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ON THE PRIME NUMBER THEOREM

K.-H. Indlekofer (Paderborn, Germany)

Dedicated to the memory of Professor M.V. Subbarao

Abstract. In this paper we give an elementary proof for the mean

asymptotic behaviour of the Möbius function.

1. Introduction

Let π(x) denote the number of primes not exceeding the real number x.
In 1793 C.F. Gauß [6] and in 1798 A.M. Legendre [15] proposed independently
that for large x the ratio

π(x)
x/ log x

was nearly 1 and they conjectured that this ratio would approach 1 as x
approaches ∞. Both Gauß and Legendre attempted to prove this statement
but did not succeed. The problem of deciding the truth or falsehood of this
conjecture attracted the attention of eminent mathematicians for nearly 100
years.

In 1851 the Russian mathematician P.L. Chebychev [1] made an important
step forward by proving that if the ratio did tend to a limit, then this limit
must be one. Further, he succeeded in showing that the actual order of π(x) is
x/ log x, that is

π(x) ³ x

log x
.

However, he was unable to prove that the ratio does tend to a limit.
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In 1859 B. Riemann [18] attacked the problem with analytic methods,
using a formula discovered by L. Euler in 1737 which relates the prime numbers
to the function

ζ(s) :=
∞∑

n=1

1
ns

=
∏

p prime

(
1− 1

ps

)−1

for real s > 1. Riemann considered complex values of s and outlined an
ingenious method for connecting the distribution of primes to properties of
the function ζ(s). The mathematics needed to justify all the details of his
method had not been fully developed and Riemann was unable to completely
settle the problem before his death in 1866.

Thirty years later the necessary analytic tools were at hand and in 1896
J. Hadamard [7] and C.J. de la Vallée Poussin [17] independently and almost
simultaneously succeeded in proving that

π(x) ∼ x

log x
as x →∞.

This remarkable result is called the prime number theorem, and its proof
was one of the crowning achievements of analytic number theory.

The prime number theorem was subsequently reproved and improved by
others. However, a proof of this theorem, not fundamentally dependent upon
the ideas of the theory of functions, seemed, not only to G.H. Hardy (cf. [8],
pp. 549-550), extraordinarily unlikely.

Therefore, in 1949 A. Selberg [19] and P. Erdős [3] caused a sensation when
they discovered an elementary proof of the prime number theorem. Their proof,
though very intricate, makes no use of ζ(s) nor of complex function theory and
in principal is accessible to anyone familiar with elementary analysis.

In 1911 E. Landau [14] showed that the prime number theorem is equiva-
lent to the validity of the assertion that the mean value

M(µ) = lim
x→∞

1
x

∑

n≤x

µ(n)

of the Möbius function µ exists and is equal to zero.
The function µ is multiplicative, i.e. µ(mn) = µ(m)µ(n) whenever

(m,n)(:= gcd(m,n)) = 1, and defined by

µ(1) = 1
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and

µ(pm) =

{−1, if m = 1,

0, if m > 1.

Obviously
∞∑

n=1

µ(n)
ns

=
∏
p

(
1− 1

ps

)
=

1
ζ(s)

.

Here we give an (elementary) proof of

Theorem 1.1. For x →∞ we have

1
x

∑

n≤x

µ(n) = O

(
1

log x

)
.

The proof of Theorem 1.1 is done by using estimates which are interesting
in themselves.

Theorem 1.2. Put M(x) =
∑

n≤x

µ(n). Then, for x ≥ 3,

(1.1)
|M(x)|

x
≤ 2

log x

x∫

1

|M(u)|
u2

du + O

(
1

log x

)

and

(1.2)
|M(x)|

x
≤ 1

log x

x∫

1

|M(u)|
u2

du + O

(
log log x

log x

)
.

Remark 1. The proof for (1.1) works also in the case of completely
multiplicative functions of modulus ≤ 1 (see [12]), and leads to

Corollary 1. Let f : N → C be a completely multiplicative function and
|f(n)| ≤ 1 for all n ∈ N. Put M(x) =

∑

n≤x

f(n). Then the inequality

|M(x)|x ≤ 2
log x

x∫

1

|M(u)|
u2

du + O

(
1

log x

)

holds for all x ≥ 3.
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The method of proof can be extended to (not necessarily completely)
multiplicative functions and will be described somewhere else.

The estimate (1.2) has already been given by Postnikov and Romanov in
[16].

For an arithmetical function f : N→ C we define the generating function
F of f by

F (s) :=
∞∑

n=1

f(n)n−s,

where s = σ + it.

Then, integration by parts shows for σ > 1

s−1F (s) =

∞∫

0

e−ω


 ∑

n≤eω

f(n)


 e−ω(σ−1)e−iωt dω

and, by Parseval’s formula,

(1.3)

∞∫

−∞

∣∣∣∣
F (s)

s

∣∣∣∣
2

dt = 2π

∞∫

0

∣∣∣∣∣∣
e−ω

∑

n≤eω

f(n)

∣∣∣∣∣∣

2

e−2ω(σ−1) dω .

Theorem 1.3. Let M(x) =
∑

n≤x

µ(n). Then, as x →∞,

(1.4)
1

log x

x∫

1

|M(u)|
u2

du ¿

 1

log x

∞∫

−∞

1
|ζ(s)|2

dt

|s|2




1
2

and

(1.5)
1

log x

x∫

1

|M(u)|
u2

du ¿ 1
log x




∞∫

−∞

∣∣∣∣
ζ ′(s)
ζ2(s)

∣∣∣∣
2

dt

|s|2




1
2

,

where s = 1 +
1

log x
+ it.
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2. Convolution

Our treatment of this topic follows that of Shapiro’s book [20].
The classes of functions that are distinguished are denoted by S and A,

and are defined as follows

S := {f : R→ C, f(x) = 0 for x < 1},
A := {f ∈ S : f(x) = 0 for x 6∈ N}.

Then, for f, g ∈ S, the convolution f ∗ g in S is defined by

(2.1) (f ∗ g) (x) =
∑

1≤n≤x

f
(x

n

)
g(n).

The ”action” of this definition on functions of A is given by the following: if
f ∈ A, g ∈ S then f ∗ g ∈ A and for n ∈ N,

(2.2) (f ∗ g) (n) =
∑

d|n
f

(n

d

)
g(d) .

In general the binary operation ∗ is not commutative in S, but if f, g ∈ A then
f ∗ g = g ∗ f .

Consider the function ε defined by

ε(x) =

{ 1 for x = 1,

0 otherwise.

Clearly ε ∈ A, and
f ∗ ε = f for f ∈ S

and

(2.3) (ε ∗ f)(x) =

{
f(x) if x ∈ N,

0 otherwise
for f ∈ S.

Thus ε serves as a right identity under convolution for all of S, but is a left
identity only in A.

The relation (2.3) suggests that for each f ∈ S we define an image f0 ∈ A
by

f0 = ε ∗ f for f ∈ S.
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The Möbius function µ is defined by

10 ∗ µ = ε,

where 10 = ε ∗ 1 and 1 ∈ S with

1(x) =

{ 1 x ≥ 1,

0 otherwise.

The wellknown Möbius inversion formula says that if f, g ∈ S then f = g ∗ 10

if and only if g = f ∗ µ.

Examples. (i) Let g = 1. Then f(x) = [x] and
∑

n≤x

[x

n

]
µ(n) = 1 which

implies x
∑

n≤x

µ(n)
n

= O(x), i.e.

(2.4)
∑

n≤x

µ(n)
n

= O(1).

(ii) Let g(x) = x for x ≥ 1. Then

f(x) =
∑

n≤x

x

n
= x log x + c1x + O(1)

and
x = g(x) =

∑

n≤x

µ(n)
{x

n
log

x

n
+ c1

x

n

}
+ O(x) =

= x
∑

n≤x

µ(n)
n

log
x

n
+ c1x

∑

n≤x

µ(n)
n

+ O(x)

which implies

(2.5)
∑

n≤x

µ(n)
n

log
x

n
= O(1).

The constant c1 equals Euler‘s constant γ.

(iii) Let g(x) = x log x. By a straightforward calculation (partial summa-
tion) we deduce
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f(x) =
∑

n≤x

x

n
log

x

n
=

= x log x
∑

n≤x

1
n
− x

∑

n≤x

log n

n
=

=
1
2
x log2 x + c1x log x− c2x + O(log x)

since with some constant c2

∑

n≤x

log n

n
=

1
2

log2 x + c2 + O

(
log x

x

)
.

This implies, by (2.4) and (2.5)

x log x = g(x) =
1
2
x

∑

n≤x

µ(n)
n

log2 x

n
+ O(x)

and

(2.6)
∑

n≤x

µ(n)
n

log2 x

n
= 2 log x + O(1).

Let L ∈ S denote the logarithm function. Then obviously L acts as a
derivation on S, that is

(2.7) L · (f ∗ g) = (L · f) ∗ g + f ∗ (L · g) for all f, g ∈ S.

Further, we introduce the von Mangoldt function Λ ∈ A by

(2.8) ε ∗ L = L0 = Λ ∗ 10,

i.e.

(2.9) Λ = L0 ∗ µ .

The relation (2.8) and (2.9) immediately show

L2
0 = L0 · (10 ∗ Λ) =

= L0 ∗ Λ + 10 ∗ L0Λ =

= 10 ∗ (Λ ∗ Λ + L0Λ)
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and

(2.10) µ ∗ L2
0 = Λ ∗ Λ + L0Λ.

On the other hand, by (2.4) and (2.5)

1 ∗ (µ ∗ L2
0)(x) =

∑

n≤x

∑

d|n
µ(d) log2 n

d
=

∑

dd′≤x

µ(d) log2 d′ =

=
∑

d≤x

µ(d)
∑

d′≤ x
d

log2 d′ =

= x
∑

d≤x

µ(d)
d

log2 x

d
− 2x

∑

d≤x

µ(d)
d

log
x

d
+ 2x

∑

d≤x

µ(d)
d

+ O(x) =

= x
∑

d≤x

µ(d)
d

log2 x

d
+ O(x),

since
∑

n≤y

log2 n =

y∫

1

log2 t dt + O(log2 y) =

= y log2 y − 2y log y + 2y + O(log2 y).

Considering (2.10) and (2.6) produces

(2.11) 1∗(L0Λ+Λ∗Λ)(x) =
∑

n≤x

Λ(n) log n+
∑

dd′≤x

Λ(d)Λ(d′) = 2x log x+O(x)

which is known as Selberg’s Symmetry Formula.

Remark 2. Putting ψ = 1 ∗ Λ and summing by parts we have

1 ∗ (L0Λ)(x) =
∑

n≤x

Λ(n) log n =

= ψ(x) log x + O(x).

Using this in (2.11) it becomes, since 1 ∗ (Λ ∗ Λ) = ψ ∗ Λ,

(2.12) ψ(x) log x +
∑

d≤x

Λ(d)ψ
(x

d

)
= 2x log x + O(x).

This form of the Selberg Formula was the basis of the first elementary proofs
of the prime number theorem due to Selberg and Erdős.
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3. Proof of Lemmas

The first Lemma is based on a summation formula the proof of which
uses standard techniques already described by E.M. Wright in 1951 (see, for
example, [9]).

Lemma 3.1. Let R ∈ S and g ∈ A such that
∑

n≤x

g(n) = cx(log x)m +

+O
(
x(log x)m−1

)
for some m ≥ 0. Assume that there is a steadily increasing

function H ∈ S, H(x) = O(x) such that for 1 ≤ t′ < t

| |R(t)| − |R(t′)| | ≤ H(t)−H(t′) .

Then
(|R| ∗ g)(x) =

∑

n≤x

∣∣∣R
(x

n

)∣∣∣ g(n) =

= c

x∫

1

∣∣∣R
(x

t

)∣∣∣ (log t)m dt + O(x(log x)m).

Proof. We put

h(n) = g(n)− c

n∫

n−1

(log t)m
dt .

Then
∑

n≤x

h(n) =
∑

n≤x

g(n)− c

[x]∫

1

(log t)m dt = O
(
x(log x)m−1

)
.

By partial summation we have

(3.1)
∑

n≤x

∣∣∣R
(x

n

)∣∣∣ g(n)− c
∑

2≤n≤x

∣∣∣R
(x

n

)∣∣∣
n∫

n−1

(log t)m dt =

=
∑

n≤x−1

∑

m≤n

h(m)
{∣∣∣R

(x

n

)∣∣∣−
∣∣∣∣R

(
x

n + 1

)∣∣∣∣
}

+
∑

n≤x

h(n)
∣∣∣∣R

(
x

[x]

)∣∣∣∣ =
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= O


(log x)m−1

∑

n≤x−1

n

(
H

(x

n

)
−H

(
x

n + 1

))
 + O

(
x(log x)m−1

)
=

= O


(log x)m−1

∑

n≤x

H
(x

n

)

 + O

(
x(log x)m−1

)
=

= O (x(log x)m) .

In the same way we obtain
∣∣∣∣∣∣
∣∣∣R

(x

n

)∣∣∣
n∫

n−1

(log t)m dt−
n∫

n−1

∣∣∣R
(x

t

)∣∣∣ (log t)m dt

∣∣∣∣∣∣
≤

≤
n∫

n−1

∣∣∣
∣∣∣R

(x

n

)∣∣∣−
∣∣∣R

(x

t

)∣∣∣
∣∣∣ (log t)m dt ≤

≤
n∫

n−1

{
H

(x

t

)
−H

(x

n

)}
(log t)m dt ≤

≤ (log n)m−1(n− 1)
{

H

(
x

n− 1

)
−H

(x

n

)}

and
∑

2≤n≤x

∣∣∣R
(x

n

)∣∣∣
n∫

n−1

(log t)m dt−
x∫

1

∣∣∣R
(x

t

)∣∣∣ (log t)m dt =

(3.2)

= O


(log x)m−1

∑

n≤x−1

n

{
H

(x

n

)
−H

(
x

n + 1

)}
 + O (x(log x)m) =

= O (x(log x)m) .

Equations (3.1) and (3.2) give the assertion of Lemma 3.1.

Next we collect some elementary facts about the Riemann zeta function.

Lemma 3.2. Let s = σ + it and σ > 1. Then there exists a positive
number t0, 0 < t0 ≤ 2, such that the following holds.
(a) If 0 ≤ t ≤ t0 then

|ζ(s)| ³ 1
|s− 1| and |ζ ′(s)| ³ 1

|s− 1|2 .
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(b) For t0 ≤ t and σ ≥ 1 the estimates

ζ(s) = O(log t) (t ≥ t0),(3.3)

ζ ′(s) = O(log2 t) (t ≥ t0),(3.4)
1

ζ(s)
= O(log7 t) (t ≥ t0)(3.5)

and

(3.6) 1/ζ(s) = O(1) (0 ≤ t ≤ t0)

are valid.

Proof. The assertions of Lemma 3.2 are well-known, but for the sake of
completeness we give the (elementary) proof.

Integration by parts shows that for every σ > 1 and positive integer N

(3.7) ζ(s)−
N∑

n=1

n−s =
N1−s

s− 1
+ s

∞∫

N

([u]− u)
us+1

du.

Putting N = 1 gives (a). For arbitrary N

|ζ(s)| ≤
N∑

n=1

n−1 +
1

|s− 1| + |s|
∞∫

N

du

uσ+1
≤

≤ log N +
1

|s− 1| +
|s|
σ

N−σ + O(1)

and the desired result (3.3) is obtained by choosing N suitably. In the same
way it is easy to see that

ζ ′(s) = O(log2 t)

in the above region.

For the estimate of
1

|ζ(s)| we use the well-known relation

ζ3(σ)|ζ(σ + it)|4|ζ(σ + 2it)| ≥ 1

for σ > 1. Then, by (3.3)
∣∣∣∣

1
ζ(σ + it)

∣∣∣∣ ≤ |ζ(σ)|3/4|ζ(σ + 2it)|1/4 =

= O

(
(log t)1/4

(σ − 1)3/4

)
.
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If σ ≥ 1 + c1 log−9 t this implies

(3.8)
∣∣∣∣

1
ζ(σ + it)

∣∣∣∣ = O(log7 t) (σ ≥ 1 + c1 log−9 t).

Now let 1 < σ < 1 + c1 log−9 t. Then by (3.4)

(3.9) ζ(1 + it)− ζ(σ + it) = −
σ∫

1

ζ ′(u + it)du = O((σ − 1) log2 t).

Hence

|ζ(1 + it)| > c2
(σ − 1)3/4

log1/4 t
− c3(σ − 1) log2 t.

The two terms on the right are of the same order if σ = 1 + log−9 t. Hence,
taking σ = 1 + c4 log−9 t, where c4 is sufficiently small,

(3.10) |ζ(1 + it)| > c5 log−7 t.

Next (3.9) and (3.10) together give

|ζ(σ + it)| > c5 log−7 t− c6(σ − 1) log2 t

and the right-hand side is positive if σ < 1 + c1 log−9 t and c1 is sufficiently
small. This and (3.8) prove Lemma 3.2.

4. Proof of Theorem 1.2

We put M = 1 ∗ µ, i.e. M(x) =
∑

n≤x

µ(n). Since

Λ(n) =
∑

d|n
µ(d) log

n

d
= −

∑

d|n
µ(d) log d

we arrive at
Λ = L0 ∗ µ = −L0µ ∗ 10

and
L0µ = −Λ ∗ µ.
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Thus

(4.1)
LM = L(1 ∗ µ) = L ∗ µ + 1 ∗ L0µ =

= −1 ∗ (Λ ∗ µ) + L ∗ µ = −M ∗ Λ + L ∗ µ

and
L2M = −LM ∗ Λ−M ∗ L0Λ + L(L ∗ µ).

Putting R = L ∗ µ and replacing LM by (4.1) yield

L2M = (M ∗ Λ) ∗ Λ−R ∗ Λ−M ∗ L0Λ + LR =

= M ∗ (Λ ∗ Λ− L0Λ)−R ∗ Λ + LR.

We observe R(x) = O(x) and (R ∗ Λ)(x) = O


x

∑

n≤x

Λ(n)
n


 = O(x log x) and

obtain

(4.2) log2 x|M(x)| ≤

≤
∑

n≤x

∣∣∣M
(x

n

)∣∣∣
(

Λ(n) log n +
∑

dd′=n

Λ(d)Λ(d′)

)
+ O(x log x).

Lemma 3.1 can be applied, because of Selberg’s Symmetry Formula (2.11) and
since ||M(t)| − |M(t′)|| ≤ t− t′ for 1 ≤ t′ < t. Then we arrive at

log2 x|M(x)| ≤ 2

x∫

1

∣∣∣M
(x

t

)∣∣∣ log t dt + O(x log x) ≤

≤ 2 log x

x∫

1

∣∣∣M
(x

t

)∣∣∣ dt + O(x log x) =

= 2 (log x)

x∫

1

|M(u)|
u2

du + O(x log x)

which gives, for x ≥ 3, inequality (1.1) of Theorem 1.2.

Let us write Selberg’s Formula (2.11) in the form

Lψ + 1 ∗ Λ ∗ Λ = R1
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with R1(x) = 2x log x + O(x). Then

(4.3) ψ +
1
L

(1 ∗ Λ ∗ Λ) =
R1

L
.

We have
1
L

(1 ∗ Λ ∗ Λ) = 1 ∗ Λ ∗ Λ
L0

+ R2,

where

(4.4)

R2(x) =
∑

n≤x

(Λ ∗ Λ)(n)
(

1
log x

− 1
log n

)
=

= −
∑

n≤x

(Λ ∗ Λ)(n)

x∫

n

du

u log2 u
=

= −
x∫

4

∑
n≤u

(Λ ∗ Λ)(n)

u log2 u
du =

= O




x∫

4

du

log u


 = O

(
x

log x

)

since
∑

dd′≤u

Λ(d)Λ(d′) = O


u

∑

d′≤u

Λ(d′)
d′


 = O(u log u).

Collecting the estimates (4.3) and (4.4) yields

ψ = −1 ∗ Λ ∗ Λ
L0

+
R1

L
+ R3 with R3(x) = O

(
x

log x

)

and

(4.5)
LM = −1 ∗ Λ ∗ Λ

L0
∗ µ + R + R3 ∗ µ +

R1

L
∗ µ =

= M ∗ Λ ∗ Λ
L0

+ R4,

where

R4(x) = O(x) + O


x

∑

n≤x

1
n log

(
2 x

n

)

 = O (x log log x) .
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Addition of (4.1) and (4.3) gives

2 log x |M(x)| ≤
∑

2≤n≤x

∣∣∣M
(x

n

)∣∣∣
(

Λ(n) +
(Λ ∗ Λ) (n)

log n

)

and, since by (4.3) and (4.4)

∑

n≤x

Λ(n) +
∑

n≤x

(Λ ∗ Λ) (n)
log n

= 2x +
(

x

log x

)
.

Lemma 3.1 proves assertion (1.2) of Theorem 1.2.

Proof of Theorem 1.3

Observing

x∫

1

|M(u)|
u2

du ≤



x∫

1

|M(u)|2
u3

du




1
2




x∫

1

du

u




1
2

shows

(5.1)
|M(x)|

x
¿


 1

log x

x∫

1

|M(u)|2
u3

du




1
2

.

Since 1 ≤ u2/ log x ≤ e2 for 1 ≤ u ≤ x we get

x∫

1

|M(u)|2
u3

du ¿
x∫

1

|M(u)|2
u3+2α

du ≤
∞∫

1

|M(u)|2
u3+2α

du,

where α =
1

log x
. Substituting u = eω and using Parseval’s formula (1.3) gives

(5.2)

1
(log x)

1
2

x∫

1

|M(u)|
u2

du ¿



∞∫

0

|M(eω)|2
e2ω(1+α)

dw




1
2

=


 1

2π

∞∫

−∞

1
|ζ(s)s|2 ds




1
2

,
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where s = 1 +
1

log x
+ it.

Putting K(u) =
∑

n≤u

µ(n) log n partial summation shows that for u ≥ 2

(5.3) M(u) =
K(u)
log u

+

u∫

2

K(t)
t(log t)2

dt,

so that

(5.4)

x∫

2

|M(u)|
u2

du ≤
x∫

2

|K(u)|
u2 log u

du +

x∫

2

|K(t)|
t(log t)2

x∫

t

du

u2
dt ≤

≤
(

1 +
1

log 2

) x∫

2

|K(u)|
u2 log u

du.

Observing

x∫

2

|K(u)|
u2 log u

du ≤



x∫

2

|K(u)|2
u3

du




1
2




x∫

2

du

u log2 u




1
2

shows

(5.5)
|M(x)|

x
¿ 1

log x




x∫

1

|K(u)|2
u3

du




1
2

and in the same way as above we arrive at

(5.6)

x∫

1

|M(u)|
u2

du ¿



∞∫

0

|K(eω)|2
e2ω(1+α)

dω




1/2

=


 1

2π

∞∫

−∞

∣∣∣∣
F (s)

s

∣∣∣∣
2

ds




1/2

,

where s = 1 +
1

log x
+ it and F (s) =

∞∑
n=1

µ(n) log n

ns
= − ζ ′(s)

ζ2(s)
.
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6. Proof of Theorem 1.1

We shall describe some variants for the proof of the prime number theorem
in the form

∑
n≤x

µ(n) = o(x).

(I) We know that

1
|ζ(s)| ·

1
ζ(σ)

−→ 0 as σ → 1+

uniformly for all t belonging to a given bounded interval. Then a straightfor-
ward calculation shows (see [12] and [13]) that

∞∫

−∞

1
|ζ(s)|2

dt

|s|2 = o

(
1

σ − 1

)
= o (log x)

and by (1.4) and (1.1)
x−1

∑

n≤x

µ(n) = o(1).

(II) Using part (a) and (3.5) and (3.6) of Lemma 3.2 gives

∞∫

−∞

∣∣∣∣
1

ζ(s)

∣∣∣∣
2

dt

|s|2 = O(1) as σ → 1+

and, by (1.1) and (1.4),

x−1
∑

n≤x

µ(n) = O

(
1

(log x)
1
2

)
.

(III) Again by Lemma 3.2 we conclude

∞∫

−∞
|F (s)|2 dt

|s|2 = O(1) as σ → 1+,

where F (s) =
∞∑

n=1

µ(n) log n n−s =
(

1
ζ(s)

)′
, and this proves by (1.1) and

(1.5) the assertion of Theorem 1.1.
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