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ON THE DIOPHANTINE EQUATION
x + y + z = xyz = 1

K. Chakraborty (Allahabad, India)

Dedicated to the memory of M.V. Subbarao

Abstract. In this article we survey the results relating to the study of

solutions of the Diophantine system of equations x + y + z = xyz = 1.

We study the equation over the finite fields, the rationals and in the ring

of integers of quadratic number fields.

1. Introduction

In 1956 Werner Mnich asked ”Whether there exist three rationals whose
sum and product equals one?”, i.e. whether the Diophantine system of
equations

(1) x + y + z = xyz = 1

is solvable in Q?

In general, A. Schinzel demonstrated that for s > 3 there exist infinitely
many systems of s rational numbers x1, . . . , xs such that

(2) x1 + . . . + xs = x1 · · ·xs = 1.

For example, when s = 4, the numbers

x1 = − 1
n2 − 1

, x2 =
n2

n2 − 1
,
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x3 =
1− n2

n
, x4 =

n2 − 1
n

for n = 2, 3, 4, . . . satisfy (2).

In this article, I would like to survey the results relating to the study of
solutions of this Diophantine system of equtions over finite fields, over rationals
and over the ring of integers of the quadratic number fields.

There exist various equivalent form of Mnich’s question:

(a) The only rational solutions of

(r + s + t)3 = rst

have rst = 0.

(b) Do the equation
x

y
+

y

z
+

z

x
= 1

has integer solutions?

(c) Do there exist rationals r such that all the roots of the equation

x3 − x2 + rx− 1 = 0

are rational?

The equivalence of these questions was proved by A.Schinzel [1].

The problem of Mnich was orally asked by L.J. Mordell to J.W.S. Cassels.
In 1960, Cassels [2] proved the non-existence of rational solutions of (1).

2. Solutions in Z/mZ and in Fq

C. Small [4] studied this Diophantine equation in the rings Z/mZ and in
the finite fields Fq, where p = pn for some prime p and n ≥ 1. One can trivially
note the following:
• In Z/2Z the equation has solution x = y = z = 1.
• In Z/3Z and in Z/4Z there is no solution, as in these rings xyz = 1

forces x, y, z = ±1.

C. Small proved the following result.
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Theorem 1. The equation

(3) x + y + z = xyz = 1

has solutions in Z/mZ iff 2, 3 6 |m.

Proof. (Brief sketch) Let m = 2a0pa1
1 · · · pat

t . We need to solve the
equation modulo m. The Chinese remainder theorem ensures it is equivalent
to solving the same congruence modulo 2a0 and modulo pai

i . Thus, Theorem
1 follows from

Theorem 2. (3) has solutions in Z/pnZ for all primes p 6= 2, 3.

The following two steps are required:
• Reduce to the case n = 1.
• Use quadratic reciprocity to show existence of solutions in Z/pZ .

From (3)
xy(1− x− y) = 0

⇒ xy2 + (x2 − x)y + 1 = 0.

Disc. of the quadratic is

∆(x) = (x2 − x)2 − 4x.

• Thus, if ∆(x) is a square and divisibility by 2 is allowed in a ring R, our
equation has solution in R. Thus,

Lemma 1. Let R be a commutative ring in which 2 is invertible and define
∆ : R −→ R by

∆(x) = (x2 − x)2 − 4x.

If there exists elt. x ∈ R for which ∆(x) is a square then (3) has a solution in
R.

One uses the Lemma on Z/pZ = Fp and quadratic reciprocity to show

Lemma 2. p > 3 and ∆ is as before. Then there exist 0 6= x ∈ Fp such
that ∆(x) is a square.

Proof. (Sketch) One can easily check the following:
x = 1 works unless p ≡ 7, 11, 19,−1(24).
x = −1 works when p ≡ 7,−1(24).
x = 3 works when p ≡ 19(24).
x = −3 works when p ≡ 11(24).

One uses the properties of the Legendre symbol to conclude this.
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Combining the two lemmas we get

Proposition 1. (3) has solutions in Fp for p 6= 3.

Now to establish the theorem we want to lift solution mod p to solution
mod pn.
• Because of the criterion given by the first Lemma the essential require-

ment is that we be able to lift squares. The following result allows us to
do that.

Lemma 3. Let p 6 |m. If m is square modulo p then in fact m is square
modulo pn.

For any prime p > 3 and x ∈ {±1,±3,−4}, ∆(x) is a square modulo p.
We have, both x and 2 are invertible in Z/pnZ and ∆(x) is square in Z/pnZ.
Thus we are done by Lemma 1.

In the same paper the author also counts the solutions of the equation
in finite fields by using Vinogradov’s method on the homogenized form of the
transform of the original equation over Fp. Over Fq, where q = pn, this is
done by using the machinery of the zeta-function of the curve associated to
this equation.

3. Elliptic curves

We sketch the proof of Cassels with a brief introduction to elliptic curves.

• An elliptic curve over a field F means a smooth and projective curve
E over F of genus 1 with a fixed F -rational point O.

• E has a unique group structure with identity element O.
• E can be embedded into P2 as a cubic curve defined by a so-called

Weierstrass equation

y2 + a1xy + a3 = x3 + a2x
2 + a4x + a6

with ai’s in F .
• The origin O corresponds to the point at infinity (0, 1, 0).
• The group law on the set E(F ) is defined by

P ⊕Q⊕R = O

if P, Q, R are colinear.
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• Char(F ) 6= 2, 3. E can be defined by

y2 = x3 + ax + b, 4a3 + 27b2 6= 0.

• P = (x, y), P ′ = (x′, y′), x(P ⊕ P”) = x′′. Then

x′′ =
(

y′ − y

x′ − x

)2

− x− x′.

• Taking limit as P ′ −→ P , x-coordinate of 2P = (x′′, y′′)

x′′ =
(3x2 + a)2

4x3 + 4x + 4b
− 2x.

One of the main objects of study of modern number theory is the group
E(F ) of rational points of E. Its structure is given by Mordell–Weil theorem
which was conjectured by Poincare when F = Q.

Theorem 3. The group E(F ) is finitely generated. Thus one has an
isomorphism

E(F ) ' Zr ⊕ E(F )tors,

r is a non-negative integer and is called the rank of E.

Cassels proved the following theorem.

Theorem 4. The system of equations

(r + s + t)3 = rst = 1

is not solvable in rationals.

Proof. (Brief sketch) This is equivalent to

Theorem 5. The only rational solutions of

(4) (r + s + t)3 = rst

have
rst = 0.

If we do the following change

r + s + t = −1
4
xt , r − s =

1
4
yt,
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(4) becomes

(5) E : y2 = x3 + (x + 4)2,

which is the Weierstrass form of an elliptic curve.
Consider its Mordell–Weil group E(Q). By the Lutz-Nagell theorem (if

(x, y) has finite order in E(Q) then x, y are integers and either x = 0 or x2|∆),
the torsion points of E(Q) have x-coordinate x = 0.

Target : To show that these are the only members of E(Q), i.e. the rank
of E is 0.

The proof is then completed by proving the above observation. The author
used fairly complicated cubic extension to prove this fact.

Cassels and Sansone [3] later gave another proof of the non-solubility of
the Diophantine equation in Q. This proof is elementary compared to the first
one of Cassels and uses infinite decent using factorization in the Eisenstein
field.

4. Solutions in the quadratic fields

In 1987, Mollin et’ al. [5] have investigated this equation over quadratic
fields. They found finitely many such fields (namely, Q(i), Q(

√
2) and Q(

√
5))

in which there exists a solution for integer units u1, u2, u3 of Q(
√

d) of the
equation

u1u2u3 = u1 + u2 + u3.

In a joint work with M. Kulkarni [6], the present author studied solutions of
general cubic equations in quadratic fields and as an application established
the result of Mollin et’ al. by a different method (possibly simpler). We need
to introduce some notations before proceeding to sketch the proof.

Some notations. Let K = Q(
√

d) with d square-free be a quadratic field.
We denote OK as its ring of integers.

For any s ∈ K, let s̄ denotes its Galois conjugate over Q. As before, let
E(K) denote the group of K-rational points of an elliptic curve E.

We write P̄ = (s̄, t̄) for an element P = (s, t) ∈ E(K). We say an element
P = (s, t) ∈ E(K) is “exceptional” if s 6∈ Q. Now we are in a position to state
the theorem.
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Theorem 6. If K = Q(
√

d), then except for d = −1 and d = 2, the
equation

(6) r + s + t = rst = 1

has no solution in OK .

Proof. (Sketch) Let us assume that P = (s, t) ∈ E(K) is “non-
exceptional” (n.e.). Then by definition s = s̄. Using the Weierstrass equation
of the elliptic curve one can easily show that

t = ±t̄.

Thus, if P is “n.e.”, then either P ∈ E(Q) or

P ⊕ P̄ = O.

Clearly, (6) is same as

r + s +
1
rs

= 1.

Change,

r =
−1
x

, s =
−y

x
,

this gives us
y2 + y + xy = x3.

Change,

x = x1 − 1
12

, y = y1 − x1

2
− 1

2
,

and get

y2
1 = x3

1 +
23
48

x1 +
362
1728

.

Finally,

x1 =
X

36
, y1 =

Y

216
,

and one gets the required Weierstrass form of an elliptic curve

(7) E : Y 2 = X3 + 621X + 9774.

The inverse transformation,

r =
36

(3−X)
, s =

(Y − 3X − 99)
6(3−X)
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allows us to go from (7) to (6).

Now suppose, (r, s, t) ∈ OK is a solution of (6).

Claim: One of r, s, t must be in Q.

Let P =
(
a + b

√
d, k + l

√
d
)

be the corresponding solution for the elliptic
curve.

We have two cases to consider:
Case I. P is “n.e.”. In this case we have

(
a + b

√
d, k + l

√
d
)
⊕

(
a− b

√
d, k − l

√
d
)

= O.

Now from the group law on elliptic curves, if

P = (x, y) then − P = (x,−y).

Thus,
(i) a + b

√
d = a− b

√
d ⇒ b = 0,

(ii) k + l
√

d = −k + l
√

d ⇒ k = 0.

That makes
P =

(
a, l

√
d
)

.

Thus,

r =
36

(3− a)
∈ Q.

Case II. P is “exceptional”. Note that

E(Q) = {O, (3, 108), (3,−108)}.

Thus our elliptic curve has exactly three points over Q and they are points of
order 3. Let us call them O, ω, 2ω.

• If P ⊕ P̄ = ω, then P ⊕ ω is “n.e.”, as

(P ⊕ ω)⊕ (P ⊕ ω) = P ⊕ P̄ ⊕ 2ω

= ω ⊕ 2ω

= O.

• Similarly, if P ⊕ P̄ = 2ω, then P ⊕ 2ω is “n.e.”
As the claim is valid for “n.e.” elements, it is true for (P ⊕ ω). Hence it

is valid for P . Thus w.o.l.g., we can assume that r ∈ Q. One has rst = 1 with
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r, s, t ∈ OK . That implies r, s, t are units. As r ∈ Q, we must have r = ±1.
We need to consider the following possibilities:

• r = 1 ⇒ s + t = 0 and st = 1. That implies

(s, t) = (i,−i).

• r = −1 ⇒ s + t = 2 and st = 1. That would imply,

(s, t) =
(
1 +

√
2, 1−

√
2
)

.

Thus,

(1, i,−i) ,
(
1, 1 +

√
2, 1−

√
2
)

and all their permutations are the only solutions of our Diophantine equation
in OK .

The next case is the ring of integers of cubic fields and A. Bremner [7]
have characterized the fields and wrote down the solutions. In another work
A. Bremner [8] have studied this equation over quadratic fields.
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