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THE DISTRIBUTION OF
AN ADDITIVE ARITHMETICAL FUNCTION

ON THE SET OF SHIFTED INTEGERS
HAVING k DISTINCT PRIME FACTORS

L. Germán (Budapest, Hungary)

To the memory of Professor Matukumalli Venkata Subbarao

Abstract. It is proven that an additive arithmetical function has a limit

law on the set of shifted integers having k prime factors if and only if the

Erdős-Wintner condition holds.

1. Notations and results

We shall use the following notations:
P = set of prime numbers; p, q with or without suffixes always denote prime

numbers, ω (n) denote the number of distinct prime factors of n. P (n) , p (n)
denote the largest and the smallest prime divisor of n respectively. c denotes
a constant, not certainly the same at different locations.

Let Pk = {n : ω (n) = k}, Pk (x) = Pk ∩ [1..x], and Πk (x) = #Pk (x).
π (x) = #{p ≤ x | p ∈ P},

π (x, k, l) =
∑
p≤x

p≡l (mod k)

1.
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Throughout this paper πk denote integers having k distinct prime factors.

Let Fx be a sequence of distribution functions, and let F be a distribution
function. We say that Fx converges weakly to F , in notation Fx ⇒ F , if
lim

x→∞
Fx (z) = F (z) holds at all continuity points of F .

Let T be an assertion, A be a subset of N and let

νx (n ∈ A : T (n)) :=
1

|A ∩ [1, x]|#{n ≤ x, n ∈ A : T (n) holds true}.

Let f be a real additive function. We say that f possess a limit law on A,
if for the sequence of distribution functions

Fx (z) = νx (n ∈ A : f (n) ≤ z) ,

there is a distribution function say F , such that Fx ⇒ F .

Erdős and Wintner [3] proved that an additive arithmetical function f
possesses a limit law on N if and only if the Erdős-Wintner condition holds, i.e.
if and only if the three series

(1.1)
∑

|f(p)|>1

1
p
,

∑

|f(p)|≤1

f (p)
p

,
∑

|f(p)|≤1

f2 (p)
p

converge.

Kátai [6] proved about 40 years ago that the convergence of the 3 series
(1.1) implies the existence of the limit distribution of f on the set P + 1.

The necessity of the convergence of (1.1) has been proved by Hildebrand
[5] about 20 years ago.

The aim of this paper is to prove the following

Theorem 1. Let f be a real additive function. Let 2 ≤ k ≤ ε(x) ·
·√log log x, ε (x) → 0 (x →∞). Let

Fk,x (z) = νx (n ∈ Pk : f (n + 1) ≤ z) .

Assume that there is a sequence k = kx and a distribution function F such that
Fkx,x ⇒ F . Then the 3 series given in (1.1) are convergent.

Conversely, assume that the series in (1.1) are convergent. Then with a
distribution function G

max
2≤k≤ε(x)

√
log log x

|Fk,x (y)−G (y) | → 0, (x →∞)
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if y is a continuity point of G. Consequently F = G.
The characteristic function of F is given by

ϕ (t) =
∏
p

(1 + h(p)) ,

where

(1.2) h (p) = − 1
p− 1

+
∞∑

m=1

eitf(pm)

pm
.

Remark. We know from the theorem of Paul Lévy that F is of pure type,
it is continuous if and only if ∑

f(p) 6=0

1
p

diverges.

One can conclude the sufficiency part of Theorem 1 from the next

Theorem 2. Let 1 ≥ ε > 0 and % = min{ε/4, 1/4}. Let f be a real
additive function and assume that

(1.3)
∑

|f(p)|>1

1
p
,

∑

|f(p)|≤1

f2 (p)
p

are convergent.
Let

(1.4) A (x) :=
∑

|f(p)|≤1
p≤x

f (p)
p

,

(1.5) a (m) :=
∑

|f(p)|≤1
p|m

f (p)
p

.

Let KD (x) = {Dp + 1 ≤ x | p ∈ P},

(1.6) FD,x (y) := νx

(
n ∈ KD (x) , f (n)−

(
A

((
x− 1

D

)%)
− a (D)

)
≤ z

)
,
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with characteristic function ϕD,x(t), and let

(1.7) ϕD (t) :=
∏

|f(p)|>1
p|/D

(1 + h (p))
∏

|f(p)|≤1
p|/D

(1 + h (p)) e−it
f(p)

p .

Then

(1.8) max
1≤D≤x1−ε

|ϕD,x (t)− ϕD (t) | → 0 (x →∞)

uniformly for all bounded values of t, i.e. if |t| < T , T is an arbitrary constant.

2. Preliminaries

We need analogues of some-well known theorems related to prime numbers.
In the proof of Theorem 1 it is allowed to drop not more than o(Πk(x)) elements.
By this the limit distribution function does not change.

Let
n = pα1

1 pα2
2 · · · pαk

k , p1 < p2 < . . . < pk

and
πj = πj (n) = pα1

1 pα2
2 · · · pαj

j (j = 1, . . . , k) .

Let

γj (n) =
log pj+1

log πj
(j = 1, . . . , k − 1),

∆(n) = min
j=1,2,...,k−1

γj (n) .

First we investigate some sets, which are unimportant in our case. We have
the following

Lemma 1. Let ε (x) → 0 slowly. Let M = Mx be defined by log log M =
=

√
log log (x). Let 2 ≤ k ≤ ε (x)

√
log log x. Then there exists a sequence

Ax →∞ (x →∞) such that
1.

∆ (n) ≥ Ax,

and
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2. α1 = α2 = · · · = αk = 1 and p1 ≥ M holds for all but δ (x)Πk (x) element
of Pk (x), where δ (x) → 0. Let Uk (x) be the set of those elements of Pk (x),
for which these conditions hold true.

Proof. The following sets have zero relative density in Pk:
1. A1 = {n ∈ Pk, n ≤ x : ∃p2|n}. We have

#A1 ≤
∑

pα≤x1/2

α≥2

Πk−1

(
x

pα

)
+

∑

pα>x1/2
α≥2

x

pα
¿

¿ Πk (x)
k

log log x

∑

pα≤x1/2

α≥2

1
pα

+O
(
x3/4

)
.

Here we used
Πk−1 (x)
Πk (x)

∼ k

log log x

which is a direct consequence of

(2.1) Πk (x) =
x

log x

log logk−1 x

(k − 1)!

(
1 +O

(
1

log log x

))

(see e.g in [7]).
2. A2 = {n ∈ Pk, n ≤ x : p (n) < M}. We have

#A2 ≤

≤
∑

pα≤x1/2
p<M

Πk−1

(
x

pα

)
+

∑

pα>x1/2
α≥2

x

pα
¿ Πk (x)

k

log log x

∑

p<M

1
p

+O
(
x3/4

)
.

By means of these last two steps we can assume that p (n) > M , and n is
squarefree.

Observe that, if n ∈ Uk(x) and pq|n, p < q, then pAx < q, which is an
immediate consequence of the assumption ∆(n) ≥ Ax. The number of integers
n ∈ Pk(x) for which n 6∈ A1 or n 6∈ A2 or there are prime divisors p < q, such
that q < pAx is not more than

∑
pqπk−2≤x

M<p<q<pAx

p<x1/2Ax

1 +
∑

pqπk−2≤x

M<p<q<pAx

p≥x1/2Ax

1.
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The first sum is at most

∑

M<p<q<pAx

p<x1/2Ax

Πk−2

(
x

pq

)
¿ x

log x

(log log x)k−3

(k − 3)!

∑

M<p<q<pAx

p<x1/2Ax

1
pq
¿

¿ Πk (x)
k2

log log x
log Ax,

so if Ax tends to infinity suitably slowly, then this last expression is Πk (x) o (1).
For the second sum we use the sieve estimation for the number of integers

not exceeding x, for which P (n) > z. The number of these integers is smaller
than

x

log z
+ c

z2

log2 z

if z > z0. This estimation can be found for example in [4] (Theorem 3.6).
Using this, we get that the second sum does not exceed

∑
pqπk−2≤x

M<p<q<pAx

p>x1/2Ax

1 ¿

¿
∑

πk−2<x
1− 1

Ax

∑
n≤ x

πk−2
P (n)>x1/2Ax

1 ¿ Ax

∑

πk−2<x
1− 1

Ax

x

πk−2 log x
+ A2

x

x1/Ax

log2 x
,

which is Πk (x) o (1) with appropriate Ax. Here we used that

∑

πk−1≤x

1
πk−1

=
log logk−1 x

(k − 1)!
(1 + o(1)).

The proof is ready.

Let us introduce the notations

Bk (x) := #Uk (x)

and
Bk (x, d, l) =

∑
n∈Uk(x)

n≡l(mod d)

1 .
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We shall prove some inequalities for the distribution of the elements of
Uk (x) in arithmetic progressions.

We have

Lemma 2. Let x ≥ 2, d < logA x, where A is a fixed positive number,
and let (d, l) = 1. We have

Bk (x, d, l) =
Bk (x)
ϕ (d)

(
1 +O

(
e−c

√
log x

))

uniformly for 2 ≤ k ≤ ε (x)
√

log log x, where ε(x) → 0 (x →∞).

Proof. Let Sx be the set of those πk−1, for which there exists at least
one prime p > P (πk−1) such that πk−1p ∈ Uk(x). Let p∗ = pπk−1 be the

smallest p with this property. Then πk−1p ∈ Uk(x) for all p∗ ≤ p ≤ x

πk−1
. Let

πk−1p ≡ l(mod d). Then, using Lemma 1, πk−1 < xλ, with an appropriate
λ < 1/4, P (πk−1) < p and p (πk−1) > logA x, when x is larger than xA say.
With this conditions we have (πk−1, d) = 1. We get p ≡ lπk−1(mod d) with a
unique lπk−1 (mod d).

We have that

(2.2)
∣∣∣∣Bk (x, d, l)− Bk (x)

ϕ (d)

∣∣∣∣ ¿

∑

πk−1∈Sx

∣∣∣∣
{

π

(
x

πk−1
, d, lπk−1

)
− π

(
P (πk−1) , d, lπk−1

)}−

− 1
ϕ (d)

{
π

(
x

πk−1

)
− π (P (πk−1))

}∣∣∣∣ .

The Theorem of Siegel-Walfisz for prime numbers is applicable for

∑

πk−1∈Sx

∣∣∣∣π
(

x

πk−1
, d, lπk−1

)
− 1

ϕ (d)
π

(
x

πk−1

)∣∣∣∣ .

We get that the right hand side of (2.2) does not exceed

c

ϕ (d)

∑

πk−1∈Sx

x

πk−1
e−c

√
log x + c

∑

πk−1∈Sx

P (πk−1) ¿

¿ 1
ϕ (d)

xe−c
√

log x (log log x)k−1

(k − 1)!
+O

(
x1/2

)
,
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because
∑

πk−1<x

1
πk−1

¿ (log log x)k−1

(k−1)! .

Lemma 3. Let x ≥ 2, d < xa with a fixed 0 ≤ a < 1. Then

Bk (x, d, l) < c(a)
Bk (x)
ϕ (d)

,

if (d, l) = 1 and 2 ≤ k ≤ ε (x)
√

log log x, where ε(x) → 0 (x → ∞). Here c(a)
depends only on a.

Proof. With the notations of Lemma 2 we have

Bk (x, d, l) ≤ c
∑

πk−1∈Sx

π

(
x

πk−1
, d, lπk−1

)
.

Applying the Brun-Titchmarsh Theorem, the above sum does not exceed

c
x

ϕ (d) log x

∑

πk−1∈Sx

1
πk−1

¿ Bk (x)
ϕ (d)

.

Let
Bk (x|d) =

∑
n∈Uk(x)
(n,d)=1

1 .

Lemma 4. Let x ≥ 2, A > 0 an arbitrary number and α < 1/2. For
2 ≤ k ≤ ε (x)

√
log log x, where ε(x) → 0 (x →∞), we have

∑

d<xα

max
(l,d)=1

max
z≤x

∣∣∣∣Bk (z, d, l)− Bk (z|d)
ϕ (d)

∣∣∣∣ ¿ Bk (x) log−A x.

The constant implied by ¿ does not depend on k.

Proof. With the notations of Lemma 2 we have for x > x0 that

∣∣∣∣Bk (x, d, l)− Bk (x|d)
ϕ (d)

∣∣∣∣ ≤

≤
∑

πk−1∈Sx

(πk−1,d)=1

∣∣∣∣∣∣
π

(
x

πk−1
, d, lπk−1

)
−

π
(

x
πk−1

|d
)

ϕ (d)

∣∣∣∣∣∣
+O

(
x1/3

)
.
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Applying the Bombieri-Vinogradov theorem we get that the right hand side of
this last inequality does not exceed

c
x

log x
log−A x

∑

πk−1∈S

1
πk−1

+O
(
x2/3

)
¿ Bk (x) log−A x.

Here we used, that π(x)− π(x|d) ≤ ω(d) ≤ log x.

A more general version of this lemma was established by Wolke and Zhang
[9].

Lemma 5. (Wolke-Zhang) For any given A > 0 and 0 < ε < 1/2 there
exist η > 0 such that

∑

d≤x1/2−ε

max
(a,d)=1

max
y≤x

∣∣∣∣Πk (y, d, a)− Πk (y|d)
ϕ (d)

∣∣∣∣ ¿ Πk (x) log−A x

holds uniformly for k ≤ η log x/ log log2 x, and the constant implied in ¿
depends on A and ε only.

Corollary 1. Let 0 ≤ η < 1/4. We have

∑

xη<q<x2η

Bk (x, q,−1) =
∑

xη<q<x2η

Bk (x)
q − 1

+ O
(

Bk (x)
logA x

)
.

Proof. From Lemma 4 we have

∑

xη<q<x2η

Bk (x, q,−1) =
∑

xη<q<x2η

Bk (x|q)
q − 1

+ O
(

Bk (x)
logA x

)
.

On the other hand

Bk(x) ≥ Bk (x|q) ≥ Bk (x)−
∞∑

l=1

∑

aql<x
a∈Pk−1(x)

(a,q)=1

1 ≥ Bk (x) + O
(

x

q

)
.

Putting it together

∑

xη<q<x2η

Bk (x|q)
q − 1

=
∑

xη<q<x2η

Bk (x)
q − 1

+ O

 ∑

xη<q<x2η

x

q2


 =

=
∑

xη<q<x2η

Bk (x)
q − 1

+ O (
x1−η

)
.
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3. Proof of Theorem 2

We shall investigate the sequence of the characteristic functions. Let yx

be tending to infinity so slowly that yx ≤ 1
2 log log log log x, and x ≥ c(ε), say.

Let us define the additive function

f0(pα) =





f(pα) if pα ≤ yx,

0 else,

and consider the following distribution function:

Gx,D (z) := νx (n ∈ KD (x) , f0 (n)− (A (yx)− a (D)) ≤ z) .

Then the characteristic function of Gx,D is

(3.1) ψx,D(t) =
1

#KD(x)
e−it(A(yx)−a(D))

∑

n∈KD(x)

eitf0(n).

We define furthermore gx by

(3.2) gx = µ ∗ eitf0 ,

where µ is the Mbius function. We have that gx(pα) = eitf0(p
α) − eitf0(p

α−1),
and by the inequality π(yx) < 2 yx

log yx
we get that gx(n) = 0 for n > e2yx , i.e.

if n > log log log x. These together imply that

(3.3)
∞∑

n=1

gx(n)
ϕ(n)

=

=
∏

p≤yx


1 +

∑

α≥1

eitf0(p
α) − eitf0(p

α−1)

pα−1(p− 1)


 =

∏

p≤yx


1− 1

p− 1
+

∑

α≥1

eitf0(p
α)

pα


 .

It is clear that

(3.4)
∑

n∈KD(x)

eitf0(n) =
∑
d≤x

(D,d)=1

gx(d)π
(

x− 1
D

, d, ld

)
,
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where ld is defined by Dld + 1 ≡ 0(mod d). Since gx(d) = 0 if d > ε log x, we
can apply the Siegel-Walfisz Theorem, whence the right hand side of (3.4) is

π

(
x− 1

D

) ∞∑
d=1

(D,d)=1

gx(d)
ϕ(d)

+O


π

(
x− 1

D

)
e−c

√
log x

∞∑
d=1

(D,d)=1

|gx(d)|
ϕ(d)


 .

In the error term
∞∑

d=1
(D,d)=1

|gx(d)|
ϕ(d)

≤

≤
∏

p≤yx

(
1 +

∞∑
α=1

|gx(pα)|
ϕ(pα)

)
≤

∏

p≤yx

(
1 +

2p

(p− 1)2

)
¿ log log log x,

say. Furthermore

∞∑
d=1

(d,D)=1

gx(d)
ϕ(d)

=
∏

p≤yx
p|/D


1− 1

p− 1
+

∑

α≥1

eitf0(p
α)

pα


 = (1+ox(1))

∏
p≤yx
p|/D

(1 + h(p)) ,

where the implied constant in ox(1) is absolute, it does not depend on t, and
h(p) is defined by (1.2). Thus we obtain, that

ψx,D(t) =
∏

p≤yx
|f(p)|>1

p|/D

(1 + h(p))
∏

p≤yx
|f(p)|≤1

p|/D

(1 + h(p))e−it
f(p)

p + ox (1)

uniformly in t ∈ R, and the constant implied by ox(1) is absolute.

Now using the convergence of (1.3), one can easily see that

(3.5) max
1≤D≤x1−ε

|ψx,D(t)− ϕD(t)| → 0 (x →∞)

uniformly for all |t| < T , where ϕD(t) is given by (1.7).
Using Lemma 1.11 in [1] it follows immediately, that Gx,D ⇒ FD for all

fixed D.

Next we define another two additive functions as follows: let

f1(pα) =





f(p) if yx < p ≤ (
x−1
D

)%, α = 1 and |f(p)| ≤ 1,

0 else,



198 L. Germán

and let

f2(pα) =





f(p) if
(

x−1
D

)%
< p ≤ (

x−1
D

)1−ϑx , α = 1 and |f(p)| ≤ 1,

0 else,

where % < min (ε/4, 1/4) and ϑx is tending to zero slowly.

First we show that

(3.6) νx(n ∈ KD(x), f(n) 6= f0(n) + f1(n) + f2(n)) = o(1)π
(

x− 1
D

)

with an appropriate ϑx.
To do this, let B = {q ∈ P | |f(q)| > 1}, and By = {q ∈ P | q > y, q ∈ B}.

Then

(3.7) #{n ∈ KD(x) | ∃q|n, q ∈ Byx
} = δ(yx)π

(
x− 1

D

)
,

where δ(yx) → 0 (x → ∞). To see this we split the numbers in the set in
(3.7) into two, not necessary distinct parts. In the first part we take numbers
which have a prime divisor q with yx < q ≤ (

x−1
D

)%. The other part contains the

numbers, which have a prime divisor q such that
(

x−1
D

)%
< q ≤ (

x−1
D

)1−ϑx . Let
us denote the number of integers in this two parts by Σ1 and Σ2, respectively.

We have that

Σ1 ≤
∑

Dp+1≤x

∑
q|Dp+1

yx<q≤( x−1
D )%

|f(q)|>1

1 ≤
∑

yx<q≤( x−1
D )%

|f(q)|>1

π

(
x− 1

D
, q, lq

)
,

and similarly

Σ2 ≤
∑

( x−1
D )%

<q≤( x−1
D )1−ϑx

|f(q)|>1

π

(
x− 1

D
, q, lq

)
.

Using the Brun-Titchmarsh theorem for Σ1 we get,

Σ1 ≤ cπ

(
x− 1

D

) ∑
yx<q
|f(q)|>1

1
q
.
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Using sieve estimates for Σ2 we get,

Σ2 ≤ c
∑

( x−1
D )%

<q≤( x−1
D )1−ϑx

|f(q)|>1

x− 1
qD log x−1

qD

≤ c
1
ϑx

x− 1
D log

(
x−1
D

)
∑

( x−1
D )%

<q

|f(q)|>1

1
q
.

With the choice

(3.8) ϑ2
x = max




∑

( x−1
D )%

<q

|f(q)|>1

1
q
,

∑

( x−1
D )%

<q

|f(q)|≤1

f2(q)
q


 ,

we get Σ1 + Σ2 = o(1)π
(

x−1
D

)
.

The next assertion holds:

(3.9) νx

(
n ∈ KD(x);∃q|n , q >

(
x− 1

D

)1−ϑx
)

= o(1)π
(

x− 1
D

)
,

which can be obtained using sieve estimates. We have that the left hand side
of (3.9) is at most

∑

Dp+1≤x

∑
Dp+1=aq

( x−1
D )1−ϑx

<q

1 ≤
∑

a≤( x−1
D )ϑx

∑

Dp+1=aq

1,

which does not exceed

c
∑

a<( x−1
D )ϑx

x

aD log2 x
aD

≤ c
x

D log2 x
D

∑

a<( x−1
D )ϑx

1
a
,

which is o(1)π
(

x−1
D

)
.

Similarly

(3.10) #{n ∈ KD(x) | ∃q2|n, q > y} ≤

≤
∑

y<q<( x−1
D )a

π

(
x− 1

D
, q2, lq

)
+

x− 1
D

∑

q≥( x−1
D )a

1
q2

= δ(y)π
(

x− 1
D

)
,

where δ(y) → 0 (y →∞).



200 L. Germán

(3.7) and (3.9) and (3.10) imply (3.6).

Let

AD,yx

((
x− 1

D

)%)
=

∑

yx<p≤( x−1
D )%

|f1(p)|≤1
p|/D

f1 (p)
p

.

Next we prove a Turn-Kubilius type inequality, namely that
(3.11)

∑

Dp+1≤x

∣∣∣∣f1 (Dp + 1)−AD,yx

((
x− 1

D

)%)∣∣∣∣
2

≤ cπ

(
x− 1

D

) ∑
yx<p
|f(p)|≤1

f2 (p)
p

,

and

(3.12)
∑

Dp+1≤x

f2
2 (Dp + 1) ≤ cπ

(
x− 1

D

) ∑

( x−1
D )%

<p

|f(p)|≤1

f2 (p)
p

.

Proof of (3.11). Let

B2

((
x− 1

D

)%)
:=

∑

yx<q≤( x−1
D )%

q|/D

f2
1 (q)
q

.

Let
∑

Dp+1≤x

∣∣∣∣f1 (Dp + 1)−AD,yx

((
x− 1

D

)%)∣∣∣∣
2

=

= S1 − 2AD,yx

((
x− 1

D

)%)
S2 + A2

D,yx

((
x− 1

D

)%)
π

(
x− 1

D

)
,

where

S1 =
∑

Dp+1≤x


 ∑

q|Dp+1

f1 (q)




2

=
∑

yx<q≤( x−1
D )%

q|/D

f2
1 (q)π

(
x− 1

D
, q, lq

)
+

+
∑

yx≤q≤( x−1
D )%

q|/D

∑

yx≤q′≤( x−1
D )%

q′|/D

q 6=q′

f1 (q) f1 (q′)π

(
x− 1

D
, qq′, lqq′

)
= Σ11 + Σ12,



Distribution of an additive arithmetical function on the set of shifted integers 201

and

S2 =
∑

yx<q≤( x−1
D )%

q|/D

f1 (q)π

(
x− 1

D
, q, lq

)
.

Since % < ε/4, thus we can estimate Σ11 using the Brun-Titchmarsh theorem,
and we get

Σ11 < cB2

((
x− 1

D

)%)
π

(
x− 1

D

)
.

Moreover Σ12 equals

π

(
x− 1

D

) ∑

yx≤q≤( x−1
D )%

q|/D

∑

yx≤q′≤( x−1
D )%

q′|/D

q 6=q′

f1 (q) f1 (q′)
ϕ(qq′)

+

+
∑

yx≤q≤( x−1
D )%

q|/D

∑

yx≤q′≤( x−1
D )%

q′|/D

q 6=q′

f1 (q) f1 (q′)

(
π

(
x− 1

D
, qq′, lqq′

)
− π

(
x−1
D

)

ϕ(qq′)

)
=

= ζ + E

such that

Σ12 ≤ A2
D,yx

((
x− 1

D

)%)
π

(
x− 1

D

)
+ E.

An application of the Cauchy-Schwarz inequality shows that E2 is at most

∑

yx<q≤( x−1
D )%

q|/D

∑

yx<q′≤( x−1
D )%

q′|/D

q 6=q′

f2
1 (q) f2

1 (q′)
ϕ (q)ϕ (q′)

×

×
∑

yx<q≤( x−1
D )%

q|/D

∑

yx<q′≤( x−1
D )%

q′|/D

q 6=q′

ϕ (qq′)

∣∣∣∣∣
π

(
x−1
D

)

ϕ (qq′)
− π

(
x− 1

D
, qq′, lqq′

)∣∣∣∣∣

2

.

Since qq′ <
(

x−1
D

)1/2, the Brun-Titchmarsh theorem is applicable, and we
get that E is at most

B2

((
x− 1

D

)%)(
π

(
x− 1

D

))1/2

×
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×




∑

yx<q≤( x−1
D )%

q|/D

∑

yx<q′≤( x−1
D )%

q′|/D

q 6=q′

∣∣∣∣∣
π

(
x−1
D

)

ϕ (qq′)
− π

(
x− 1

D
, qq′, lqq′

)∣∣∣∣∣




1/2

.

The Bombieri-Vinogradov theorem is also applicable, and we get

Σ12 ≤

≤ A2
D,yx

((
x− 1

D

)%)
π

(
x− 1

D

)
+O(1)B2

((
x− 1

D

)%)
π

(
x− 1

D

)
log x−A,

where A is an arbitrary big positive constant. We have

S1 = A2
D,yx

((
x− 1

D

)%)
π

(
x− 1

D

)
+O(1)B2

((
x− 1

D

)%)
π

(
x− 1

D

)
.

To estimate S2 we note, that using the Cauchy- Schwarz inequality, we have

AD,yx

((
x− 1

D

)%)
=

=
∑

yx<p≤( x−1
D )%

p|/D

f1(p)
p

≤




∑

yx<p≤( x−1
D )%

p|/D

f2
1 (p)
p

∑

yx<p≤( x−1
D )%

p|/D

1
p




1/2

¿

¿ B

((
x− 1

D

)%)
(log log x)1/2

,

such that using the above method one can easily see, that

S2 = 2A2
D,yx

((
x− 1

D

)%)
π

(
x− 1

D

)
+ o (1) B2

((
x− 1

D

)%)
π

(
x− 1

D

)
,

which implies (3.11).

Proof of (3.12). Since a positive integer n ≤ x can have only a bounded
number of distinct prime divisors q >

(
x−1
D

)%, we have that (3.12) does not
exceed

c
∑

( x−1
D )%

<q≤( x−1
D )1−ϑx

f2
2 (q)π

(
x− 1

D
, q, lq

)
.
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Using sieve estimates this is

c
1
ϑx

x− 1
D log x−1

D

∑

( x−1
D )%

<q≤( x−1
D )1−ϑx

f2
2 (q)
q

,

which thanks to the choice (3.8) implies (3.12).

Using (3.11) and (3.12) we get that

1
KD(x)

∑

n∈KD(x)

∣∣∣eit(f0(n)+f1(n)+f2(n)−(A(( x−1
D )%

))−a(D))−

−eit(f0(n)−(A(yx)−a(D)))
∣∣∣
2

= ox(1)

uniformly for all |t| < T , and 1 ≤ D ≤ x1−ε.

Using this and (3.5) we have proved that

sup
D≤x1−ε

∣∣∣∣∣∣
1

#KD(x)
e−it(A(( x−1

D )%
)−a(D))

∑

n∈KD(x)

eitf(n) − ϕD(t)

∣∣∣∣∣∣
→ 0 (x →∞)

uniformly as |t| ≤ T , T is an arbitrary constant.

4. Proof of Theorem 1

4.1. Concluding the sufficiency part of Theorem 1 from Theorem 2

Consider first the following sequence of distribution functions:

Fk,x (z) = νx (n ∈ Uk(x) : f (n + 1)−A(x) ≤ z) ,

where

A(x) =
∑
p≤x

|f(p)|≤1

f(p)
p

.
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With the notations of Lemma 2, an application of Lemma 1 shows that the
characteristic function of Fx is

1
Bk(x)

e−itA(x)
∑

πk−1∈Sx

∑

P (πk−1)<p≤ x
πk−1

eitf(πk−1p+1).

Since A(x) is convergent, using Theorem 2 and Lemma 1, we can express it in
the following form

1
Bk(x)

∑

πk−1∈Sx

π

(
x

πk−1

) (
ϕπk−1 (t) + ox(1)

)−

(4.1) − 1
Bk(x)

∑

πk−1∈Sx

π (P (πk−1))
(
ϕπk−1 (t) + ox(1)

)
,

for all |t| < T . We use the estimation π (P (πk−1)) ≤ x1/Ax in the second term,
and we get that this is

O(x2/Ax).

Using the identity
ϕ (t) = ϕD (t) KD (t) ,

where
KD (t) =

∏
p|D

|f(p)|>1

(1 + h (p))
∏
p|D

|f(p)|≤1

(1 + h (p)) e−it
f(p)

p

we get that the main term in (4.1) is

(4.2) Σ1 = ϕ (t)
1

Bk(x)

∑

πk−1∈Sx

π

(
x

πk−1

)
+

+
1

Bk(x)

∑

πk−1∈Sx

π

(
x

πk−1

)
ϕπk−1 (t)

(
1−Kπk−1 (t)

)
+

+o(1)
1

Bk(x)

∑

πk−1∈Sx

π

(
x

πk−1

)
.

Since

(4.3)
1

Bk (x)

∑

πk−1∈Sx

π

(
x

πk−1

)
→ 1 (x →∞),
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we get
Σ1 = ϕ (t) (1 + o (1)) .

To see this last identity we calculate the second term in (4.2). If p|πk−1, then
p > Mx, so for big enough x

log Kπk−1 (t) =
∑

p|πk−1
|f(p)|>1

log (1 + h (p)) +
∑

p|πk−1
|f(p)|≤1

log (1 + h (p))− itf (p)
p

=

=
∑

p|πk−1
|f(p)|>1

eitf(p) − 1
p

+O




∑
p|πk−1
|f(p)|>1

1
p2


 +

+
∑

p|πk−1
|f(p)|≤1

eitf(p) − 1− itf (p)
p

+O




∑
p|πk−1
|f(p)|≤1

1
p2


 =

= O




∑
p|πk−1
|f(p)|>1

1
p


 +O




∑
p|πk−1
|f(p)|>1

1
p2


 +

+O (1) |t|2



∑
p|πk−1
|f(p)|≤1

f2 (p)
p


 +O




∑
p|πk−1
|f(p)|≤1

1
p2


 ,

so
Kπk−1 (t)− 1 = ox(1)

for all |t| < T , which together with the convergence of A(x) implies our
assertion.

4.2. Proof of the necessity part of Theorem 1

In the proof we shall use some ideas of Hildebrand [5] combining these
with ours.

Corollary 2. Let f be an additive function. Assume that f (n) = c log n+
+g (n) and the series

∑

|g(p)|>1

1
p− 1

,
∑

|g(p)|≤1

g2 (p)
p− 1
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converge. Define

U (x) = c log x +
∑
p≤x

|g(p)|≤1

g (p)
p− 1

.

Then νx (n ∈ Pk, n ≤ x : f (n + 1)− U (x) ≤ z) converge weakly to a limit dis-
tribution as x →∞. The characteristic function of the limit law is

χ (t) :=
1

1 + itc

∏

|g(p)|>1


1− 1

p− 1
+

∑

m≥1

eitg(pm)

pm


×

×
∏

|g(p)|≤1


1− 1

p− 1
+

∑

m≥1

eitg(pm)

pm


 e−it

g(p)
p ,

and the limit distribution is continuous if and only if

∑

f(p) 6=0

1
p

diverges.

Proof. Let

A (x) =
∑
p≤x

|g(p)|≤1

g (p)
p− 1

.

Then this last lemma shows, that the distributions

νx (n ∈ Pk, n ≤ x : g (n + 1)−A (x) ≤ z)

possess a limit law with characteristic function ξ (t), say. Let

ϕx (t) =
1

Πk (x)

∑

πk≤x

eitg(πk+1).

We have
ϕx (t) e−itA(x) → ξ (t) (x →∞) .

Consider next the following sum

(4.4)
1

Πk (x)

∑

πk≤x

eitf(πk+1) =
1

Πk (x)

∑

πk≤x

(πk + 1)itc
eitg(πk+1).
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Remember that k may depend on x. Let us introduce the following notation

Ψk,x(y, t) :=
∑

πkx≤y

eitg(πk+1).

Applying the Abel summation formula for the right hand side for (4.4) we get

(4.5) ϕx (t)xitc − itc
1

Πk (x)

x∫

1

yitc−1Ψk,x(y, t) dy.

Since for xλ < y < x using (2.1), we have

lim
x→∞

1
Πkx(y)

Ψk,x(y, t)e−itA(y) = ξ(t),

thus for this y

Ψk,x (y, t) = ξ (t) eitA(x) + ξ (t) eitA(y)
{

1− eit(A(x)−A(y))
}

+ o (1) .

Since
A (x)−A (y) = o (1)

if xλ < y < x, we have

(4.6)
1

Πkx(y)
Ψk,x(y, t) = ξ (t) eitA(x) + o (1) .

Using this we have that the integral in (4.5) equals

(4.7)

xλ∫

1

yitc−1Ψk,x(y, t) dy + ξ (t) eitA(x)

x∫

xλ

yitc−1Πk (y) dy + o(x).

The first term is
O(xλ) = Πk(x)o(1).

Using the estimation (2.1) we get that the second term in (4.7) is

ξ (t) eitA(x)

x∫

xλ

yitc−1

(
y

log y

log logk−1 y

(k − 1)!
(1 + o(1))

)
dy,
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which is
1

(itc + 1)
ξ (t) eitA(x)Πk(x) + Πk(x)o(1).

Here we used, that k depends only upon the upper bound of the integration,
and that (

xitc+1

log x

log logk−1 x

(k − 1)!

)′

=

= (itc + 1)
xitc

log x

log logk−1 x

(k − 1)!
+O

(
log logk−2 x

log2 x

1
(k − 2)!

)
.

We had shown, that (4.5) equals

ξ (t)
eitA(x)xitc

1 + itc
+ o (1) .

We get

1
Πk (x)

∑

πk≤x

eit(f(πk+1)) =
xicteitA(x)

1 + ict
ξ (t) + o (1) ,

and so
1

Πk (x)

∑

πk≤x

eit(f(πk+1)−U(x)) =
ξ (t)

1 + ict
+ o (1) ,

and our lemma immediately follows.

Lemma 6 (Sieve estimate). Let q, q′ be prime numbers, and x > x0.
We have

(4.8)

A =#{n ≤ x : qn + 1, q′n + 1 ∈ Uk(x)} ¿

¿ x

log2 x

(
(log log x)k−1

(k − 1)!

)2

Ψ(|q − q′|) ,

where
Ψ(n) =

∏
p|n
p>2

p− 1
p− 2

.

Proof. Using Lemma 1 we need only to count the elements of the set

A = #{n ≤ x : qn + 1 = πk−1p, q′n + 1 = π′k−1p
′ and πk−1 ≤ xβ , π′k−1 ≤ xβ}.
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Recall that P (qn + 1) = p, P (q′n + 1) = p′ and p(πk−1) ≥ Mx, p(π′k−1) ≥ Mx.
We have

qn + 1 = πk−1p,

q′n + 1 = π′k−1p
′,

so by the Chinese remainder theorem n ≡ lπk−1π′
k−1

(mod πk−1π
′
k−1) with a

unique lπk−1π′
k−1

. So n = tπk−1π
′
k−1 + lπk−1π′

k−1
, where t ≤ x

πk−1π′
k−1

. For p, p′

we have

p = qtπ′k−1 +
ql + 1
πk−1

,

p′ = q′tπk−1 +
q′l + 1
π′k−1

,

t ≤ x

πk−1π′k−1

.

Using sieve estimates we have, that the number of such p, p′ is not more than

A ¿
∑

πk−1≤xβ

π′
k−1

≤xβ

Ψ
(

qπ′k−1q
′πk−1

∣∣∣∣qπ′k−1

q′l + 1
π′k−1

− q′πk−1
ql + 1
πk−1

∣∣∣∣
)

x

log2 x

1
πk−1π′k−1

¿

(4.9) ¿ Ψ(|q − q′|) x

log2 x

∑

πk−1≤xβ

π′
k−1

≤xβ

Ψ
(
π′k−1πk−1

) 1
πk−1π′k−1

.

Here we observed, that

qπ′k−1

q′l + 1
π′k−1

− q′πk−1
ql + 1
πk−1

= q − q′.

The sum in the last expression of (4.9) is

∑

πk−1≤xβ

∏

pi|πk−1

pi − 1
(pi − 2)pi

∑

π′
k−1≤xβ

∏

p′
i
|π′

k−1

p′i − 1
(p′i − 2)p′i

¿

¿
∑

πk−1≤xβ

∏

pi|πk−1

1
(pi − 2)

∑

π′
k−1≤xβ

∏

p′
i
|π′

k−1

1
(p′i − 2)

¿

¿


 1

(k − 1)!


 ∑

p≤xβ

1
p

+
∑

p>Mx

1
p2




k−1



2

,
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which implies our assertion.

The next theorem can be found in [5] for shifted primes.

Lemma 7. With suitable constant δ1 and c1, and multiplicative g : N→ C
such that |g| = 1, and

max
1≤l≤c1

∣∣∣∣∣∣
1
x

∑

n≤x

g (n)l

∣∣∣∣∣∣
≤ δ1

we have

(4.10)

∣∣∣∣∣∣
1

Bk (x)

∑

n∈Uk(x)

g (n + 1)

∣∣∣∣∣∣
≤ 1− δ1.

Proof. We use the ideas of Hildebrand without any important changes.
Therefore we shall give an outline of the proof, only.

It is enough to prove that if the conditions hold, then

1−
∣∣∣∣∣∣

1
Bk (x)

∑

πk∈Uk(x)

g (πk + 1)

∣∣∣∣∣∣
À 1.

Some computation shows that

(4.11) 1−
∣∣∣∣∣∣

1
Bk (x)

∑

πk∈Uk(x)

g (πk + 1)

∣∣∣∣∣∣
≥ 1

2Bk (x)

∑

πk∈Uk(x)

|1− wg (πk + 1) |2

with an appropriate complex w, with absolute value 1. Setting

R (Q) =
1

Bk (x)

∑

πk∈Uk(x)

|1− wg (πk + 1)|2
∑

q|πk+1
Q<q<2Q

1,

we get with 0 < η < 1/4 and x ≥ 21/η after some computation that the right
hand side of (4.11) is at least

η2

2 log 2
log x min

xη≤Q≤x2η
R (Q) ,
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so it is enough to prove that R (Q) À 1
log x uniformly with x > x0, xη ≤ Q ≤

≤ x2η. Let δ < 1/4. There is an ω complex number with absolute value 1 such
that

(4.12)
∑

Q<q<2Q
|g(q)−ω|≤δ

1 ≥ δ

10
Q

log Q
.

Set
S =

∑

πk∈Uk(x)

∑′

q|πk+1
Q<q<2Q

1.

The ′ in the inner sum means the restriction to prime numbers q for which
|g (q) − ω| ≤ δ with this appropriate ω. We get a lower bound for this sum
applying Lemma 4 and Corollary 1.

S =
∑′

Q<q<2Q

Bk (x, q,−1) ≥ Bk (x)
4Q

∑′

Q<q<2Q

1 + O
(

Bk (x)
logA x

)
.

If πk + 1 = nq and q2 6 |πk + 1, then after some computation we have

|1− wg (πk + 1) | ≥ |g (n)− wω| − |g (q)− ω|.

Thus |g (q)− ω| ≤ δ implies |g (n)− wω| ≤ 2δ or |1− wg (πk + 1) | > δ.

Let
S1 =

∑

πk∈Uk(x)

∑′

Q<q<2Q

∑′′

n
qn=πk+1

1,

where ′′ in the inner sum means the restriction to integers for which |g (n) −
−wω| ≤ 2δ. Let

S2 =
∑∗

πk∈Uk(x)

∑′

q|πk+1
Q<q<2Q

1,

where ∗ in the outer sum means the restriction to the prime numbers for which
|1− wg (πk + 1) | > δ. Let

S3 =
∑

πk∈Uk(x)

∑′

q2|πk+1
Q<q<2Q

1.
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We have S ≤ S1 + S2 + S3. It is easy to see that S3 ≤ x1−η. We use R (Q) to
estimate S2.

S2 ≤
∑

πk∈Uk(x)

|1− wg (πk + 1) |2
δ2

∑
q|πk+1

Q<q≤2Q

1 =
Bk (x)

δ2
R (Q) .

Putting it all together it is enough to prove that S1 ≤ Bk(x)
8Q

∑′
Q<q<2Q

1.

We have
S1 ≤

∑′′

n≤ x+1
Q

∑′

Q<q<2Q
qn−1=πk

1.

Applying the Cauchy-Schwarz inequality we get

(S1)
2 ≤




∑′′

n≤ x+1
Q

1




︸ ︷︷ ︸
S11





∑

n≤ x+1
Q




∑′

Q<q<2Q
qn−1=πk

1




2


︸ ︷︷ ︸
S12

.

We get

S12 =
∑′′

Q<q,q′<2Q

∑′

n≤ x+1
Q

qn−1=πk
q′n−1=π′

k

1.

If q = q′ then this sum is O (x). For the other case we can use Lemma 6, and
we get

S12 ¿ x

Q log2 x

(
(log log x)k−1

(k − 1)!

)2 ∑′

Q<q<2Q

∑′

Q<q′<q

Ψ(q − q′) + x.

After some computation we get that the inner sum does not exceed

c

(
δ

10

)−1/2 ∑′

Q<q<2Q

1

(see Hildebrand).
We have

S12 ¿ δ−1/2 x

Q log2 x

(
(log log x)k−1

(k − 1)!

)2

 ∑′

Q<q<2Q

1




2

+ x.
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It is not so hard to prove that if the conditions of the lemma hold, then
S11 ≤ x

Qδ log 1
δ .

Putting it together we get

S1 ¿
(

δ1/5 Πk (x)
Q

+
x

δ

log Q

Q3/2

) ∑′

Q<q<2Q

1.

Choosing small δ, we finished the outline of the proof.

The following two lemmas can be found in [5], thus we give only remarks
accordingly to our case.

Lemma 8. Assume that

min
1≤l≤c1

τ≤c2

Re
∑

p≤x

1− g (p)l
p−iτ

p
> c2

with a suitable c2 > 0. Then (4.10) holds.

Remark. One can prove that if this condition holds, then the condition
of Lemma 7 holds, too, with a suitable large c2.

Lemma 9. There are constants δ3, c3 such that for fixed x ≥ 2, h > 0
and

max
a∈R

{n ∈ Uk(x) : f (n + 1) ∈ [a, a + h]} ≥ (1− δ3) Bk (x)

we have

min
|λ|≤c3h2

∑

p≤x

(min (h, f (p)− λ log p))2

p
≤ c3h

2.

Proof. We must show that the condition of the previous lemma is violated
if h = 1. We have
∣∣∣∣∣∣

1
Bk (x)

∑

πk∈Uk(x)

eitf(πk+1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

Bk (x)

∑

πk∈Uk(x)

eit(f(πk+1)−a)

∣∣∣∣∣∣
≥ 1− |t| − 2δ3.

Set δ3 ≤ δ1
4 and |t| ≤ δ1

2 . The result of Lemma 7 is violated. We have from
Lemma 8 that for k = k (t) ≤ c1 and τ = τ (t), |τ | ≤ c2

∑

p≤x

Re
(
1− eitf(pk)p−iτ

)

p
≤ c2.
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The following lemma can be found in [1] Lemma 1.9.

Lemma 10. Let Fx be a sequence of distribution functions, and let α, β be
real functions. If Fx (z + α (x)) and Fx (z + β (x)) converge weakly to a limit
distribution with x →∞, then lim

x→∞
(α (x)− β (x)) exists, and is finite.

Proof of necessity part of Theorem 1. Assume f has a limit
distribution. Then

#{n ≤ x, n ∈ Pk : f (n + 1) ∈ [−z, z]} ≥ (1− δ3)Πk (x)

holds for some z real number. We get using Lemma 9 with h = 2z

∑

p≤x

(min (h, f (p)− λx log p))2

p
≤ c3h

2

with |λx| ≤ c3h
2. It follows that

∑
p

(min (h, f (p)− λ log p))2

p

converge for some λ. We get immediately that for g (n) = f (n) − λ log n the
series

∑

|g(p)|>1

1
p− 1

,
∑

|g(p)|≤1

g (p)2

p− 1

converge. From Corollary 2 and Lemma 10 we get that

λ log x +
∑
p≤x

|g(p)|≤1

g (p)
p− 1

converge. This implies λ = 0 and the convergence of

∑

|f(p)|≤1

f (p)
p− 1

,

and the proof of Theorem 1 is completed.
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