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ON INTEGER-VALUED
ARITHMETICAL FUNCTIONS

SATISFYING CONGRUENCE PROPERTIES

Bui Minh Phong (Budapest, Hungary)

In memory of Professor M.V. Subbarao

Abstract. In this paper some results and problems concerning integer-

valued arithmetical functions satisfying congruences are surveyed and the

following theorem is proved: If A > 0, B, a > 0, b,N > 0, C 6= 0 are

integers, (aA, Ab + B) = (a, B) = 1, f is an integer-valued completely

multiplicative function, f(B) 6= 0 and

f [A(an + b) + B] ≡ f(B) (mod an + b)

for all n > N, n ∈ N, then there are a non-negative integer α and a real-

valued Dirichlet character χ (mod aA) such that f(n) = χ(n)nα holds

for all n ∈ N, (n, aA) = 1.

I. Notations

An arithmetical function f(n) 6≡ 0 is said to be multiplicative if (n,m) = 1
implies

f(nm) = f(n)f(m)

and it is called completely multiplicative if this equation holds for all pairs
of positive integers n and m. In the following we denote by M and M∗ the
set of all integer-valued multiplicative and completely multiplicative functions,
respectively.
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Let N and P denote the set of all positive integers and the set of all
prime numbers, respectively. (m, n) denotes the greatest common divisor of
the integers m and n. For every non-negative integer a let

ϕa(n) = na (for all n ∈ N)

and
Φ := {ϕ0, ϕ1, ϕ2, . . .}, Φ+ := {ϕ1, ϕ2, . . .}.

II. The congruence f(n + m) ≡ f(m) (mod n)

The problem concerning the characterization of the functions nα by a
congruence property was studied by Subbarao in 1966:

Theorem 1. (Subbarao [24], 1966) If f ∈M satisfies

f(n + m) ≡ f(m) (mod n) for all n,m ∈ N,

then f ∈ Φ.

Later, A. Iványi showed in 1972 the following

Theorem 2. (Iványi [6], 1972) If f ∈M∗ and M ∈ N satisfy

f(n + M) ≡ f(M) (mod n) for all n ∈ N,

then f ∈ Φ.

We improved this result by proving the following

Theorem 3. (Phong and Fehér [21], 1990) If M ∈ N, f ∈ M satisfy
f(M) 6= 0 and

f(n + M) ≡ f(M) (mod n) for all n ∈ N,

then f ∈ Φ.

Theorem 4. (Phong [17], 1993; Joó and Phong [10], 1992) If integers
A > 0, B > 0, C 6= 0, N > 0 with (A, B) = 1 and f ∈ M satisfy the
relation

f(An + B) ≡ C (mod n) for all n ≥ N,

then there are a positive integer α and a real-valued Dirichlet character χ
(mod A) such that f(n) = χ(n)nα for all n ∈ N, (n,A) = 1.



On integer-valued arithmetical functions satisfying congruence properties 231

In 2004, I. Kátai proved the following

Theorem 5. (Kátai [11], 2004) Let

f1, f2 . . . , fk ∈M∗

and
A1, A2, . . . , Ak ∈ Z

such that
L(n) := A1f1(n) + A2f2(n) + . . . + Akfk(n) 6≡ 0.

If
L(n + m) ≡ L(m) (mod n) for all n,m ∈ N,

then
f1, f2, . . . , fk ∈ Φ.

Consequently

L(x) ∈ Z[x] is a polynomial with integer coefficients.

For the polynomial

P (x) = a0 + a1x + · · ·+ akxk ∈ Z[x] (ak 6= 0)

and the function f(n), let

P (E)f(n) := a0f(n) + a1f(n + 1) + · · ·+ akf(n + k).

For any fixed subsets A, B of N let KP (A,B) denote the set of all f ∈M
for which

P (E)f(n + m) ≡ P (E)f(n) (mod m) for all n ∈ A, m ∈ B.

It is obvious that Φ ⊂ KP (A,B) for all P, A, B. We are interested for a
characterization of those triplets (P,A, B) for which

KP (A,B) = Φ = {ϕ0, ϕ1, · · · , ϕa, · · ·}.

We have proved the following results

Theorem 6. The relation KP (A,B) = Φ holds in the following cases:

(a) (B. M. Phong [13], 1991) P (x) = 1, A = N, B = P,
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(b) (B. M. Phong [13], 1991) P (x) = 1, A = P, B = N,

(c) (B. M. Phong [14],1990) P (x) = (x− 1)k (k ∈ N), A = N, B = P
and

(d) (B. M. Phong [15],1991) P (x) = xM − 1 (M ∈ N), A = N, B = P.

Theorem 7. (B. M. Phong [16], 2001) Let f ∈M∗ with condition

f(n) 6= 0 for all n ∈ N.

Let P (x) be a non-zero polynomial with rational coefficients for which there
exists a suitable non-zero integer AP such that

AP P (E)f(n + m) ≡ AP P (E)f(n) (mod m)

for all n ∈ N and m ∈ N. Then f ∈ Φ.

In the special case when P (x) = (x − 1)k, Theorem 7 is true under the
assumption f ∈M.

Theorem 8. (B. M. Phong [16], 2001) Let f ∈M and let A 6= 0, k ≥ 0
be integers. If ∆kf(n) satisfies the relation

A∆kf(n + m) ≡ A∆kf(n) (mod m)

for all n ∈ N and m ∈ N, then f ∈ Φ.

III. The congruence f(n + m) ≡ f(n) + f(m) (mod n)

An another characterization of nα by using congruence property was found
by A. Iványi, namely he proved in 1972 the following

Theorem 9. (Iványi [6], 1972) If f ∈M satisfies

f(n + m) ≡ f(n) + f(m) (mod n) for all n,m ∈ N,

then f ∈ Φ+.

We improved this result by showing

Theorem 10. (Phong and Fehér [22], 1999) Assume that A > 0, B >
> 0, C, D 6= 0 are fixed integers with (A, B) = 1 and a function f ∈ M∗

satisfies the congruence

f(An + B) ≡ Cf(n) + D (mod n) for all n ∈ N.
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Then the following assertions hold:

(I) If f(p) = 0 for some prime p with (p, A) = 1, then

p = 2, C = −1, D = 1, (2, AB) = 1 and f(n) = χ2(n) for all n ∈ N.

(II) If f(n) 6= 0 for all n ∈ N, (n, A) = 1, then either

C + D = 1 and f(n) = 1 for all n ∈ N

or there are a positive integer α and a real-valued Dirichlet character χ
(mod A) such that

f(n) = χ(n)nα for all n ∈ N, (n,A) = 1.

In 2003, we improved this result as follows:

Theorem 11. (B. M. Phong [19], 2003) Let A, B be positive integers
with the conditions

(A,B) = 1 and (A, 2) = 1.

Assume that a function f ∈M and an integer C 6= 0 satisfy the congruence

f(An + B) ≡ f(An) + C (mod n) for all n ∈ N.

We have:

(I) If there is a prime power πe > 1 such that (π,A) = 1 and f(πe) = 0, then

(a) π = 2 and f(An) = −1 for all n ∈ N, (n, 2) = 1,

(b) C = 1 and f(2γ) = 0 for all γ ∈ N in the case (B, 2) = 1,

(c)

f(2γ) =





1 if γ < α,

2− f(2α) if γ > α
and f(2α) =

{ 2 if e > α,

0 if e = α

in the case 2α ‖ B with α ∈ N, furthermore e ≥ α, f(A) = −1, C = 2,

(II) If f(n)f(Am) 6= 0 for all n,m ∈ N, (n,A) = 1 and

|f(n)| = 1 for all n ∈ N, n ≡ 1 (mod D)

holds for a some a fixed D ∈ N, then
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(i) f(A) + C = 1 and f(An) = f(A) for all n ∈ N in the case when
f(Am) 6= −1 for some m ∈ N,

(ii) f(n) = 1 for all n ∈ N, (n, 2A) = 1 and

f
(
2α+γ

)
= C − f (2α) for all γ ∈ N,

where 2α ‖ B, α ≥ 0. Furthermore, if α > 0, then C = 2 and f(2δ) = 1 for
δ < α.

(III) If f(n) 6= 0 for all n ∈ N, (n,A) = 1 and |f(N)| > 1 for some
N ∈ N, (N,A) = 1, then there are a non-negative integer α and a real-valued
Dirichlet character χ (mod A) such that

f(n) = χ(n)nα

holds for all n ∈ N, (n,A) = 1.

IV. Additive functions which satisfy some congruence conditions

We shall denote by A and A∗ the set of all integer-valued additive and
completely additive functions, respectively. A similar problem concerning
the characterization of a zero-function as an integer-valued additive function
satisfying a congruence condition have been studied by K. Kovács [12], P.V.
Chung [2]-[4], I. Joó [9] and I. Joó-B.M. Phong [10]. It was proved by K. Kovács
[12] that if g ∈ A∗ satisfies the congruence

g(An + B) ≡ C (mod n)

for some integers A > 0, B > 0, C and for all n ∈ N, then g(n) = 0 for all
n ∈ N which are prime to A. This result was extended in [2], [9] and [10] for
integer-valued additive function f . It follows from the results of [3] and [9] that
for integers A > 0, B > 0, C and functions g1 ∈ A, g2 ∈ A∗ the congruence

g1(An + B) ≡ g2(n) + C (mod n) for all n ∈ N

implies that g2(n) = 0 for all n ∈ N and g1(n) = 0 for all n ∈ N which are
prime to A.

We improved this result by showing the following



On integer-valued arithmetical functions satisfying congruence properties 235

Theorem 12. (B. M. Phong [20], 2003) Assume that a ≥ 1, b ≥ 1, c ≥ 1
and d are fixed integers and the functions f1, f2 are additive. Then the relation

f1(an + b) ≡ f2(cn) + d (mod n)

holds for all n ∈ N if and only if the equation

f1(an + b) = f2(cn) + d

holds for all n ∈ N.

Theorem 13. (B. M. Phong [20], 2003) Assume that a ≥ 1, b ≥ 1, c ≥ 1
and d are fixed integers. Let a1 = a

(a, b) , b1 = b
(a, b) and

µ :=





1 if 2 | a1b1,

2 if 2 6 | a1b1.

If the additive functions f1 and f2 satisfy the equation f1(an + b) = f2(cn) + d
for all n ∈ N, then

f1 (n) = 0 for all n ∈ N, (n, µab1) = 1

and
f2(n) = 0 for all n ∈ N, (n, µcb1) = 1.

V. A problem of Fabrykowski and Subbarao

In 1985, Subbarao [25] introduced the concept of weakly multiplicative
arithmetic function f(n) (later renamed quasi multiplicative arithmetic func-
tions) as one for which the property

f(np) = f(n)f(p)

holds for all primes p and positive integers n which are relatively prime to p. In
the following let QM denote the set of all integer-valued quasi multiplicative
functions. In [5] J. Fabrykowski and M. V. Subbarao proved that if f ∈ QM
satisfies

f(n + p) ≡ f(n) (mod p)
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for all n ∈ N and all p ∈ P, then f ∈ Φ. They also conjectured that this result
continues to hold even if the above relation is valid for an infinity of primes
instead of for all primes. This conjecture is still open.

Assume that for a set B ⊂ P and for a function f ∈ QM, the congruence
relation

f(n + p) ≡ f(n) (mod p) for all n ∈ N, p ∈ B
holds true. For a given subset B of P and for each positive integer n we define
B(n) as follows:

B(n) :=
∏

p∈B, p|n
p.

It is obvious from the definition that B(n)|B(mn) holds for all positive integers
n and m, furthermore one can deduce that if f ∈ QM satisfies the above
congruence, then

f(n + m) ≡ f(m) (mod B(n)) for all n, m ∈ N.

Thus the conjecture of Fabrykowski and Subbarao is contained in the following

Conjecture. Let A, B be fixed positive integers with the condition
(A,B) = 1 and B is an infinite subset of P. If a function f ∈ QM and
integer C 6= 0 satisfy the congruence

f(An + B) ≡ C (mod B(n)) for all n ∈ N,

then there are a positive integer α and a real-valued Dirichlet character χ
(mod A) such that

f(n) = χ(n)nα for all n ∈ N, (n,A) = 1.

B.M. Phong and J. Fehér [23] proved this conjecture for the case, when A =
P \ B is a finite set.

Theorem 14. (Phong and Fehér [23], 2000) Let A,B be fixed positive
integers with the condition (A,B) = 1 and let A = P \ B be a finite set.
Furthermore we assume that (2, A) = 1 for the case 2 6∈ B. If a function
f ∈ QM and an integer C 6= 0 satisfy the congruence

f(An + B) ≡ C (mod B(n)) for all n ∈ N,

then there are a non-negative integer α and a real-valued Dirichlet character χ
(mod A) such that f(n) = χ(n)nα holds for all n ∈ N, (n,A) = 1.
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This result was proved earlier in B.M. Phong [18] for the case when A =
B = 1 and |P \ B| = 1.

Corollary 1. Let A be a fixed positive integer and let A = P \ B be a
finite set. If the functions f1, f2 ∈ QM satisfy the congruence

f1(An + m) ≡ f2(m) (mod B(n)) for all n,m ∈ N,

then there are a non-negative integer α and a real-valued Dirichlet character χ
(mod A) such that f1(n) = f2(n) = χ(n)nα holds for all n ∈ N, (n,A) = 1.

Corollary 2. Let A,B,D be fixed positive integers with the condition
(A, B) = 1 and (A, D, 2) = 1. If a function f ∈ QM and an integer C 6= 0
satisfy the congruence

f(An + B) ≡ C (mod n) for all n ∈ N, (n, D) = 1

then there are a non-negative integer α and a real-valued Dirichlet character χ
(mod A) such that f(n) = χ(n)nα holds for all n ∈ N, (n,A) = 1.

Corollary 3. Let N be a fixed positive integer. If the function f ∈ QM
satisfies the congruence

f(n + p) ≡ f(n) (mod p) for all n ∈ N and for all primes p ≥ N,

then there is a non-negative integer α such that f(n) = nα holds for all n ∈ N.

Remark. This corollary gives the answer to the conjecture of Fabrykowski
and Subbarao for the case B = {p ∈ P | p ≥ N}, where N is a given positive
integer.

VI. New results

Now we shall prove the following

Theorem 15. Let A > 0, B, a > 0, b, N > 0 and C 6= 0 be fixed
integers. If a function f ∈M∗ satisfies the congruence

f [A(an + b) + B] ≡ C (mod an + b) for all n ∈ N, n > N,

then there are a non-negative integer e and a real-valued Dirichlet character χ
(mod aA) such that f(n) = χ(n)ne holds for all n ∈ N, (n, aA) = 1.

Directly from Theorem 15 follows
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Corollary. Let A > 0, B, N > 0 and D be fixed integers. If a function
f ∈M∗ and an integer C 6= 0 satisfy the congruence

f(An + B) ≡ C (mod n) for all n ∈ N, n > N, (n, D) = 1

then there are a non-negative integer e and a real-valued Dirichlet character χ
(mod AD) such that f(n) = χ(n)ne holds for all n ∈ N, (n, AD) = 1.

In order to prove the theorem, we show first the following key lemma.

Lemma. Let U ≥ 1, V, u ≥ 1, v, α > 1, β > 1, k ≥ 1, l and F 6= 0
be fixed integers. If

(1) Uαkn+l + V
∣∣∣ F · (uβkn+l + v

)

for all n ∈ N, then there is a positive integer e such that

β = αe and u(−V )e + vUe = 0.

Remark 1. This result was proved by M. Cavachi in [1] for the case
when U = −V = u = −v = k = F = 1 and l = 0. Our proof is used in the
method of [1].

Remark 2. This lemma continues to hold even if the above relation (1)
is valid for all large n ∈ N instead of for all n ∈ N.

Proof. Assume that the integers U ≥ 1, V, u ≥ 1, v, α > 1, β > 1, k ≥
≥ 1, l and F 6= 0 satisfy (1). For every non-negative integer m we define a
sequence of polynomials Qm(x) ∈ Z[x] as follows:

(2) Q0(x) := v

and

(3) Qm+1(x) = αk(m+1)(Ux + V )Qm(αkx)− βk(Uαk(m+1)x + V )Qm(x).

It is clear from (2) and (3) that deg(Qm(x)) ≤ m for all integers m ≥ 0.

Let

(4) R0(n) := F
uβkn+l + v

Uαkn+l + V
for all n ∈ N

and for each integer m ≥ 0 we define Rm+1(n) by the relation

(5) Rm+1(n) := αk(m+1)Rm(n + 1)− βkRm(n).
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One can check from (1) and (4)-(5) that

(6) Rm(n) ∈ Z for all integers m ≥ 0, n ≥ 1.

Finally, we define a sequence {P0, P1, . . . , Pm, · · ·} of integers as follows:

P0 := u and Pm+1 := βkV
(
αk(m+1) − 1

)
Pm.

We shall prove that

(7) Rm(n) = F · Pmβkn+l + Qm(αkn+l)(
Uαk(n+m)+l + V

) · · · (Uαkn+l + V )
.

By using the facts P0 = u and Q0(x) = v, it follows from (2) that (7) is true
for m = 0 and for all n ∈ N. Assume that (7) holds for m and for all n ∈ N.
Now, by using (5) and the assumption of induction, we have

(8)

Rm+1(n) := αk(m+1)Rm(n + 1)− βkRm(n) =

= Fαk(m+1) Pmβk(n+1)+l + Qm(αk(n+1)+l)(
Uαk(n+1+m)+l + V

) · · · (Uαk(n+1)+l + V
)−

− Fβk Pmβkn+l + Qm(αkn+l)(
Uαk(n+m)+l + V

) · · · (Uαkn+l + V )
.

Since

αk(m+1)Pmβk(n+1)+l
(
Uαkn+l + V

)− βkPmβkn+l
(
Uαk(n+1+m)+l + V

)
=

= V αk(m+1)Pmβk(n+1)+l − V βkPmβkn+l = βkn+lPm+1

and

αk(m+1)
(
Uαkn+l + V

)
Qm(αk(n+1)+l)− βk

(
Uαk(n+1+m)+l + V

)
Qm(αkn+l)

= Qm+1(αkn+l),

we infer from (8) that

Rm+1(n) = F
Pm+1β

kn+l + Qm+1(αkn+l)(
Uαk(n+1+m)+l + V

) (
Uαk(n+m)+l + V

) · · · (Uαkn+l + V )
.

Hence (7) is proved.
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Now we prove that there is a positive integer e such that β = αe. Assume in
contrary that β 6= αi for all i ∈ N. Then let m ∈ N such that αm < β < αm+1.
Since
(
Uαk(n+m)+l + V

)
· · · (Uαkn+l + V

)
=

= (Uαkm + V α−(kn+l)) · · · (Uαk + V α−(kn+l))(U + V α−(kn+l))α(m+1)(kn+l)

≥ 1
2
α(m+1)(kn+l)

holds for all larger n ∈ N, we infer from (7) that

|Rm(n)| ≤ |F | |Pmβkn+l + Qm(αkn+l)|
1
2α(m+1)(kn+l)

≤

≤ 2|F |
[
|Pm|

(
β

αm+1

)kn+l

+
|Qm(αkn+l)|
α(m+1)(kn+l)

]

also holds for all larger n ∈ N. Since β
αm+1 < 1 and deg(Qm(x)) ≤ m,

the right side tends to zero as n → ∞, therefore the last relation with (6)
implies that Rm(n) = 0 for all larger n ∈ N. Hence, we get from (7) that
Pmβkn+l + Qm(αkn+l) = 0, consequently

Pm

(
β

αm

)kn+l

+
Qm(αkn+l)
αm(kn+l)

= 0

for all large n ∈ N. Thus Pm = 0, since otherwise the left side is unbounded
as n → ∞. This is impossible, because from the definition of the sequence
{Pm}∞m=0 we have Pm 6= 0 for all m ≥ 0.

Thus we have prove that β = αe for a suitable positive integer e. Hence

R0(n) = F
uβkn+l + v

Uαkn+l + V
= F

uαe(kn+l) + v

Uαkn+l + V
,

and

F
u(−V )e + vUe

Uαkn+l + V
= UeR0(n)− F

u
[(

Uαkn+l
)e − (−V )e

]

Uαkn+l + V

are integers for all n ∈ N. This shows that

u(−V )e + vUe = 0.

The proof of the lemma is complete.
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The proof of Theorem 15. Let A > 0, B, a > 0, b, N > 0 and C 6= 0
be integers. Let f ∈M∗ be integer-valued, for which the congruence

f [A(an + b) + B] ≡ C (mod an + b)

holds for every n ∈ N, n > N .
Assume first that f(p) = 1 for all primes p, (p, aA) = 1. In this case we

get from the fact f ∈ M∗ that f(n) = 1 for all n ∈ N, (n, aA) = 1. Thus
Theorem 15 is true with e = 0.

In the following, let p be a suitable prime number such that (p, aA) =
= 1, |f(p)| > 1 and let M ∈ N, M > N . Then

pϕ(aA)m
(
A(aM + b) + B

)
= A

(
pϕ(aA)m(aM + b) + B

pϕ(aA)m − 1
A

)
+ B,

pϕ(aA)m(aM + b) + B
pϕ(aA)m − 1

A
≡ b (mod a)

and

pϕ(aA)m(aM + b) + B
pϕ(aA)m − 1

A
≥ aN + b

are true for all m ∈ N.
From the assumption of Theorem 15, we have

(9)

f(p)ϕ(aA)mf
(
A(aM + b) + B

)
= f

(
pϕ(aA)m

(
A(aM + b) + B

))
≡

≡ C

(
mod

pϕ(aA)m
(
A(aM + b) + B

)
−B

A

)

holds for all m ∈ N. Thus, by setting m = 2n into (9), we have

(
A(aM + b) + B

)
p2ϕ(aA)n −B

∣∣∣∣∣ A

(
f
(
A(aM + b) + B

)
f(p)2ϕ(aA)n − C

)

holds for all n ∈ N. Since f(p)2 > 1, we infer from our lemma that there is a
positive integer e = ep such that

f(p)2 = p2e

and

(10) f
(
A(aM + b) + B

)
Be − C

(
A(aM + b) + B

)e

= 0.
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Thus, we have proved that (10) holds for each fixed M ∈ N, M > N , and
so (10) holds for all M ∈ N, M > N .

Now consider the function

g(n) =
f(n)
ne

(n = 1, 2, . . .).

It is obvious that g ∈M∗ and it follows from (10) that

g (A(aM + b) + B) =
C

Be

holds for all M ∈ N, M > N , which shows that g(n) = χ(n), where χ is a
real-valued Dirichlet character (mod aA). Theorem 15 is proved.
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Eötvös Loránd University
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