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ON CERTAIN ARITHMETICAL FUNCTIONS
INVOLVING EXPONENTIAL DIVISORS II.

L. T6th (Pécs, Hungary)

Dedicated to the memory of Professor M. V. Subbarao

1. Introduction

Let n > 1 be an integer of canonical form n = p{* ---p% . The integer d

is called an exponential divisor (e-divisor) of n if d = pll’1 --pbr where by | ay,
wesy br | @, notation: d | n. By convention 1 | 1. The integer n > 1 is
called exponentially squarefree (e-squarefree) if all the exponents aq, ..., a, are
squarefree. The integer 1 is also considered to be e-squarefree.

The exponential convolution (e-convolution) of arithmetic functions is
defined by

b101:a1 b,.c,.:a,.

where n = p{* - - pir.

These notions were introduced by M.V. Subbarao [8]. The e-convolution
® is commutative, associative and has the identity element ;2, where p is the
Mobius function. Furthermore, a function f has an inverse with respect to ®
iff f(1) #0 and f(p1---ps) # 0 for any distinct primes p1, ..., ps.

The inverse with respect to ® of the constant 1 function is called the
exponential analogue of the Mdbius function and it is denoted by u(¢). Hence
for every n > 1,

S u(d) = u2(n).

dlen

Here p(®)(1) = 1 and for n = p{* ---p2r > 1,

1 (n) = p(ar) - p(ay).
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Observe that |u(®)(n)| = 1 or 0, according as n is e-squarefree or not. For
properties and generalizations of the e-convolution see [8], [3].

Other arithmetic functions regarding e-divisors, for example the number
and the sum of e-divisors of n, were investigated by several authors, see the
references given in the first part [11] of the present paper, devoted to the study
of functions involving the greatest common exponential divisor of integers.

An asymptotic formula for 3 [1(¢)(n)| was established by M.V. Subbarao

n<x
[8], improved by J. Wu [14], see also Part I of the present paper. We show that
the corresponding error term can further be improved on the assumption of the
Riemann hypothesis (RH), see Theorem 3.
In Theorem 2 we give a formula for > () (n) without and with assuming
n<x
RH. As far as we know there is no such result in the literature. We show that
the error terms depend on estimates for the number of squarefree integers < x.
Consider now the exponential squarefree exponential divisors (e-squarefree
e-divisors) of n. Here d = p?l ---p% is an e-squarefree e-divisor of n =
=p{*epir > 1,if by | a1,...,b, | ar and by, ..., b, are squarefree. Note that
the integer 1 is e-squarefree and it is not an e-divisor of n > 1.
We introduce the functions ¢(¢) and £(¢), where t(¢)(n) and x()(n) denote
the number of e-squarefree e-divisors of n and the maximal e-squarefree e-
divisor of n, respectively. These are the exponential analogues of the functions
representing the number of squarefree divisors of n (i.e. 6(n) = 2" where
w(n) = r) and the maximal squarefree divisor of n (the squarefree kernel k(n) =

= ][ p ), respectively.
pln
The functions t(¢) and £(¢) are multiplicative and for n = pyteepie > 1,
&) (n) = 2w(an) .. gwlar),
H(e)(n) = p’f(‘“) e ﬁ(av-).

Asymptotic properties of the functions t(¢)(n) and x()(n) are given in
Theorems 4, 5 and 7.

2. Results

The function (¢ is multiplicative and u(®)(p®) = u(a) for every prime
power p®. Hence u(®)(n) € {—1,0,1} for every n > 1 and for every prime p,
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pp) =1, 1l p?) = -1, @) = ~1, 9 (p*) = 0,... .
According to a well-known result of H. Delange, cf. [1] Ch. 6, the function
1(®) has a non-zero mean value given by

() H(HZ“ “”)-

An asymptotic formula for ;(®) can be obtained from the following general
result, which may be known.

Theorem 1. Let f be a complex valued multiplicative function such that
|f(n)] <1 for every n > 1 and f(p) =1 for every prime p. Then

> f(n) =m(f)z + O(x'*logx),

n<zx

where

m(f) — H (1 + Z f(pa) _pt-lf(pa_l)>
a=2

P
is the mean value of f.

Theorem 1 applies also for the multiplicative functions f = p*(¢) and f =
= F, where p*(®)(p®) = p*(a) = (—1)*(*) representing the unitary exponential
Mébius function, cf. [3], and F(p®) = A(a) = (—1)*®) the Liouville function,
with ©(a) denoting the number of prime power divisors of a.

We prove for u(®) the following more precise result.

Theorem 2. (i) The Dirichlet series of u'€) is of form

i M(:S(n) = Cg(S) U(s), Res>1,

where U(s) == Y ué?) is absolutely convergent for Re s > 1/5.

(ii) )

2 4l m) = mu ) + O exp(—clog 1))

where A < 9/25 = 0,36 and ¢ > 0 are constants.
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(i1i) Assume RH. Let 1/4 < r < 1/3 be an exponent such that D(z) :=
= > u%(n) — 2/¢(2) = O(x™¢) for every e > 0. Then the error term in (i)
<z
is O(x2=7/G=4)%e) for every e > 0.

The best known value — to our knowledge — of r is r = 17/54 ~ 0, 314814,

obtained in [2], therefore the error term in (ii), assuming RH, is O(2°1/202+¢)
for every € > 0, where 91/202 = 0,450495.

Theorem 3. If RH is true, then

PR |—Ilo+iiﬁm%¥fm_u>x+0@”“ﬂ

n<x

for every e > 0.

The function ¢(¢) is multiplicative and t(¢)(p®) = 2%(®) for every prime
power p®. Here for every prime p, (9 (p) = 1, () (p?) = (&) (p3) =t (p*) =
=t (p°) = 2,1 (p°) = 4, ...

Theorem 4. (i) The Dirichlet series of t\©) is of form

16 (n
Z £ {n) =((s)¢(25)V(s), Res>1,

(o)
where V(s) = 3. " s absolutely convergent for Re s > 1/4.

(i)
Z t(e)(n) = Oyx + szl/Q + O(I1/4+a)

n<z

for every € > 0, where Cy,Cs are constants given by

w(a) _ gw(a—1)
QFHQ+Z2 ’ 1)

gw(a) _ gw(a=1) _ gw(a=2) 4 2w(a—4)>

¢(1/2) H<1+Z 72

Theorem 5.

log t(®) (n) log 1 1
lim sup 08 E:g); :g oen _ 3 log 2.
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The function £(¢) is multiplicative and () (p®) = p*(®) for every prime
power p®. Hence for every prime p, k(9 (p) = p, k(&) (p?) = p?, £ (p?) = p?,
ke (ph) = p?,... .

To obtain an asymptotic formula for x(¢) we use the following general

theorem, of which parts (i) and (ii) are a variant of a result given in [6] and
cited in the first part [11] of this paper.

Theorem 6. Let k > 2 be a fized integer and f be a complex valued
multiplicative arithmetic function satisfying

(a) f(p) = f(P*) = ... = fF(P*"") =1 for every prime p,

(b) there exists K > 0 such that |f(p*)| < K for every prime power p®
with a > k + 1,

(c) there exist M > 0 and 8 > 1/(k + 1) such that |f(p*)| < Mp=P for
every prime p.

Then

(i)

¢(s)
(

c k:s)W(S)’ Re s > 1,

Zl f:j) _

o0
where the Dirichlet series W(s) := Y wé?) is absolutely convergent for Re s >
n=1

>1/(k+1).
(i)
Y f(n) = Cpa+ O(V/*5(x)),

n<x

¢TI (1 Py I f(p‘“))

a
a=k p

where

and
0(x) = da(x) := exp(—A(log x)3/5<10g log x)_1/5),

A being a positive constant.
(i4i) If RH is true, then the error term is O(z/(*+1)+) for every ¢ > 0.

Theorem 7.

Zm(e)(n)—;ﬂ<l+zp

n<x p

r(a) _ p1+m(a71)

) 22 4+ 0(z%45(x)).

p(l
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If RH is true, then the error term is O(z%/5%%) for every e > 0.
3. Proofs

Proof of Theorem 1. Let g = f*u in terms of the Dirichlet convolution.
Then g is multiplicative, g(p) = f(p) — 1 = 0, g(p*) = f(p*) — f(p*~ ') and
lg(p®)| < |f ()| + |f(p*~1)| < 2 for every prime p and every a > 2. Therefore
lg(n)| < £(n)2*™ for every n > 1, where £(n) is the characteristic function of
the squarefull integers and we have

S =3 o) =Y g) (5 +0m) =23 1D 0[S jg(a) | =

n<x de<z d<z d<z d<z

_ xi %;l) Lo (xz E(d)zw(d)> Lo Zé(d)?.u(d)

d=1 d>x d<z

Here

(n)2°™ = 3" 7(d)h(e),

d2e=n

where 7 is the divisor function and h is given by

= h(n
2217(1)_

absolutely convergent for Re s > 1/3, cf. [7]. We obtain

ZE(n)Q‘”(") = Zh(e) Z Zh ( x/e)t/? log(ac/e)) =

n<x e<x dg(m/e)lﬂ elz

=0 z1/2loga:2\h(e)|e*1/2 :O(xl/Qlogz>,

ez

and by partial summation,

Zw20< 1/210g:10)

n>x
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which finishes the proof.

Proof of Theorem 2. (i) Let ua(n) = p(m) or 0, according as n = m? or

not, and let Ey(n) = m? or 0, according as n = m? or not. The given equality
is verified for u(®) = 2 % g * u, equivalent to u = u(® % X\ % Fy, in terms of the
Dirichlet convolution, where A is the Liouville function. It is easy to check that
u(p) = u(p?) = u(p®) = u(p*) = 0, |(\ * E2)(p®)| < a for every prime power p*

b
with a > 1, hence |u(p®)| < 1+ Y [(A* Es)(p®)| < b? for every prime power p®
a=1
with b > 5. We obtain that the Dirichlet series of the function u is absolutely

convergent for Re s > 1/5.
(ii) According to (i), 3 u®(n) = 3 u(n)S(z/n), where

n<z n<z

S(z) =Y p’(n)u(d).

nd?<zx

We first estimate the sum S(x). Let ¢ = o(z) such that 0 < g < 1 to be
defined later. If nd? < x, then both n > p=2 and d > ¢/ can not hold good
in the same time, therefore

S(x)= Y @)+ Y pmud) - > p(n)ud) =

nd2<wx nd2<z d<ovzT
d<oVw n<p—2 n<p—2

= Si(x) + Sa(x) — S3(x),
say. We use the following estimates of A. Walfisz [13]:

Mx) = 3 pln) = O(wd()),  B(x):= 3 1 (n) = g5 + O(a'/20(x)).

n<x n<x

Note that d(z), defined in Section 2, is decreasing and x°d(x) is increasing
for every € > 0. By partial summation,

R(z):=>" "T(LZ) = O(z™14(x)).
Here
Si(x) = Z p(d)E(x/d?*) = % % +0 | 21 Z (S(%/ld) -
d<QVE d<oVz dSQVE
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T 1 1/2 -2 1 =
~ o (4(2) —R(@\/E)) +0 (x %30 >d§5d) -

n<o—2 n<op~?

Sa(z) = D pi(n)M((z/n)"/?) =0 ( > (I/n)1/25((17/n)1/2)) =

=0 (5(9\/5)5E1/2 > ;ﬁ) =0 (9*1w1/25(9ﬁ)) :

n<p~2

Sa(x) = M(ev@)B(e™) = 0 (72 ?5(evT) ).

We obtain that

S(x) = CQL(Q) +0 (Q_lxl/Qé(gﬁ)) +0 (x1/26(1/92)10gx) :

Take o = exp(—(logz)?), where 0 < 8 < 1. Then
1 3 1 1/4
oVT = exp §(log x) — (logx)” | > exp Z(log z) | ==x

for sufficiently large z. Hence §(oyv/z) < 0(x'/*) < p(z) with a suitable
constant B > 0. For B < 3/5 we obtain o~ '6(0v/x) < exp((logx)? —
—B(log x)%/°(loglog x)~'/%) <« ¢ () with a suitable constant C' > 0.

If n < 3/5, then ds(z) < exp(—A(logz)7) and obtain that (o™ ?) <
< exp(—A(2(logz)?)") = exp(—D(logz)?") with a suitable D > 0, where
Bn < 9/25.

Therefore,

T

¢*(2)

S(z) = +0 (xl/Q exp(—c(log x)A) ,

where A < 9/25 and ¢ > 0 are constants. Now,

S uIm) = 3 uln)S(a/n) =

n<x n<x
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e ( O (@ exp(—caog(x/n))A))) -

n<z

o [z

n<lz n<z

exp(— (log(fv/n))A)) ;

where, using that 2° exp(—c(logx)?) is increasing for any & > 0, the O-term is

( 23 |n1/2 (ﬁ) (i)ECXp(—c(log(x/n)A))) =

n<z

-0 ( 1/22% exp(—c(log z)* )z~ > JL?ES)L) )

=0 <x1/2 exp(—c(log x)A))

for 1/2 — e > 1/5. Furthermore,

> -vro ().

n<z n>x

with U(1) = (2(@)m(u®) and 3 2 = 0 (/ )y “) — O(a~3/%),

n>x n>x

which finishes the proof of (ii).
(iii) Assume RH. We use that, see [10],

= Z win) =0 (xl/Qw(x)) ,

n<zx

where w(z) := exp(A(log x)(loglogx)~1), A being a positive constant, which
gives by partial summation,

)= 3 o).

n>x

Suppose that D(x) := > p?(n) — x/{(2) = O(z"+¢) for every € > 0,
n<x
where 1/4 < r < 1/3. Then we obtain by similar computations that
Si(z) = 7(2‘?2) +0 (9’3/2561/%(9\/5)) +0 (ﬂcl/le*Q(T“)) :
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Sa(w) = 0 (0720 w(ov) ), Sa(e) = O (o732 *u(ov/m))

Therefore

S(x) =

x

¢*(2)

+0 (9_3/2x1/4w(g\/5)) +0 (x1/2gl—2(r+s)) )

Choose ¢ = 2%, t > 0. Then o 3/2z1/* = (6HD/4 o /o = g1/2-t < g,
hence w(pv/z) < w(z) < z° for every e > 0 and obtain

__ 7 (6t+1)/4+e 1/2—t(1—2r)+e
S(x) C2(2)—1-0(:5 )—1—0(33 )

Take (6t +1)/4 = 1/2 — (1 — 2r), this gives t = 1/(10 — 8r) leading to the
common value (2 —r)/(5 — 4r) + ¢ of the exponents.

Proof of Theorem 3. Apply Theorem 6 for f(n) = |u(®)(n)|, k = 4 on
the assumption of RH.

Proof of Theorem 4. The proof is similar to the proof of Theorem 1 of
[11], see also [12] for a more general result of this type.

(i) To obtain the given equality let f = ug * p, where po is defined in the
Proof of Theorem 2, and let v = t(¢) % f. Here both f and v are multiplicative
and it is easy to check that f(p) = f(p?) = —1, f(p*) = 1, f(p®) = 0 for each
a > 4, and v(p) = v(p?) = v(p*) = 0, v(p?) = 240) —ge(a-1) _ge(a=2) g gulad
for a > 4.

(ii) According to (i), t(¢) = vx7(1,2,), where 7(1,2,n) = 3. 1 for which

ab?=n

> r(1.2,n) = ((2)z +((1/2)2? + O(="/Y),

n<x

cf. [4], pp. 196-199. Therefore,

STtOm) = "ud) > (1,2.¢)

n<z d<z e<z/d

and we obtain the above result by usual estimates.

Proof of Theorem 5. We use the following general result given in [9]:
Let F be a multiplicative function with F(p®) = f(a) for every prime power
p?, where f is positive and satisfying f(n) = O(n?) for some fixed 3 > 0. Then

. log F(n)loglogn log f(m)
lim sup log n = sup —
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Take F(n) =t (n), f(a) = 2*®). Here w(a) < a/2 and 5@ — 1169,
which proves the result.

Proof of Theorem 6. (i), (ii) Take f = gx * w, in terms of the Dirichlet
convolution, where ¢, denotes the characteristic function of the k-free integers
and use the estimate of A. Walfisz [13],

> arln) =

n<x

-'17 {I?l/k xT)).
fg O o)

For details cf. [6], [12].

(iii) If RH is true, then the error term of above is O(z!/(*+1)+) according
to the result of H.L. Montgomery and R.C. Vaughan [5], and take into account
that W (s) is absolutely convergent for Re s > 1/(k + 1).

Proof of Theorem 7. Apply Theorem 6 for f(n) = &) (n)/n, k = 4,
B =2, where f(p*) = 1/p?. Then by partial summation we obtain the result.

Acknowledgement. The author is grateful to Professor Imre Kétai for
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