for each I’ > ¢; B® for the function M (z) =
= 5" wp(n) we have

n<lz

M(z) é min M(z)
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Similar results were proved by Katai, for example, for the functions

MO(:L')\/E» m(x)/\/E, S(.’B)\/E, T(I)/\/Ev V(:L‘)\/E and R(l’)/\/i, where

Mo@) = 1Y ) = 3 i) expln/o),

n<z

l)n+1

=Y pwexp(-a/n), T Z((n_l'c @)’

n=1



and the functions V and R are the remainder terms in the approximation of

the functions Y 72(n) and Y. r%(n), respectively; here 7(n) is the number
n<z n<z

of divisors of n and r(n) is the number of the positive integer solutions of the
equation n = u? 4 v2, see the papers [4], [9], [10], [11], [12], {13}, {17}, [26], [33],
[34], [39], [40].

In a joint paper Katai and Corradi [24] gave an Q%-type estimate for the
remainder term in the approximation of the number of points of Z2 in the circle
around the origin having radius 1/z. Until today this is the best known result.

2. Distribution of additive number theoretical functions on the set
P+1

He started working in probabilistic number theory in the second half of
sixties. The starting point was a well-known result of Erdés and Wintner.

Let A C Nand let A(z) = {a € A : a < z}. We say that a function
f: A — R has a distribution on the set A, if

Jlim_ hA( )h{a € A(z) : f(a) <y} = F(y)

for almost all y € R for a distribution function F'.

The theorem of Erdés and Wintner says that an additive number theoret-
ical function f has a limit distribution on N if and only if the series
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peP,|f(p)|21 pepfo)<1 P pebfml<1 T

are convergent. Kétai proved [51] in 1969 that the convergence of the three
series is sufficient for the existence of the limiting distribution on the set P4 1.
This must be considered in light of conjecture that the multiplicative properties
of the ”shifted primes” P+a are in essence the same as N, the set of all naturals.
His result was the first step to ”prove” this conjecture.

The question of the necessity of the convergence of the three series
remained open for several years. Katai in [65] proved necessity under the
condition of boundedness of f. P.D.T.A. Elliot proved it under non-negativity
of f (Acta Arithmetica, 25 (1974), 2569-264), and Hildebrand under supposing
that the limit distribution exists for P + a, a € N. Several other authors have



results in this topic. In his paper [55], Katai gives generalizations for joint
distributions of additive and multiplicative functions.

3. Sets of uniqueness

Around 1967 Imre Kéatai asked whether it is true that for a completely
additive function f(P + 1) = 0 implies f(N) = 0. More generally, we can ask
whether for a subset A of N it is true that f(A) = 0 implies f(N) = 0 for
all completely additive functions. If yes, A is called a set of uniqueness for
completely additive functions. Concerning the original function Katai proved
that there exist finitely many primes q1, g, - . ., g- such that {q1, ..., ¢ }U(P+1)
is a set of uniqueness [49]. P.D.T.A. Elliot (A conjecture of Katai, Acta
Arithm., 26 (1974), 11-20) answered the question of Katai completely. Note
that completely additive functions can be uniquely extended to a homormor-
phism of the multiplicative group QF of positive rationals by the definition
f(m/n) = f(m) — f(n) for m,n € N. If this homomorphism is continuous,
then it can be further extended, by taking limit, to a homomorphism of the
multiplicative group R of positive real numbers. D. Wolke (Bemerkung iiber
Eindeutigkeitsmengen additiver Funktionen, Elem. der Math., 33 (1978), 14-
16) proved that A is a set of uniqueness for completely additive functions if
and only if for all n € N there exists a k € N such that n* can be written as a
finite product []af*, where a;, € A and ¢, = £1.

1

4. Sets of uniqueness modulo 1

A subset A of N is called a set of uniqueness modulo 1 for completely
additive functions if f(A) = 0 (mod 1) implies f(N = 0 (mod 1) for all
completely additive functions f. In {49] K&tai implicitly proved that there
exist finitely many primes ¢1, ¢z, . ..,qr such that {q1,...,¢-} U(P+1) is a set
of uniqueness modulo 1. Sets of uniqueness modulo 1 were characterised by
Dress and Volkmann and independently by Indlekofer, by Hoffmann and by
Meyer: these are those sets for which any n € N can be written as a finite
product []a;*, where a; € A and ¢; € Z; in other words those sets which

k3

generate the multiplicative group Q7. It is not known whether P 4 1 is a set
of uniqueness modulo 1.

Clearly, more generally for any Abelian group G it is possible to ask
whether a subset A of N is a set of uniqueness for the set of all completely



additive functions f : N — G. In this setting modulo 1 uniqueness is the
case G = T = R/Z. This type of problems has a large literature, several nice
results were proved, among others by P.D.T.A. Elliot, Wirsing, Hildebrand;
see the survey papers [253], 196-199 and [297], 123-124. For example, in [284]
DeKoninck and Kétai (and independently Indlekofer and Timofeev) proved
that the set {u? +v% + a:u,v € N} is a set of uniqueness modulo 1 if a € N.

5. Characterization of regular additive and multiplicative functions

Imre Kétai proved in 1970 in a very elegant way [69] the following theorem:
If f is an additive function for which

éZIf(n+1)—f(n)|——>0 as T — 0o,

n<z

then f is a constant times the logarithm function.

This theorem solved a problem of Erdés posed in 1946. Other statements
characterising the logarithm as additive number theoretical function can be
found in {70], [80], [102], [134], [142].

An analogous but harder-to-handle question is the characterization of
multiplicative functions having regularity properties. Such theorems were
proved by Katai in the sequence of papers [136], [139], [140], [141], [146]. An
example is the following:

Suppose that the complex valued multiplicative number theoretical function
satisfies the condition

fn+1) = f(n)] < oo

3!'—'

Then either

2_: LI

or
f(n)=n® for some s with R(s) < 1.

In one of his talks in 1978 Imre Katai stated the conjecture that if for
a complex valued multiplicative number theoretical function f the difference
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f(n+1) = f(n) — 0 as n — o0, then either lim f(n) = 0 or f(n) = n® for
n—oo

some s with 0 < R(s) < 1. This problem was solved in 1984 by Wirsing (see
the paper Wirsing E., Thang Yuansheng and Shao Pintsung, On a conjecture
of Katai for additive functions, J. Number Theory, 56 (1996), 391-395).

Another conjecture posed by Kétai and Subbarao [297]: If for a completely
multiplicative number theoretical function having values in T the set A of limit
points of the sequence f(n + 1)f(n) is finite, then A is the set of k’th roots
for some k € N, the function f can be written in the form f(n) = n'" F(n) for
some 7 € R, where F(N) = A and A is the set of limit points of the sequence
F(n+1)F(n). This conjecture has been partially solved by Wirsing who proved
that if A is finite, then there exist 7 € R and ! € N such that f can be written in
the form f(n) = n'"F(n), where F'(n) = 1 (Annales Sect. Comp., 24 (2004),
69-78).

Similar regularity results were proved by Daréczy and Katai in a general
setting for completely additive functions f mapping N to a metrisable Abelian
group G: if f(n+ 1) — f(n) — 0 as n — oo, then f is a restriction of a
continuous homomorphism of the multiplicative topological group R* into G
(see [149], [160], [170], [172], [188], [192]).

6. g-additive and g-multiplicative functions

The notion of g-additive functions was introduced by A.O. Gelfond: let
for a fixed ¢ € N,g > 1 be

n=eo(n) +e1(n)g +2(n)g® + . ..

the (unique) g-ary expansion of n € N with digits &; € {0,1,...,g —1}. A
function f : NU{0} — R is called g-additive if f(0) = 0 and for each n € N we
have

fn) =Y fe;(n)g).

7=0

An important example for g-additive function is the sum-of-the-digits function
o0

f(n) = 3 €j(n). Replacing sum by product (and supposing f(0) = 1) we
=0
obtain the notion of the ¢g-multiplicative function.
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In 1972 Delange proved that a g-additive function has a limit distribution
if and only if the series

oo g—1 oo g—1
YY) flag’) and D feg’)
7=0a=1 j=0a=1

are convergent. The same year Katai proved that the same statement remains
true if we consider the limit distribution only on the prime numbers. His main
tool was the following lemma:

Let h < cjlog(N), 1<l <lp<...<ly <N, and
bl,bz,...,bhe{0,1,...,q—1}.

Then the number of all primes p < ¢~ for which e;(p) =b; forj=1,2,...,h
18

T N
(1+ o(1)) ;h) (N — 0).

The original proof is not satisfactory; a complete proof of this statement
will be published in a joint paper by G. Harman and I. Kéatai. An unproved
conjecture of Katai says that this is uniformly true for all h < N/3. The lemma
can be proved for fixed h and for positive values of polynomials P € Z[X].
This is done in a joint work of Bassily and Katai, and helped characterising
g-additive functions for which the values |P(n)| have a limit distribution (see
(231], [233]).

Very recently, substantially advancing the method of Katai and Bassily,
M. Drmota, C. Maudit and J. Rivat found the asymptotic of the distribution
of the sum-of-digits function (Primes with an avarage sum of digits, in print
by Compositio Math.), also solving an old problem of Gelfond.

We know much less about the asymptotic distribution of values of g-
multiplicative functions (see the survey papers [232] and [264] for results and
open problems). Papers of Imre K4tai concerning this topic are {30], [36], [88],
[101], [102], [105], [129], [135], [143], [152], [162], [163], [216], [231], [233].

7. Number systems

Imre Kéatai wrote his first paper about number systems jointly with Szabé
[84]. They characterised in the ring of gaussian integers all those bases « for
which each element 8 of the ring can be written uniquely as

,3=50+51a+...+5kak,
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where the digits ; belong to {0,1,. .., |@|2—1}. They proved that the necessary
and sufficient condition for a is that ®(a) < 0 and ¥(a) = 1. The analogous
question for quadratic number fields was solved by Katai and Kovécs in [120]
and [128]. In [226] Kétai investigated the question whether for an algebraic
integer « in the ring of algebraic integers of the number field Q(c) there exists
a complete residue system modulo a such that using these as digits and o as
base, there is a unique representation for all algebraic integers 8 € Q(a). The
conditions that all the conjugates of o have to be greater than 1 in absolute
value and different from 1 — ¢, where € is a unit, are necessary. They were
proved also sufficient by Katai [226] in imaginary quadratic number fields. The
question for general number fields seems to be very hard. A result in this
direction is Theorem 4 in Kétai [248]. The notion of number system has been
generalised to higher dimensions in several ways. For example, in Z™ the base
can be an integer matrix and the digits are elements of Z™.

The ”unit ball” in these exotic number systems is the set of sums
g0 + ela_l + sga_2 + ...

It has interesting topological and measure theoretical properties. For example,
its boundary has fractal properties (see the results in [217], [218], [222],
[228], [229]). Some of the results were conjectured by the help of computer
experiments and some of the results were proved using computer programmes.

8. Rényi-Parry type expansions

A. Rényi in 1957 and W. Parry in 1960 considered the expansions of
numbers 0 < £ < 1 in the form

T=eo+e1/q+e/d+ ...,

where g > 1 is a real number which is not integer and the digits ¢; are from
{0,1,...,]q]}- There are many more z’s whose expansion is not unique, as
in the case ¢ € N. The expansion depends on the ”strategy” we apply to
choose the next digit when there are more than one possibilities. Fixing one or
more strategies, we may generalise the notion of g-additive functions for this
situation and several questions may be asked. There is a central role of the
expansion of 1 and the so-called ”univoque numbers”. We may also consider
a "base depending on n”, i.e. we may substitute g™ with A,, where A\, is a
strictly monotonic sequence of positive real numbers for which A, — 0. Further
generalisations, for example, to complex numbers are also possible. Large part
of the important results have been published in joint papers of Daréczy and
Kétai (see survey papers [272] and [319)]).
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9. Random walks in multidimensional time

Let N" be the ”r-dimensional time” with coordinate-wise partial ordering
and X : n — X(n), n € N" a family of independent identically distributed
integer valued random variables, a "random walk”. Using the partial sums

Sn)y= Y X(k) for neN
k<n,keNT

we define the renewal sequence u,(k) of X as the sum for n € N" of the
probabilities that S(n) takes the value ¥ € N. The following theorem,
generalising earlier results, was proved by Galambos and Kéatai [156]:

Suppose that X has finite expected value E(X) = u > 0 and E(|X|3) is
also finite, moreover X is aperiodic (i.e. E(e*X) not equal to 1 for anyt € R).
Then there ezists an explicitly given polynomial p having degree r — 1 such that

ur(k) = P(In(k/p)) + Ri + O(1),
where Ry — 0 for r =2 and r = 3, and for arbitrary 7,
2N

1
lim sup N Z |Ri| < oo.
N—oo k=N+1

Further results have been obtained in the joint paper by Galambos,
Indlekofer and Katai [168].

10. Theorem of Daboussi

The surprising result that for any irrational o € R and for any complex
valued multiplicative arithmetical function bounded by 1

1 .
li = 2mina =0
Jim sup > " f(n)e

n<z

was proved in the paper of H. Daboussi and H. Delange (Quelques propriétés
des fonctions multiplicatives de module au plus égal 1, C.R. Acad. Sci. Paris
Ser. A, 278 (1974), 657-660).

Katai generalized this in the following form:
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Lett: N —> R and p; < p2 <... be a sequence of prime numbers such that
> 1/p; is divergent. Suppose that for the sequences

n5,k(m) = t(p;m) — t(pem)

we have .
- E e?™mik(m) 0 as x — oo
x

m<z
whenever j # k. Then
1 .
lim sup |= Y f(n)e*™t ™| <o,
T—00 feM1 xT nE<:z

where M denotes the set of all complex valued multiplicative arithmetical
functions bounded by 1.

He also published further papers in this topic, in part with coauthors
Indlekofer, DeKoninck and Bassily.

I could continue the list of his important, interesting and inspiring results
and works. Since I have known him I have always been fascinated and
astonished by his proving power and his fantastic ability to find new and
interesting problems - and I am sure I am not the only one. I wish you, Imre,
a happy birthday.



