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WAITING TIME IN CYCLIC–WAITING SYSTEMS
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G. Zbăganu (Bucharest, Romania)

To the memory of M.V. Subbarao

1. Introduction

In [5] we have introduced the so-called cyclic-waiting system functioning
in the following way: if the entering entity cannot be serviced upon arrival
it joins the queue in which it is cycling with a fixed cycle time, its further
requests for service may be put only at the moments differing from the moment
of arrival by the multiples of this cycle time T . The service is realized by the
FCFS service discipline. There we determined the ergodic distribution for such
systems in case of Poisson arrivals and exponentially distributed service time.
The model described in [5] received further development in several papers. It
was investigated for the case of uniform service time distribution [6], in case
of time-limited tasks [8]. Koba [1] found sufficient condition for the existence
of equilibrium for the GI/G/1 system of this type, Koba and Mykhalevich [2]
compared the FCFS and classical retrial service discipline for it. Kovalenko
[3] generalized some of Koba’s results in case of light traffic. In [7] we studied
the model for the discrete time case, namely with geometrically distributed
interarrival and with geometrically and uniformly distributed service times.

The original model was raised in connection with the landing process of
airplanes, in [4, 9] it appeared as exact model for the transmission of optical
signals where because of lack of optical RAM the fiber delay lines (FDL) are
used.

The research was supported by the Hungarian-Romanian Intergovernmen-
tal Cooperation for Science and Technology under grant RO-40/2005. The
first author was partly supported by the Hungarian National Foundation for
Scientific Research under grant OTKA K60698/2005.



218 L. Lakatos and G. Zbăganu

The quality of functioning of queueing systems may be considered from the
viewpoint of the owner of the system and from that of customers, the measures
of quality may partly overlap. From the viewpoint of owner the queue length
gives the primary information, from the viewpoint of a customer the waiting
and sojourn times play essential role. In our previous papers we were dealing
with the queue length, other authors started with the waiting time. The two
approaches have to meet at the stability condition, intuitively it is clear that
the existence of ergodic distribution for the queue length has to imply the
finiteness of waiting time.

In [1] Koba found sufficient condition for the stability of GI/G/1 cyclic-
waiting system and gave the system of equations determining the waiting
time’s ergodic distribution. In general case one cannot solve it, as example
she mentions the situation when the service time is constant. In this paper our
purpose is to present this method works for exponentially and geometrically
distributed service times and to show that starting with the waiting time we
come to the same stability conditions as in [5] and [7].

2. Preliminaires

In [5] we considered the aforementioned cyclic-waiting system when the
interarrival and service times were exponentially distributed with parameters
λ and µ, respectively. The states were defined as the number of customers in
the system at moments just before starting the services of customers, these
values constituted a Markov chain. Its matrix of transition probabilities had
the form

(1)




a0 a1 a2 a3 . . .
a0 a1 a2 a3 . . .
0 b0 b1 b2 . . .
0 0 b0 b1 . . .
...

...
...

...
. . .




,

its elements were determined by the generating functions

A(z) =
∞∑

i=0

aiz
i =

µ

λ + µ
+

λz

λ + µ

(1− e−µT )e−λ(1−z)T

1− e−[λ(1−z)+µ]T
,

B(z) =
∞∑

i=0

biz
i =

1
(1− e−λT )[1− e−[λ(1−z)+µ]T ]

×
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×
{

1
2− z

(
1− e−λ(2−z)T

) (
1− e−[λ(1−z)+µ]T

)
−

− λ

λ(2− z) + µ

(
1− e−[λ(2−z)+µ]T

)(
1− e−λ(1−z)T

)}
.

We found the equilibrium distribution

P (z) =
∞∑

i=0

piz
i = p0

(λz + µ)B(z)− (λ + µ)zA(z)
µ[B(z)− z]

,

p0 = 1− λ

λ + µ

1− e−(λ+µ)T

e−λT (1− e−µT )
,

and the ergodicity condition

(2)
λ

µ
<

e−λT (1− e−µT )
1− e−λT

.

In [7] we investigated the discrete time version of this system. The cycle
time T was divided into n equal parts, for a time slice T/n a customer entered
with probability r, so interarrival time was equal to i time slices with probability
(1− r)i−1r. The service time had geometrical distribution, too, it was equal to
i time slices with probability (1−q)i−1q. The matrix of transition probabilities
had the same form as for continuous time (1), the elements of matrix were
given by the generating functions

A(z) =
∞∑

i=0

aiz
i =

(1− r)q
1− (1− r)(1− q)

+

+z
rq

1− (1− r)(1− q)
+ z

r(1− q)(1− r + rz)n[1− (1− q)n]
[1− (1− r)(1− q)][1− (1− q)n(1− r + rz)n]

,

B(z) =
∞∑

i=0

biz
i =

1− (1− r)n(1− r + rz)n

1− (1− r)(1− r + rz)
r(1− r + rz)
1− (1− r)n

+

+
1− (1− r)n(1− q)n(1− r + rz)n

1− (1− r)(1− q)(1− r + rz)
r(1− q)(1− r + rz)[(1− r + rz)n − 1]

[1− (1− r)n][1− (1− q)n(1− r + rz)n]
.

For the stationary distribution we obtained

P (z) =
∞∑

i=0

piz
i = p0

zA(z)−B(z) + rz
(1−r)q [A(z)−B(z)]

z −B(z)
,
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where

p0 =
(1− r)q

1− (1− r)(1− q)
− r(1− q)[1− (1− r)n]

(1− r)n−1[1− (1− q)n][1− (1− r)(1− q)]
.

The ergodicity condition was

(3)
r(1− q)

1− (1− q)n

1− (1− r)n(1− q)n

1− (1− r)(1− q)
< (1− r)n.

Now we shortly repeat some of Koba’s results [1]. Let us denote by tn the
moment of entry of the n-th customer, then its service starts at the moment
tn + T · Xn, where Xn is always a nonnegative integer. Let Zn = tn+1 − tn,
Sn the service time of the n-th customer. Between Xn and Xn+1 we have the
following relation. Let Xn = i. If (k− 1)T < iT + Sn −Zn ≤ kT , where k ≥ 1
and integer, then Xn+1 = k; if iT + Sn − Zn ≤ 0, then Xn+1 = 0. So, Xn is a
homogeneous Markov chain with transition probabilities pik, where

pik = P{(k − i− 1)T < Sn − Zn ≤ (k − i)T}

if k ≥ 1;
pi0 = P{Sn − Zn ≤ −iT}.

We introduce the notation

fj = P{(j − 1)T < Sn − Zn ≤ jT},(4)

pik = fk−i if k ≥ 1 and pi0 =
−i∑

j=−∞
fj = f̂i.(5)

By using these probabilities the stationary distribution satisfies the system of
equations

(6) pj =
∞∑

i=0

pipij , j ≥ 0,

∞∑

j=0

pj = 1.
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3. Results

By using Koba’s results [1] our purpose is to find the transition probabil-
ities and the solution of (6) for discrete and continuous cyclic-waiting systems
and to derive the stability condition for them. For the stationary distribution

of waiting time we will use the notation P (z) =
∞∑

j=0

pjz
j (in the previous

paragraph it was used for the queue length). We formulate our results in the
following theorems.

Theorem 1. Let us consider a queueing system in which the interarrival
and service times are geometrically distributed (they are equal to i time units
with probabilities (1 − r)i−1r and (1 − q)i−1q, respectively); the service of a
customer may be started upon arrival (if the server is free and there is no
queue) or at moments differing from it by the multiples of cycle time T equal
to n time units (in case of busy server or queue) according to the FCFS rule.
Let us define an embedded Markov chain whose states correspond to the waiting
time at the moments of arrivals of the customers. The matrix of transition
probabilities has the form

(7)




0∑
j=−∞

fj f1 f2 f3 f4 . . .

−1∑
j=−∞

fj f0 f1 f2 f3 . . .

−2∑
j=−∞

fj f−1 f0 f1 f2 . . .

−3∑
j=−∞

fj f−2 f−1 f0 f1 . . .

...
...

...
...

...
. . .




,

its elements are determined by (4)-(5). The generating function of ergodic
distribution has the form

(8) P (z) =
[
1− r

q

1− q

(1− r)n

1− (1− r)n

1− (1− q)n

]
×

×
q

1− (1− r)(1− q)

[
1− z[1− (1− r)n]

z − (1− r)n

]

1− r(1− q)[1− (1− q)n]
1− (1− r)(1− q)

z

1− (1− q)nz
− q[1− (1− r)n]

1− (1− r)(1− q)
z

z − (1− r)n

,
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the condition of existence of ergodic distribution is

r

q

(1− q)
(1− r)n

1− (1− r)n

1− (1− q)n
< 1.

Theorem 2. Let us consider a queueing system in which the arriving
customers form a Poisson process with parameter λ, the service time dis-
tribution is exponential with parameter µ; the service of a customer may be
started upon arrival (if the server is free and there is no queue) or at moments
differing from it by the multiples of cycle time T (in case of busy server or
queue) according to the FCFS rule. Let us define an embedded Markov chain
whose states correspond to the waiting time at the moment of arrival of the
customers. The matrix of transition probabilities has the form (7), its elements
are determined by (4)-(5). The generating function of ergodic distribution has
the form

(9) P (z) =
[
1− λ

µ

1− e−λT

e−λT (1− e−µT )

]
×

×
µ

λ + µ
− µ(1− e−λT )

λ + µ

z

z − e−λT

1− λ(1− e−µT )
λ + µ

z

1− ze−µT
− µ(1− e−λT )

λ + µ

z

z − e−λT

,

the condition of existence of ergodic distribution is the fulfilment of inequality

λ

µ
<

e−λT (1− e−µT )
1− e−λT

.

4. Proofs

In this part we find the ergodic distribution of waiting time both in discrete
and continuous time cases, i.e. we prove the theorems.

4.1. The discrete time case

We determine the distribution of Sn−Zn if both of them are geometrically
distributed. The probability that Sn − Zn = j is equal to
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∞∑

i=1

(1− r)i−1r(1− q)i−1+j =
rq(1− q)j

1− (1− r)(1− q)

if j > 0; and

∞∑

i=1

(1− q)i−1q(1− r)i−1−jr =
rq(1− r)−j

1− (1− r)(1− q)

if j ≤ 0. The transition probabilities are given by the formulas

(10) fj =
jn∑

k=(j−1)n+1

rq(1− q)k

1− (1− r)(1− q)
=

r(1− q)[1− (1− q)n]
1− (1− r)(1− q)

(1− q)(j−1)n

in case of positive jumps, and

(11) f−j =
(j+1)n−1∑

k=jn

rq(1− r)k

1− (1− r)(1− q)
=

q[1− (1− r)n]
1− (1− r)(1− q)

(1− r)jn

for the case of nonpositive jumps. Furthermore, we have
(12)

pi0 =
−i∑

k=−∞
fk =

∞∑

j=i

q[1− (1− r)n]
1− (1− r)(1− q)

(1− r)jn =
q(1− r)in

1− (1− r)(1− q)
= f̂i.

By using the transition probabilities (4)-(5) the system of equations (6) has the
form

p0 =p0f̂0 + p1f̂1 + p2f̂2 + p3f̂3 + . . .

p1 =p0f1 + p1f0 + p2f−1 + p3f−2 + . . .

p2 =p0f2 + p1f1 + p2f0 + p3f−1 + . . .

...

Multiplying the j-th equation by zj and summing up from 0 to infinity for the

generating function P (z) =
∞∑

j=0

pjz
j we obtain

(13) P (z) = P (z)F+(z) +
∞∑

j=1

pjz
j

j−1∑

i=0

f−iz
−i +

∞∑

j=0

pj f̂j ,
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where

F+(z) =
∞∑

i=1

fiz
i.

By using the values (10)-(11)

F+(z) =
∞∑

i=1

r(1− q)[1− (1− q)n]
1− (1− r)(1− q)

(1− q)(i−1)nzi =

=
r(1− q)[1− (1− q)n]

1− (1− r)(1− q)
z

1− (1− q)nz
,

j−1∑

i=0

f−iz
−i =

j−1∑

i=0

q[1− (1− r)n]
1− (1− r)(1− q)

(
(1− r)n

z

)i

=

=
q[1− (1− r)n]

1− (1− r)(1− q)

1−
(

(1−r)n

z

)j

1− (1−r)n

z

,

∞∑

i=1

pif̂i =
∞∑

i=0

pi
q(1− r)in

1− (1− r)(1− q)
=

=
q

1− (1− r)(1− q)

∞∑

i=0

pi(1− r)in =
q

1− (1− r)(1− q)
P ((1− r)n) ,

∞∑

j=1

pjz
j

j−1∑

i=0

f−iz
−i =

∞∑

j=1

pjz
j q[1− (1− r)n]
1− (1− r)(1− q)

1−
(

(1−r)n

z

)j

1− (1−r)n

z

=

=
q[1− (1− r)n]

1− (1− r)(1− q)
1

1− (1−r)n

z

∞∑

j=1

pj [zj − (1− r)nj ] =

=
q[1− (1− r)n]

1− (1− r)(1− q)
z

z − (1− r)n
[P (z)− P ((1− r)n)] .

So, (13) may be written in the form

P (z)
[
1− r(1− q)[1− (1− q)n]

1− (1− r)(1− q)
z

1− (1− q)nz
−

− q[1− (1− r)n]
1− (1− r)(1− q)

z

z − (1− r)n

]
=



Waiting time in cyclic-waiting systems 225

= P ((1− r)n)
[

q

1− (1− r)(1− q)
− q[1− (1− r)n]

1− (1− r)(1− q)
z

z − (1− r)n

]
.

This expression contains the unknown value P ((1− r)n), it can be found from
the condition P (1) = 1. It is equal to

P ((1− r)n) = 1− r

q

1− q

(1− r)n

1− (1− r)n

1− (1− q)n
,

so, finally, the generating function takes the form (8). The chain is irreducible
and aperiodic, in order to get the ergodicity condition we find p0 from (13)

p0 =
[
1− r

q

1− q

(1− r)n

1− (1− r)n

1− (1− q)n

]
q

1− (1− r)(1− q)
.

It is positive if
r

q

1− q

(1− r)n

1− (1− r)n

1− (1− q)n
< 1,

this is equivalent to (3).

4.2. The continuous time case

Let Z denote the interarrival, S the service time, and

P{Z < x} = 1− e−λx and P{S < x} = 1− e−µx.

Let us find the distribution of S − Z. If x > 0, then S < Z + x and

P{S − Z < x} =

∞∫

0

[1− e−µ(x+y)]λe−λydy = 1− λ

λ + µ
e−µx.

If x < 0, then from S − Z < x follows S − x < Z, i.e.

P{S − Z < x} =

∞∫

0

e−λ(y−x)µe−µydy =
µ

λ + µ
eλx.

For the distribution of S − Z we have

F (x) =





µ

λ + µ
eλx if x ≤ 0,

1− λ

λ + µ
e−µx if x > 0.
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We find the transition probabilities of the Markov chain: for j > 0

fj = 1− λ

λ + µ
e−µ(j−1)T − 1 +

λ

λ + µ
e−µjT =

λ

λ + µ
(1− e−µT )e−µ(j−1)T ,

for the negative values (j ≥ 0)

f−j =
µ

λ + µ
e−λjT − µ

λ + µ
e−λ(j+1)T =

µ

λ + µ
(1− e−λT )e−λjT ,

pi0 = f̂i =
−i∑

j=−∞
fj =

∞∑

j=i

µ

λ + µ
(1− e−λT )e−λjT =

µ

λ + µ
e−λiT .

The matrix of transition probabilities has the form (7), by using it we come
again to the generating function (13). In our case we have

F+(z) =
∞∑

i=1

fiz
i =

λz

λ + µ
(1− e−µT )

∞∑

i=1

e−µ(i−1)T zi−1 =

=
λ(1− e−µT )

λ + µ

z

1− ze−µT
,

j−1∑

i=0

f−iz
−i =

µ(1− e−λT )
λ + µ

j−1∑

i=0

e−λiT z−i =
µ(1− e−λT )

λ + µ

1−
(

e−λT

z

)j

1− e−λT

z

,

∞∑

i=0

pif̂i =
∞∑

i=0

pi
µ

λ + µ
e−λiT =

µ

λ + µ
P

(
e−λT

)
.

By using these values we obtain

P (z) = P (z)F+(z) +
∞∑

j=1

pjz
j µ(1− e−λT )

λ + µ

1−
(

e−λT

z

)j

1− e−λT

z

+
µ

λ + µ
P

(
e−λT

)
=

= P (z)F+(z) +
µ(1− e−λT )

λ + µ

z

z − e−λT

[
P (z)− P

(
e−λT

)]
+

µ

λ + µ
P

(
e−λT

)
,

or

P (z)
[
1− F+(z)− µ(1− e−λT )

λ + µ

z

z − e−λT

]
=

= P
(
e−λT

) [
µ

λ + µ
− µ(1− e−λT )

λ + µ

z

z − e−λT

]
.
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In order to find the value P
(
e−λT

)
we use the fact P (1) = 1, from which

P
(
e−λT

)
= 1− λ

µ

1− e−λT

e−λT (1− e−µT )
.

For the generating function P (z) we get the expression (9). From it the
probability of zero waiting time

p0 =
[
1− λ

µ

1− e−λT

e−λT (1− e−µT )

]
µ

λ + µ
,

in order to have p0 > 0
λ

µ

1− e−λT

e−λT (1− e−µT )
< 1

must be fulfilled, it leads to the ergodicity condition (2).
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