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ON REGULAR ψ–CONVOLUTIONS II.

G. Rajmohan and V. Sitaramaiah

(Pondicherry, India)

Dedicated to the memory of Professor M.V. Subbarao

Abstract. We prove the equivalence of regular ψ-convolutions (satisfying

the condition ψ(x, y) ≥ max{x, y} for all (x, y) ∈ T ) and Lehmer-

Narkiewicz convolutions. We prove that several classical results in regular

Narkiewicz convolutions can be extended to Lehmer-Narkiewicz convolu-

tions.

1. Introduction

An arithmetic function is a complex-valued function whose domain is the
set of positive integers Z+. Let F denote the set of arithmetic functions.
A binary operation B in F is called a regular convolution if the following
conditions hold:

(i) The triple (F, +, B) is a commutative ring with unity (here ”+” denotes
the usual pointwise addition). (1.1)

(ii) B is multiplicativity preserving, that is fBg is multiplicative whenever
f, g ∈ F are multiplicative (as usual f 6≡ 0, f ∈ F is said to be
multiplicative if f(mn) = f(m)f(n) whenever m and n are relatively
primes). (1.2)

(iii) The function 1 ∈ F defined by 1(n) = 1 for all n ∈ Z+ has an inverse µB

with respect to B and µB is 0 or -1 at prime powers. (1.3)
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For each positive integer n, if A(n) is a non-empty subset of positive
divisors of n, Narkiewicz [10] defines the binary operation A in F (called the
A-convolution) by

(1.4) (fAg)(n) =
∑

d∈A(n)

f(d)g(n/d)

for each n ∈ Z+. He then calls the A-convolution as regular if A satisfies (1.1)-
(1.3). If A(n) is the set of all divisors of n, then A reduces to the familiar
Dirichlet convolution D. As usual, a divisor d of n is called a unitary divisor
if d and n/d are relatively prime; that is gcd(d, n/d) = 1. If A(n) denotes the
set of all unitary divisors of n, the binary operation A in (1.4) reduces to the
well-known unitary convolution U studied extensively by E. Cohen ([2], [3]).
The unitary convolution was originally introduced by R. Vaidyanathaswamy
(cf. [25]) under the name of compounding operation. To make a distinction
between a general regular convolution as defined in (1.1)-(1.3) and that of
the special operation A defined in (1.4) which is regular, we call the latter as
regular-Narkiewicz convolution.

It is well-known that the Dirichlet convolution is regular. Also, from the
results established by Cohen [2], it follows that unitary convolution is also a
regular convolution.

Narkiewicz obtained necessary and sufficient conditions for the convolution
A in (1.4) to be a regular convolution in terms of the sets A(n) (cf. [10]). A
more useful characterization of regular-Narkiewicz convolutions obtained by
Narkiewicz is given below:

Theorem 1.1. (cf. [10], Theorem II) Let K be the class of all decomposi-
tions of the set of non-negative integers into arithmetic progressions (finite or
not) containig zero and such that no two arithmetic progressions belonging to
the same decomposition have a positive integer in common. Let us associate
with every prime number p an element πp of K. Let the sets A(n) be defined by∏
i

pαi
i ∈ A(n) where n =

∏
i

pβi

i if and only if for every i : αi ≤ βi and αi, βi

belong in the decomposition πpi to the same progression. Then these sets A(n)
define a regular convolution and conversely every regular A-convolution can be
obtained in this way.

From the above theorem it is clear that every regular A-convolution is
uniquely determined by a sequence {πp} of elements of K. This is described
by writing A ∼ {πp}. If A ∼ {πp}, where πp : {0, 1, 2, 3, . . .} for each prime
p, then A is the Dirichlet convolution and if πp : {0, 1}, {0, 2}; {0, 3}; . . ., then
these decompositions determine the unitary convolution. Apart from these
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two Theorem 1.1 shows that there are infinitely many examples of regular A-
convolutions.

In 1930 R. Vaidyanathaswamy (see [24]; also [25], [26]) established the
following remarkable identity valid for any multiplicative function and known
as the identical equation for multiplicative functions: if f is any multiplicative
function, then for any positive integers m and n, we have

(1.5) f(mn) =
∑
a|m
b|n

f(m/a)f(n/b)f−1(ab)G(a, b),

where f−1 is the inverse of f with respect to the familiar Dirichlet convolution,
that is ∑

d|m
f(d)f−1(m/d)(m) = e(m)

for all positive integers m, where

(1.6) e(m) =

{ 1, if m = 1,

0, if m > 1,

and

(1.7) G(a, b) =





(−1)ω(a) if γ(a) = γ(b),

0 otherwise,

ω(a) being the number of distinct prime factors of a and γ(a) the product of
distinct prime factors of a with ω(1) = 0 and γ(1) = 1.

It has been observed by M.V. Subbarao and A.A. Gioia [23] that the
unitary analogue of (1.5) is true, that is whenever m and n are relatively prime
and f is multiplicative we have

(1.8) f(mn) =
∑
a‖m
b‖n

f(m/a)f(n/b)f−1
U (ab)G(a, b),

where f−1
U denotes the inverse of f with respect to the unitary convolution,

that is ∑

d‖m
f(d)f−1

U (m/d) = e(m)

for all positive integers m.
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In fact, M.V. Subbarao and A.A. Gioia (cf. [23], p.70) noted that the
identity in (1.8) reduces to a triviality in the sense that the right hand side of
(1.8) can be evaluated without much difficulty since f−1

U (m) = (−1)ω(m)f(m).
They also established a non-trivial identity (cf. [23], Theorem 2) in the case of
unitary products.

It is interesting to note that the A-analogue of (1.5) is also true which has
in fact been established by P. Haukkanen (cf. [5], Theorem 1.4.8, G = Z+) in a
slightly more general setting. However, we mention here only the A-analogue
of (1.5): if f is a multiplicative function, then we have for m ∈ A(mn)

(1.9) f(mn) =
∑

a∈A(m)
b∈A(n)

f(m/a)f(n/b)f−1
A (ab)G(a, b),

where f−1
A is the inverse of f with respect to the regular Narkiewicz A-

convolution, so that

∑

d∈A(m)

f(d)f−1
A (m/d) = e(m)

for all positive integers m.

Let ∅ 6= T ⊆ Z+ × Z+ and ψ : T → Z+ be a mapping satisfying the
following conditions:

(1.10) For each n ∈ Z+, ψ(x, y) = n has a finite number of solutions.

(1.11) If (x, y) ∈ T, then (y, x) ∈ T and ψ(x, y) = ψ(y, x).

(1.12)





The statements ”(x, y) ∈ T, (ψ(x, y), z) ∈ T” and

”(y, z) ∈ T, (x, ψ(y, z)) ∈ T” are equivalent; if one of these

conditions holds, we have ψ(ψ(x, y), z) = ψ(x, ψ(y, z)).

If f, g ∈ F , then the ψ-product of f and g denoted by fψg ∈ F is defined
by

(1.13) (fψg)(n) =
∑

ψ(x,y)=n

f(x)g(y)

for all n ∈ Z+. The binary operation ψ in (1.13) is due to D,H. Lehmer [6].
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It is easily seen that (F, +, ψ) is a commutative ring (cf. [6]). Clearly, the
Dirichlet and unitary convolutions arise special cases of the ψ-convolutions. Let
ψ(x, y) = xy for all (x, y) ∈ T . If T = Z+×Z+ then ψ in (1.13) reduces to the
Dirichlet convolution. If T = {(x, y) ∈ Z+ × Z+ : (x, y) = 1}, then ψ reduces

to the unitary convolution [2]. More generally, if T =
∞∪

n=1
{(d, n/d) : d ∈ A(n)},

where A is Narkiewicz convolution [10], then ψ reduces to the A-convolution.
Thus the binary operation in (1.13) is more general than that of Narkiewicz’s
A-convolution.

If ψ satisfies (1.10)-(1.12) then the binary operation ψ in (1.13) is said to
be multiplicativity preserving, if fψg is multiplicative whenever f and g are
(cf. [17]).

If ψ is multiplicativity preserving, then the following ψ-analogue of the
identical equation in (1.5) has been established by V. Sitaramaiah and M.V.
Subbarao [19] placing some mild conditions on ψ (see [19], Theorem 3): if f is
multiplicative, then for any (m,n) ∈ T we have

(1.14) f(ψ(m,n)) =
∑

a,x,b,y
ψ(a,x)=m
ψ(b,y)=n

f(x)f(y)f−1(ψ(a, b))G(a, b),

f−1 being the inverse of f with respect to ψ and G(a, b) is as given in (1.7).

The conditions placed on ψ (for precise conditions see Theorem 2.7 in
Section 2 of the present paper) are general enough to contain (1.5) as a special
case and in general the A-analogue of the identical equation given in (1.9).
However, in all these cases ψ(x, y) = xy ∀x, y ∈ T . Only one example of a
function ψ was constructed by V. Sitaramaiah and M.V. Subbarao (cf. [19],
Remark 3.2) for which the ψ-analogue of the identical equation holds and also
ψ(x, y) 6= xy.

The A-analogue of the identical equation given in (1.9) might have sug-
gested the authors [20] to study regular ψ-convolutions; the binary operation
in (1.13) is called a regular ψ-convolution (cf. [20]) if ψ satisfies the conditions
(1.1)-(1.3).

An attempt was made in [20] to characterize regular ψ-convolutions; a
less effective characterization was obtained in that paper (see Theorem 2.11
in Section 2 of the present paper). The ψ-convolutions that admit the ψ-
analogue of the identical equation (1.14) (under some mild conditions on ψ,
see Theorem 2.7) have been subsequently characterized by V. Sitaramaiah and
M.V. Subbarao and have been named as Lehmer-Narkiewicz convolutions for
some reasons (cf. [20], Remark 4.3). So the ψ-analogue in (1.140 is valid when
ψ is a Lehmer-Narkiewicz convolution.
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It is interesting to note that it has been proved by J.L. Nicolas and V.
Sitaramaiah (cf. [11], Theorem 5.1) that the only multiplicativity preserving ψ-
convolutions that admit the ψ-analogue of the identical equation given in (1.14)
satisfying ψ(x, y) ≥ max{x, y} for all (x, y) ∈ T and with respect to which every
multiplicative function is invertible are Lehmer-Narkiewicz convolutions.

Since a regular ψ-convolution is a generalization of a regular Narkiewicz
A-convolution and in view of the A-analogue of the identical equation in (1.9),
one may expect that the ψ-analogue of the identical equation could be possible
when ψ is a regular convolution. One of the main objectives of the present
paper is to prove that this guess is a valid one (see Section 3, Theorem 3.1). We
prove this by showing that if ψ(x, y) ≥ max{x, y} ∀x, y ∈ T then the regular
ψ-convolutions and the Lehmer-Narkiewicz convolutions (L-N convolutions)
are one and the same. Since a useful characterization of L-N convolutions
has been established (cf. [20], Corollary 4.1), it follows immediately that
regular ψ-convolutions satisfying ψ(x, y) ≥ max{x, y} ∀x, y ∈ T have a useful
characterization on the tree of its descendants, the regular Narkiewicz A-
convolutions.

In Section 4 we study ψ-multiplicative functions, when ψ is a Lehmer-
Narkiewicz convolution and establish several properties of these similar to those
in the case of A-convution established by K.L. Yocom [27]. In addition to these,
we discuss some results on ψ-multiplicative functions that are characteristic of
Lehmer-Narkiewicz convolutions.

In Section 5 we discuss the ψ-analogue of Busche-Ramanujan identity (cf.
[8]) when ψ is a Lehmer-Narkiewicz convolution. These results show that the
Lehmer-Narkiewicz convolutions are favourites of classical results.

2. Preliminaries

The following results (Lemmas 2.1 and 2.2) describe necessary and sufficent
conditions concerning the existence of unity and inverses in (F, +, ψ).

Lemma 2.1. (cf. [16], Theorem 2.2) Let (F, +, ψ) be a commutative ring
and ψ(x, y) ≥ max{x, y} for all x, y ∈ T . Then (F, +, ψ) possesses the unity
if and only if for each k ∈ Z+ ψ(x, k) = k has a solution. In such a case if g
stands for the unity, then for each k ∈ Z+

(2.1) g(k) =





1− ∑
ψ(x,k)=k

x<k

g(x) if ψ(k, k) = k,

0 if ψ(k, k) 6= k.
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Remark. It has been established by J.L. Nicolas and V. Sitaramaiah (cf.
[12], Theorem 3.1) that if (F, +, ψ) is a commutative ring, it possesses unity if
and only if for each k ∈ Z+ ψ(x, k) = k has a solution.

Lemma 2.2. (cf. [15], also see [17], Remark 1.1) Let ψ satisfy (1.10)-
(1.12) and ψ(x, y) ≥ max{x, y} for all x, y ∈ T . For each k ∈ Z+ let the
equation ψ(x, k) = k have a solution so that the unity exists in (F, +, ψ). Let
g denote the unity. Then f ∈ F is invertible with respect to ψ if and only if

Sf (k)
def
=

∑

ψ(x,k)=k

f(x) 6= 0

for all k ∈ Z+. In such a case, this inverse denoted by f−1(k) can be computed
by

f−1(1) =
1

f(1)
,

and for k > 1

f−1(k) = (Sf (k))−1


g(k)−

∑
ψ(x,y)=k

y<k

f(x)f−1(y)


 .

The following results (Lemmas 2.3 and 2.4) give a characterization of
multiplicativity preserving ψ-functions:

Lemma 2.3. (cf. [18], Theorem 3.1) Let ψ satisfy (1.10)-(1.12) and
ψ(x, y) ≥ max{x, y} for all x, y ∈ T . Suppose that the binary operation ψ

in (1.13) is multiplicativity preserving. If x =
r∏

i=1

pαi
i and y =

r∏
i=1

pβi

i , where

p1, p2, . . . , pr are distinct primes, αi and βi are non-negative integers, we have

(a) (x, y) ∈ T if and only if (pαi
i , pβi

i ) ∈ T for i = 1, 2, . . . , r.

(b) For each prime p and non-negative integers α, β such that (pα, pβ) ∈
∈ T there is a unique non-negative integer θp(α, β) ≥ max{α, β} such that
ψ(pα, pβ) = pθp(α,β).

(c) If (x, y) ∈ T , then

(2.2) ψ(x, y) =
r∏

i=1

p
θpi

(αi,βi)

i .
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Further, θp(α, β) satisfies

(d) For each integer γ ≥ 0, θp(α, β) = γ has a finite number of solutions.

(e) θp(α, β) = 0 if and only if α = β = 0.

(f) θp(α, β) = θp(β, α).

(g) For non-negative integers α, β, γ and for any prime p the statements
”(pβ , pγ) ∈ T , (pα, pθp(β,γ)) ∈ T” and ”(pα, pβ) ∈ T and (pθp(α,β), pγ) ∈ T” are
equivalent; when one of these conditions holds we have

θp(α, θp(β, γ)) = θp(θp(α, β), γ).

Lemma 2.4. (cf. [18], Theorem 3.2) Let T ⊆ Z+ × Z+ be such that

(a) (x, y) ∈ T if and only if (y, x) ∈ T .

(b) If x and y are as given in Lemma 2.3, then (x, y) ∈ T if and only if
(pαi

i , pβi

i ) ∈ T for i = 1, 2, . . . , r.

If for (x, y) ∈ T , ψ(x, y) is defined by (2.2) and θp(α, β) satisfies (e),
(f) and (g) of Lemma 2.3, then ψ is multiplicativity preserving and for each
k ∈ Z+, ψ(x, k) = k has a solution.

Lemma 2.5. (cf. [18], Theorem 3.3) Let ψ be given as in Lemma 2.4 and
ψ(x, y) ≥ max{x, y} for all (x, y) ∈ T . If M denotes the set of all multiplicative
functions which are invertible with respect to ψ, then (M, ψ) is a commutative
ring in which the function g defined in (2.1) is the identity.

Remark 2.6. If ψ and θp are as given in Lemma 2.4, clearly ψ(x, y) ≥
≥ max{x, y} for all (x, y) ∈ T is equivalent to saying that θp(α, β} ≥ max{α, β}
for all non-negative integers α and β such that (pα, pβ) ∈ T . In such a case, it
is clear that ψ(x, y) = n implies that x|n and y|n; it may also be noted that if
ψ(1, n) = n for all n ∈ Z+, ψ(x, y) = xy whenever (x, y) = 1. (See also [17],
Lemmas 2.1 and 2.2.)

Theorem 2.7. (cf. [19], Theorem) Let T, ψ and θp be as in Lemma 2.4
and ψ(x, y)max{x, y} for all (x, y) ∈ T . Further we assume that for each prime
p we have

(2.3) (θp(α, β) = θp(α, γ)) implies that (β = γ),

(2.4)

(θp(α, β) = θp(γ, δ)) implies that





α = θp(γ, c) for some c ≥ 0

or β = θp(δ, d) for some d ≥ 0.
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If f is multiplicative, then the identity in (1.14) holds.

Definition 2.8. Let ψ be multiplicativity preserving with ψ(x, y) ≥
≥ max{x, y} for all (x, y) ∈ T and ψ(1, k) = k for all k ∈ Z+. Let T and
θp be as in Lemma 2.4. Then ψ is called a Lehmer-Narkiewicz convolution or
simply L−N convolution if θp satisfies (2.3) and (2.4) for all primes p.

Lemma 2.9. (cf. [20], Lemma 3.1) Let ψ be a regular convolution and
ψ(x, y) ≥ max{x, y} for all (x, y) ∈ T . Then for each k ∈ Z+, (1, k) ∈ T and
ψ(1, k) = k. Hence the function e defined in (1.6) is the unity in (F, +, ψ) (also
θp(0, α) = α for all non-negative integers α).

Lemma 2.10. (cf. [20], Lemma 3.2) Let ψ be a regular convolution and
ψ(x, y) ≥ max{x, y} for all (x, y) ∈ T . We fix a prime p and write θ for θp,
where ψ, T and θp are as given in Lemma 2.4. Let

(2.5) Spα = Sα = {a ≥ 0 : θ(a, b) = α for some b ≥ 0},

and µψ denote the inverse of the constant function 1 with respect to ψ. Then
we have the following:

(a) If Sα = {0, α}, then {(x, y) : θ(x, y) = α} = {(0, α), (α, 0)} and
µψ(pα) = −1.

(b) If Sα = {0, a1, a2, . . . , ar, ar+1 with 0 < a1 < a2 < . . . < ar+1 = α}
then µψ(pa1) = −1 and µψ(pai) = 0 for i = 2, 3, . . . , r + 1. Also {(x, y) :
θ(x, y) = a1} = {(0, a1), (a1, 0)}, a1 ∈ Sai and θ(a1, y) = ai has a unique
solution in Sai for i = 2, 3, . . . , r + 1.

Theorem 2.11. (cf. [20], Theorem 3.1) We fix a prime p and write
θ for θp. Let S0 = {0} and θ(α, β) = 0 if and only if α = β = 0. Also,
θ(α, 0) = θ(0, α) = α for every α ∈ Z+. For each α ∈ Z+ let Sα denote a finite
set of integers containing {0, α} and with the property that Sx ⊆ Sα for every
x ∈ Sα. If Sα = {0, α}, define θ(x, y) = α if and only if (x, y) ∈ {(0, α)},
{(α, 0)}. If Sα = {0, a1, . . . , ar, ar+1} with 0 < a1 < . . . < ar < ar+1 = α, let
Sa1 = {0, a1} and θ(x, y) = a1 if and only if (x, y) ∈ {(0, a1), (a1, 0)}. Suppose
that for i = 2, 3, . . . , r + 1 (i) a1 ∈ Sai ; (ii) solutions of θ(x, y) = ai are chosen
from Sai × Sai in such a way that (a) θ(a1, y) = ai has a unique solution in
Sai ; (b) Sai = {x : θ(x, y) = ai for some y}; (c) θ is associative; (d) θ(x, y) ≥
≥ max{x, y} and (e) θ(x, y) = θ(y, x) whenever θ is defined. Let T and ψ be
defined as in Lemma 2.4. Then ψ is a regular convolution, ψ(x, y) ≥ max{x, y}
for all (x, y) ∈ T and e is the unity of the commutative ring (F, +, ψ). Also, if
we define a prime power pα for α ∈ Z+ to be ψ-primitive if Sα = {0, α}, then

(2.6) µψ(pα) =

{−1 if pα is ψ-primitive,

0 otherwise.
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Conversely, every regular ψ convolution satisfying ψ(x, y) ≥ max{x, y} for all
(x, y) ∈ T can be obtained in this way.

Theorem 2.12. (cf. [20], Corollary 4.1) For each prime p let πp denote
a class of subsets of non-negative integers such that
(i) the union of all members of πp is the set of non-negative integers;
(ii) each member of πp contains zero;
(iii) no two members of πp contain a positive integer in common.

If S ∈ πp and S = {a0, a1, a2, . . .} with 0 = a0 < a1 < a2 < . . ., we define
θp(ai, aj) = ai+j, if ai, aj and ai+j ∈ S (i and j need not to be distinct). If ψ
and T are as given in Lemma 2.4, then ψ is an L-N convolution and is also a
regular convolution. Also, every L-N convolution can be obtained in this way.

It is clear from the above result that there are infinitely many L-N
convolutions. If θp(x, y) = x + y for all x, y such that (px, py) ∈ T , then
πp should consist of arithmetic progressions. Thus, Theorem 2.12 reduces to
the characterization theorem of regular Narkiewicz convolutions (see Section 1,
Theorem 1.2).

3. Regular ψ-convolutions and Lehmer-Narkiewicz convolutions

In the following Lemmas 3.1, 3.2 and 3.3 we assume that ψ is a regular
convolution and ψ(x, y) ≥ max{x, y} for all (x, y) ∈ T . We first prove

Lemma 3.1. We fix a prime p. Let θ = θp and Sα be as given in (2.5).
If Sα = {a0 < a1 < . . . < ar < ar+1 = α} with a0 = 0, then for 0 ≤ i ≤ r,

(a) Sai = {a0, a1, . . . , ai}

and

(b) θ(a1, ai) = ai+1.

Proof. First we prove that (b) implies (a). We assume that (b) is true.
By Lemma 2.10, Sa1 = {a0, a1}. Hence (a) is true when i = 1. We assume that
(a) is true for some i, 1 ≤ i ≤ r − 1. By (b), ai ∈ Sai+1 and so Sai ⊆ Sai+1 .
Since ai+1 ∈ Sai+1 and Sai+1 ⊆ {a0, a1, . . . , ai+1}, we obtain that Sai+1 =
= {a0, a1, . . . , ai+1}. The induction is complete and (a) follows. We now prove
(b). This is true for i = 0. We shall prove (b) for i = 1. Since a1 ∈ Sa2 , we
can find x ∈ Sa2 such that θ(a1, x) = a2. x = a0 = 0 is not possible since by
Lemma 2.9 θ(0, k) = k for all positive integers k. So x = a1 or x = a2. If
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x = a1 we are through. We prove that x = a2 is not possible. On the contrary
suppose that x = a2 so that

a2 = θ(a1, a2) = θ(a1, θ(a1, a2)) = θ((θ(a1, a1), a2).

Hence θ(a1, a1) = a1 or a2 since θ(a1, a1) ≥ a1 > 0. θ(a1, a1) = a1 is not
possible since θ(a1, 0) = a1 and by Lemma 2.10 θ(a1, y) = a1 has a unique
solution in Sa1 . Hence θ(a1, a1) = a2. Again this is not possible since we
assumed that θ(a1, a2) = a2 and by Lemma 2.10 θ(a1, y) = a2 has a unique
solution in Sa2 and a1 ∈ Sa2 . Hence θ(a1, a1) = a2. Hence (b) is true for i = 1.
We assume (b) for 1 ≤ i ≤ k, where k < r + 1. We prove (b) for i = k + 1.
Since a1 ∈ Sak+2 we can find aj ∈ Sak+2 such that θ(a1, aj) = ak+2. By our
induction hypothesis j ≤ k is not possible. Hence j = k+1 or k+2. If j = k+1
we are through. Suppose j = k + 2. Hence

ak+2 = θ(a1, ak+2) = θ(a1, θ(a1, ak+2)) = θ(θ(a1, a1), ak+2) = θ(a2, ak+2) =

= θ(a2, θ(a1, ak+2)) = θ(θ(a1, a2), ak+2) = θ(a3, ak+2).

Continuing in this way we obtain ak+2 = θ(ak+1, ak+2). Therefore

ak+2 = θ(ak+1, θ(a1, ak+2)) = θ(θ(a1, ak+1), ak+2).

Since θ(a1, ak+1) ≥ ak+1 and θ(a1, ak+1) ∈ Sak+2 , θ(a1, ak+1) = ak+1 or ak+2.
Since θ(a1, ak) = ak+1 and θ(a1, y) = ak+1 has a unique solution in Sak+1 , it
follows that θ(a1, ak+1) = ak+1 is not possible. Hence θ(a1, ak+1) = ak+2. This
is a contradiction to our assumption that θ(a1, ak+2) (since θ(a1, y) = ak+2 has
a unique solution in Sak+2 . This completes the proof of Lemma 3.1.

Lemma 3.2. If Sα = {a0 < a1 < . . . < ar = α} with a0 = 0, then
θ(ai, aj) = ai+j if 0 ≤ i, j ≤ r and i + j ≤ r.

Proof. Since θ(ai, aj) = ai+j when i = 0 or j = 0, we can assume that
i > 0 and j > 0. By Lemma 3.1 the conclusion is true when i + j = 2. We
assume that the conclusion holds for all pairs i and j with 2 ≤ i + j < r. Let
now i+ j = r. Since ai ∈ Sα, we can find ak ∈ Sα such that θ(ai, ak) = ar = α.
Clearly, 1 ≤ k ≤ r − 1. For k = r we have

ar = θ(ai, ak) = θ(ai, ar) = θ(ai, θ(a1, ar−1)) = θ(a1, θ(ai, ar−1)).

Since ar = θ(a1, ar−1), we obtain ar−1 = θ(ai, ar−1). Continuing in this way,
if i + 1 ≤ t ≤ r, we obtain θ(ai, ar−t) = ar−t. By induction hypothesis
θ(ai, ar−t) = ai+r−t. Hence i = 0. But i > 0. Hence k = r is not possible so
that 1 ≤ k ≤ r − 1. We now prove that i + k ≤ r. If i + k > r, we have

ar = θ(ai, ak) = θ(θ(a1, ai−1), ak) = θ(a1, θ(ai−1, ak)),
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so that θ(ai−1, ak) = ar−1. Continuing as above, if i+ k− r < j ≤ i, we obtain
θ(ai−j , ak) = ar−j . Since i− j + k < r, by our induction hypothesis,

ar−j = θ(ai−j , ak) = ai−j+k.

Hence r− j = i− j + k or i + k = r. This is a contradiction to our assumption
that i + k > r. Hence i + k ≤ r. If i + k ≤ r − 1,

ar = θ(ai, ak) = ai+k ≤ ar−1 < ar,

a contradiction. Hence i + k = r so that k = j and θ(ai, aj) = ai+j .

Lemma 3.3. Let Sα = {a0 < a1 < . . . < ar = α} with a0 = 0. If
θ(ai, aj) = ak, where 0 ≤ i, j ≤ k ≤ r, then i + j ≤ k.

Proof. We can assume that i, j and k are positive. Suppose i + j > k.
We have

ak = θ(ai, aj) = θ(θ(a1, ai−1), aj) = θ(a1, θ(ai−1, aj)).

Hence θ(ai−1, aj) = ak−1. Continuing as above, if i + j − k ≤ t ≤ i (so that
i− t + j < k) we obtain θ(ai−t, aj) = ak−t. Since i− t + j < k ≤ r, by Lemma
3.2, θ(ai−t, aj) = ai−t+j . Hence k− t = i− t + j or i + j = k. This contradicts
i + j > k. Hence i + j ≤ k.

Lemma 3.4. If Sα = {0 = a0 < a1 < . . . < ak = α} and ai, aj and
θ(ai, aj) ∈ Sα, then θ(ai, aj) = ai+j.

Proof. It follows from Lemmas 3.2 and 3.3.

Theorem 3.1. Let ψ satisfy (1.10)-(1.12) and ψ(x, y) ≥ max{x, y} for
all (x, y) ∈ T . Then ψ is a regular convolution if and only if it is a Lehmer-
Narkiewicz convolution (L-N convolution).

Proof. If ψ is a Lehmer-Narkiewicz convolution then it is a regular
convolution. This follows from Theorem 2.12.

Now we assume that ψ is a regular convolution. In view of Lemma 2.9,
(2.6), Lemmas 3.2 and 3.3, to prove that ψ is an L−N convolution it is enough
to verify (2.3) and (2.4). We fix a prime p and write θ = θp. Let

(3.1) θ(α, β) = θ(α, γ) = t,

where α, β and γ are non-negative integers. If t = 0 by (e) of Lemma 2.3,
α = β = γ = 0. So β = γ. Let t > 0. Let
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(3.2) St = {a0, a1, . . . , ar = t}

with 0 = a0 < a1 < . . . < ar. Since α, β and γ ∈ St, we can assume that
α = ai, β = aj and γ = ak. By Lemmas 3.2 and 3.3, θ(α, β) = ai+j and
θ(α, γ) = ai+k. From (3.1) we must have i + j = i + k, so that j = k. Hence
β = γ. This proves (2.3). We now prove (2.4). Suppose

(3.3) θ(α, β) = θ(γ, δ) = t,

where α, β, γ and δ are non-negative integers. If t = 0, (2.4) follows trivially
since in that case α = β = γ = δ = 0. Let t > 0. If St is given by (3.2) we can
assume that α = ai, β = aj , γ = ak and δ = a`. By Lemma 3.4 and (3.3) we
have i + j = k + `. Both i > k and j > ` cannot hold simultaneously. If i ≤ k,
we express j = (k − i) + ` so that β = θ(a`, ak−i) = θ(δ, c) with c = ak−i ≥ 0.
Similarly if j ≤ `, α = θ(γ, c) with c = a`−j ≥ 0. Hence (2.4) follows. Thus ψ
is an L−N convolution.

Remark 3.5. If α ∈ Z+ and for each prime p, Sp,α = {0 = a0 < a1 <
< . . . < ak = α}, it follows from Lemmas 3.1-3.3 and Theorem 3.1 that if
ψ is a regular convolution (satisfying ψ(x, y) ≥ max{x, y} for all (x, y) ∈ T )
with θp = θ, then for 0 ≤ ` ≤ k the solutions of θ(x, y) = a` are precisely
{(ai, aj) : i + j = `, i, j ≥ 0}.

Remark 3.6. In view of Lemma 3.1 the function θ, given in Example 3.1
of [20], p.139, is inadequate to define a regular ψ-convolution.

4. ψ-multiplicative functions

We start with

Definition 4.1. Let ψ satisfy (1.10)-(1.13). An arithmetic function f is
called ψ-multiplicative if

(4.1) f(ψ(m,n)) = f(m)f(n)

for all (m,n) ∈ T .
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The concept of ψ-multiplicative functions is due to D.H. Lehmer [6].
The zero function and the constant function 1 are two trivial examples of
ψ-multiplicative functions.

In the case of Dirichlet convolution a ψ-multiplicative function is nothing
but a completely multiplicative function (f ∈ F is said to be completely
multiplicative if f 6≡ 0 and f(mn) = f(m)f(n) for all positive integers m
and n). If ψ is the unitary convolution, a ψ-multiplicative function is simply a
multiplicative function. If ψ is a regular Narkiewicz A-convolution, the concept
of ψ-multiplicative functions reduces to that of A-multiplicative functions
introduced and studied by K.L. Yocom [27].

Remark 4.2. If ψ is Dirichlet, unitary or in general a regular Narkiewicz
A-convolution, every ψ-multiplicative function is also multiplicative. However,
this is not true in general. For example if T = {(n, n) : n ∈ Z+} and ψ :
T → Z+ is defined by ψ(n, n) = n for each n ∈ Z+, then any f ∈ F such
that f(n) = 1 or 0 for each n ∈ Z+ is a ψ-multiplicative function. Hence not
all such f ∈ F need be multiplicative. As another example let T = {(x, y) ∈
∈ Z+ × Z+ : γ(x) = γ(y)}. Let ψE : T → Z+ be defined by ψE(1, 1) = 1

and ψE(x, y) =
r∏

i=1

pαiβi

i , if x =
r∏

i=1

pαi
i and y =

r∏
i=1

pβi

i are the canonical

representations of x and y. If f ∈ F is defined by

f(n) =





0 if n = 1,

|µ(n)| if n > 1,

where µ is the Möbius function, then f is ψE-multiplicative, but not multi-
plicative. ψE is the exponential convolution introduced by M.V. Subbarao [22].

We can prove the following

Lemma 4.3. Let ψ be multiplicativity preserving, ψ(x, y) ≥ max{x, y}
for all (x, y) ∈ T and ψ(1, n) = n for all n ∈ Z+. Then (i) every ψ-
multiplicative function is also multiplicative; (ii) if every multiplicative function
is ψ-multiplicative, then ψ must be the unitary convolution.

Proof. (i) From Remark 2.6 whenever m and n are relatively prime,
ψ(m,n) = mn. (ii) is not difficult to prove. Hence Lemma 4.3 follows.

In what follows we show that the results concerning the distributivity of
A-multiplicative functions over A-products of arithmetic functions established
by K.L. Yocom [27] can be extended to Lehmer-Narkiewicz convolutions.

Throughout the following we assume that ψ is a Lehmer-Narkiewicz
convolution (that is a regular ψ-convolution satisfying ψ(x, y) ≥ max{x, y}
for all (x, y) ∈ T ). We reserve the letter p (with or without suffixes) to denote
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prime numbers. We freely make use of Lemmas 3.1-3.3, Theorem 3.1 and the
remark following it.

Let T, θp and ψ be given as in Lemma 2.4. We write θ = θp. Let Sp,α =
= Sα be as given in (2.5). The least positive integer in Sα will be denoted
by τp(α) = τ(α) and the number of positive integers in Sα will be denoted
by rp(α) = r(α). We also define r(0) = 0 and τ(0) = 0. From Lemma 3.1 it
follows that if x and y are positive integers in Sα, then τ(x) = τ(y); also, from
the same lemma, it follows that if Sα = {0 = a0 < a1 < . . . < ak = α} then
r(a`) = ` for 1 ≤ ` ≤ k. We now prove

Theorem 4.1. f ∈ F is ψ-multiplicative if and only if f is multiplicative
and for all α ∈ Z+ and each p

(4.2) f(pα) = (f(pa1))k
,

where a1 = τ(α) and k = r(α).

Proof. Suppose that f is ψ-multiplicative. By Lemma 4.3 f is multi-
plicative. We prove (4.2) by induction on r(α). If r(α) = 1, (4.2) follows
immediately since k = 1 and a1 = α. We assume the truth of (4.2) whenever
r(α) < t, where t is a positive integer. Let r(α) = t and Sα = {0 = a0 < a1 <
< a2 < . . . < at−1 < at = α}. Since f is ψ-multiplicative and θ(a1, at−1) = at,
we have

(4.3) f (pα) = f (pat) = f
(
pθ(a1,at−1)

)
= f (pa1) f (pat−1) .

Since r(at−1) = t − 1 and τ(at−1) = a1, it follows from the induction
hypothesis that f (pat−1) = f (pa1)t−1. Substituting this into (4.3) we obtain
(4.2) with k = t. The induction is complete. Conversely, we assume that f
is a multiplicative function and (4.2) holds. We need to prove (4.1) for all
(m,n) ∈ T . By (2.2) and since f is multiplicative, it suffices to verify (4.1)
when m = pα and n = pβ , where α and β are positive integers as the cases
α = 0 or β = 0 can be disposed easily since f(1) = 1 and ψ(1, x) = x for all
x ∈ Z+. Since ψ(pα, pβ) = pθ(α,β), we need to verify that

(4.4) f
(
pθ(α,β)

)
= f(pα)f(pβ),

whenever (pα, pβ) ∈ T . Let γ = θ(α, β). Then α, β ∈ Sγ = {0 = a0 < a1 <
< . . . < at = γ} so that α = ai and β = aj for some i and j with 0 < i, j ≤ t.
Since γ = at = θ(α, β) = θ(ai, aj), by Lemma 3.4 θ(ai, aj) = ai+j . Hence
t = i + j. Hence

f
(
pθ(α,β)

)
= (f(pa1))i+j = f(pα)f(pβ).
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Hence f is ψ-multiplicative. The proof of Theorem 4.1 is complete.

In the following for f, g ∈ F , fg stands for the pointwise product of f and
g, that is (fg)(x) = f(x)g(x) for all x ∈ Z+.

Theorem 4.2. Let f ∈ F . The following statements are equivalent:
(a) f is ψ-multiplicative.
(b) f(gψh) = fgψfh for all g, h ∈ F .
(c) f(gψg) = fgψfg for some ψ-multiplicative function g which is never zero.
(d) f(1ψ1) = fψf .
(e) f(1ψg) = fψfg for some g ∈ F which is positive.

Proof. The proofs of (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) are quite easy. If we
prove (e) ⇒ (a), then by taking g(x) = 1 for all x ∈ Z+ in this proof, the proof
of (d) ⇒ (a) follows. We shall now prove that (e) ⇒ (a).

We assume (e). Hence

(4.5) f(n)
∑

ψ(x,y)=n

g(y) =
∑

ψ(x,y)=n

f(x)f(y)g(y)

for all positive integers n.
By taking n = 1 in (4.5) we obtain f(1)g(1) = f2(1)g(1) so that f(1) =

= f2(1), since g(1) > 0. Hence f(1) = 0 or 1. If f(1) = 0 we show that f ≡ 0.
Let f(1) = 0. Assume that f(m) = 0 for 1 ≤ m < n. Consider the sum on the
right hand side of (4.5). We have

∑

ψ(x,y)=n

f(x)f(y)g(y) =
∑

ψ(x,y)=n
x=n,y=n

f(x)f(y)g(y) = Empty sum = 0,

since ψ(n, n) > n for n ≥ 2. Equating this value zero to the left hand side of
(4.5) we obtain that f(n) = 0 since

∑
ψ(x,y)=n

g(y) > 0. Hence f ≡ 0.

Let f(1) = 1. If n =
∏̀
i=1

pαi
i , where p1, p2, . . . , p` are distinct primes and

α1, α2, . . . , α` are non-negative integers with α1 + . . . + α` = t, t ≥ 0, then we
prove that

(4.6) f(n) =
∏̀

i=1

f (pai
i )ki ,

where ai = τpi(αi) and ki = rpi(αi) for i = 1, 2, . . . , `. (4.6) follows trivially
if t = 0. We assume (4.6) whenever α1 + . . . + α` < t, t > 0. Suppose that
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α1 + . . . + α` = t. If Sαi = {0, αi} for each αi > 0, where 1 ≤ i ≤ `, then for
such i, ai = τpi

(αi) = αi and ki = rpi
(αi) = 1. Hence (4.6) follows trivially.

We can assume that Sαi 6= {0, αi} for some αi > 0. Without loss of generality
we may assume that α1 > 0 and Sαi

6= {0, α1}. Let Sα1 = {0 = a0 < a1 <
< . . . < am−1 < am = α1}. Then θp1(a1, am−1) = am = α1. Temporarily, let
β1 = a1, β2 = α2, . . . , β` = α` and γ1 = am−1, γ2 = 0, . . . , γ` = 0. Then

β1 + β2 + . . . + β` < a1 + α2 + . . . + α` < α1 + α2 + . . . + α` = t

and similarly
γ1 + γ2 + . . . + γ` = am−1 < am = α1 ≤ t.

Also θpi
(βi, γi) = αi for i = 1, 2, . . . , `. Hence the sum

(4.7) Σ =
∑

θpi
(βi,γi)=αi
1≤i≤`

β1+β2+...+β`<t

γ1+γ2+...+γ`<t

g (pγ1
1 pγ2

2 . . . pγ`

` ) > 0,

since the sum is non-empty and g > 0.

We consider the sum on the right hand side of (4.6). We obtain

(4.8)
∑

ψ(x,y)=n

f(x)f(y)g(y) =

=
∑

θpi
(βi,γi)=αi
1≤i≤`

f

(∏̀

i=1

pβi

i

)
f

(∏̀

i=1

pγi

i

)
g

(∏̀

i=1

pγi

i

)
= Σ1 + Σ2,

say, where

Σ1 =
∑

θpi
(βi,γi)=αi
1≤i≤`

β1+β2+...+β`<t

f

(∏̀

i=1

pβi

i

)
f

(∏̀

i=1

pγi

i

)
g

(∏̀

i=1

pγi

i

)

and

Σ2 =
∑

θpi
(βi,γi)=αi
1≤i≤`

β1+β2+...+β`=t

f

(∏̀

i=1

pβi

i

)
f

(∏̀

i=1

pγi

i

)
g

(∏̀

i=1

pγi

i

)
.
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Since α1 + α2 + . . . + α` = t and for i = 1, 2, . . . , `, θpi(βi, γi) = αi implies
that βi ≤ αi, the conditions under Σ2 imply that βi = αi and γi = 0 for
i = 1, 2, . . . , `. Hence

(4.9) Σ2 = f(n).

In a similar way we write
Σ1 = Σ3 + Σ4,

where

Σ3 =
∑

θpi
(βi,γi)=αi
1≤i≤`

β1+β2+...+β`<t

γ1+γ2+...+γ`<t

f

(∏̀

i=1

pβi

i

)
f

(∏̀

i=1

pγi

i

)
g

(∏̀

i=1

pγi

i

)

and

Σ4 =
∑

θpi
(βi,γi)=αi
1≤i≤`

β1+β2+...+β`<t

γ1+γ2+...+γ`=t

f

(∏̀

i=1

pβi

i

)
f

(∏̀

i=1

pγi

i

)
g

(∏̀

i=1

pγi

i

)
.

Adopting similar arguments used in simplifying the sum Σ2, it can be shown
that

(4.10) Σ4 = f(n)g(n).

We consider the sum Σ3. By our induction hypothesis, we obtain

(4.11) Σ3 =
∏̀

i=1

f (pai
i )ki

∑
θpi

(βi,γi)=αi
1≤i≤`

β1+β2+...+β`<t

γ1+γ2+...+γ`<t

g

(∏̀

i=1

pγi

i

)
=

∏̀

i=1

f (pai
i )ki · Σ,

by (4.7). Putting (4.9)-(4.11) into (4.8), we obtain

(4.12)
∑

ψ(x,y)=n

f(x)f(y)g(y) =
∏̀

i=1

f(pai
i )ki · Σ + f(n) + f(n)g(n).

In a similar way we obtain

(4.13)
∑

ψ(x,y)=n

g(y) = 1 + g(n) + Σ.
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Substituting (4.13) into the left hand side of (4.8), equating with (4.12),
cancelling the like terms and finally cancelling the factor Σ > 0 we obtain
(4.6). This completes the proof of Theorem 4.2.

The following theorems can be proved on lines similar to that of K.L.
Yocom [27].

Theorem 4.3. (a) If f ∈ F is ψ-multiplicative and f(1) 6= 0, then

(4.14) (fg)−1 = fg−1

for all g ∈ F with g(1) 6= 0.
(b) If f is multiplicative and (4.14) holds with g = 1 so that g−1 = µψ,

then f is ψ-multiplicative.

Theorem 4.4. If f is multiplicative, then f is ψ-multiplicative if and only
if f−1 = fµψ.

Theorem 4.5. If f is multiplicative and f(1) 6= 0, then f is ψ-multiplicative
if and only if f−1(pα) = 0 for all prime powers pα > 1 that are not ψ-primitive.

Theorem 4.6. Let g,G ∈ F and g = Gψµψ. We have
(a) if f is ψ-multiplicative with f(1) 6= 0 then

(4.15) (fG)ψf−1 = fg;

(b) if f is multiplicative and if (4.15) holds for some G with G(1) = 1 and
G(pα) 6= 1 for all prime powers pα > 1, then f is ψ-multiplicative.

A characterization of Lehmer-Narkiewicz convolutions. It is
interesting to note that the property of ψ-multiplicative functions derived
in Theorem 4.1 is characteristic of Lehmer-Narkiewicz convolutions. More
precisely let (i) ψ be multiplicativity preserving and (ii) ψ(1, k) = k ∀k ∈ Z+.
We write θ = θp. For each positive integer α and any prime p let Sα = Sp,α be
as given in (2.5); τp(α) = τ(α) and rp(α) = r(α) are as defined in the beginning
of this section. We have

Theorem 4.7. In the commutative ring (F, +, ψ) suppose that a multi-
plicative function f is ψ-multiplicative if and only if (4.2) holds, that is for any
prime p and any α ∈ Z+

f(pα) = (f(pa1))k,

where a1 = τ(α) and k = r(α). Then ψ is a Lehmer-Narkiewicz convolution.

Proof. (I) First we prove that if αi for i = 1, 2, 3 and 4 are such that
θ(α1, α2) = θ(α3, α4), then τ(α1) = τ(αi) for i = 2, 3 and 4. Let ai = τ(αi) for
i = 1, 2, 3 and 4. For 1 ≤ i ≤ 4 let bi = r(αi).
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Let f be a multiplicative function (with f(1) = 1) defined at prime powers
px > 1 by f(px) = (f(pt))τ , where t = τ(x) and r = r(x). We fix a prime p and
we define the arithmetic function g by g(x) = f(px) for all positive integers x.
By our assumption f is ψ-multiplicative and hence we have

f
(
pθ(α1,α2)

)
= f(pα1)f(pα2) = f(pa1)b1f(pa2)b2 = g(a1)b1g(a2)b2

and

f
(
pθ(α3,α4)

)
= f(pα3)f(pα4) = f(pa3)b3f(pa4) = g(a3)b3g(a4)b4 .

Hence
g(a1)b1g(a2)b2 = g(a3)b3g(a4)b4

for all arithmetic functions g. Hence a1 = ai for i = 2, 3 and 4.

(II) If θ(α, β) = θ(α, γ) we show that β = γ. If α = 0, trivially β = γ. We
may assume that α is a positive integer. We define the multiplicative function
h at prime powers px > 1 by

h(px) = pr(x).

If a1 = τ(x), since r(a1) = 1, we have

h(px) = (h(pa1))r(x).

Hence by our assumption h is a ψ-multiplicative function. Therefore

h(pα)h(pβ) = h
(
pθ(α,β)

)
= h

(
pθ(α,γ)

)
= h(pα)h(pγ)

since h(px) > 1 for x > 0, cancelling h(pα) on both sides we obtain

(4.16) h(pβ) = h(pγ).

From (4.16) it readily follows that β = 0 if and only if γ = 0. We can assume
that β and γ are positive integers. Again from (4.16) we obtain

pr(β) = h(pβ) = h(pγ) = pr(γ),

so that

(4.17) r(β) = r(γ).
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Let t = θ(α, β) = θ(α, γ), where α, β and γ are positive integers. Let

St = {0 < a1 < a2 < . . . < as = t}.

We claim that

(4.18) Sai
= {0, a1, a2, . . . , ai}

and

(4.19) θ(a1, ai−1) = ai for 1 ≤ i ≤ s

with a0 = 0. Clearly, (4.18) and (4.19) are true for i = 1. We can assume that
|St| ≥ 3. We assume (4.18) and (4.19) for some i ≥ 1. If 2 ≤ j ≤ s − 1, since
a1, aj ∈ St, θ(a1, ak) = θ(aj , a

′
k) = t for some ak, a′k ∈ St. Also, ak and a′k are

positive integers. Hence, by case (I), a1 = τ(a1) = τ(aj) for 2 ≤ j ≤ s − 1.
Hence a1 ∈ Sai+1 ⊆ {0, a1, a2, . . . , ai+1}. Hence we can find an x ∈ Sai+1 , such
that θ(a1, x) = ai+1. By induction hypothesis x cannot be in {0, a1, . . . , ai−1}.
Suppose x = ai+1 so that θ(a1, ai+1) = ai+1. Since h is ψ-multiplicative, we
have

h(pai+1) = h
(
pθ(a1,ai+1)

)
= h(pa1)h(pai+1),

so that h(pa1) = 1. This cannot happen. Hence x = ai. This implies that
ai ∈ Sai+1 and θ(a1, ai) = ai+1. The induction is complete.

Now θ(α, β) = θ(α, γ) = t implies that β, γ ∈ St. Hence β = ak and γ = a`

for some positive integers k and `, 1 ≤ k, ` ≤ s. Since Sak
= {0, a1, . . . , a`},

r(β) = r(ak) = k and r(γ) = r(a`) = `. From (4.17) we obtain k = ` and so
β = γ.

(III) If Sα = {0 = a0 < a1 < . . . < as = α}, as in Lemma 3.2, we can
show that θ(ai, aj) = ai+j if 0 ≤ i, j, i + j ≤ s.

(IV) Let
θ(α, β) = θ(γ, δ) = t.

As in the proof of Theorem 3.1, we can show that either α = θ(γ, c) for some
c ≥ 0 and β = θ(δ, d) for some d ≥ 0. This completes the proof.

It is also interesting to note that the result in Theorem 4.4 can hold good in
ψ-convolutions other than Lehmer-Narkiewicz convolutions. We write θp = θ
for each prime p. Define θ(0, α) = θ(α, 0) = θ(α, α) = α for all non-negative
integers α. Let T and ψ be as given by Lemma 2.4. Then ψ(1, k) = k for
all k ∈ Z+ and ψ is multiplicativity preserving. Also, ψ(x, y) ≥ max{x, y}
for all (x, y) ∈ T . Let f be multiplicative. If f is ψ-multiplicative, it is easy
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to verify that f−1 = µψf . Conversely, let f−1 = µψf . We show that f is
ψ-multiplicative. For any prime power pα > 1 we have

(4.20) 0 = e(pα) =
∑

θ(β,γ)=α

f(pβ)f−1(pγ) = f−1(pα)+ f(pα)+ f(pα)f−1(pα).

Similarly
0 = e(pα) =

∑

θ(β,γ)=α

µψ(pβ) = 1 + 2µψ(pα),

so that µψ(pα) = −1/2. Hence f−1(pα) = µψ(pα)f(pα) = −f(pα)/2.
Substituting this into (4.20), we obtain after simplification f2(pα) = f(pα).
Since f is multiplicative, the verification of (4.1) reduces to the verification that
f

(
pθ(x,y)

)
= f(px)f(py) whenever (px, py) ∈ T ; this identity is satisfied by all

the admissible pairs (x, y) ∈ {(0, α), (α, 0), (α, α)}. Hence f is ψ-multiplicative.

5. Busche-Ramanujan identities

For a non-negative integer k and a positive integer n let σk(n) denote the
sum of the k-th powers of the divisors of n so that σk(n) =

∑
d|n

dk. Clearly,

σ0(n) = d(n), the number of divisors of n and σ1(n) = σ(n), the sum of the
divisors of n.

In 1906 E. Busche [1] stated the identity

(5.1) σ)k(m)σk(n) =
∑

d|(m,n)

dkσk(mn/d2).

The identity

(5.2) σk(mn) =
∑

d|(m,n)

σk(m/d)σk(n/d)µ(d)dk

was stated by Srinivasa Ramanujan (cf. [14], formula (11)) when k = 0; this
has subsequently been verified by S. Chowla (J. Ind. Math. Soc., Notes and
questions, 18 (1929), 87-88) for all positive integers k. Either of (5.1) and (5.2)
is called Busche-Ramanujan identity.

In his celebrated paper R. Vaidyanathaswamy [25], among other things,
succeeded in understanding the identities (5.1) and (5.2); he proved that these
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identities are special cases of a class of identities which he called as Busche-
Ramanujan identities.

A multiplicative function f is said to admit a Busche-Ramanujan identity
(cf. [25], p.646) if there exists a multiplicative function H such that

(5.3) f(mn) =
∑

d|(m,n)

f(m/d)f(n/d)H(d)

for all m,n ∈ Z+.
R. Vaidyanathaswamy (cf. [25]) completely characterized the multiplica-

tive functions which admit Busche-Ramanujan identity. He proved (cf. [25],
Theorem XXXV) that such functions are nothing but quadratic functions, that
is the Dirichlet product of two completely multiplicative functions. These
quadratic functions are also called specially multiplicative functions. This
nomenclature is due to D.H. Lehmer [7].

As pointed out by P. Haukkanen (cf. [5], p.41), using the concepts of
Vaidyanathaswamy [25], the inverse form of (5.3) can be represented as

(5.4) f(m)f(n) =
∑

d|(m,n)

f(mn/d2)H−1(d),

where H−1 is the inverse of H with respect to Dirichlet convolution (see also
[21], eq. (1.2)). It is of interest to note that K.G. Ramanathan [13] showed
that a quadratic function f admits a Busche-Ramanujan identity of the form
(5.3) with H(n) = µ(n)B(n), where B is the completely multiplicative function
defined by B(p) = f2(p)− f(p2) for all primes p. It is now clear that by taking
f(n) = σk(n) = (ikD1)(n) in (5.3) and (5.4), where ik(n) = nk for all n ∈ Z+,
we obtain (5.1) and (5.2).

Let ψ be a Lehmer-Narkiewicz convolution. An arithmetic function f
is said to be a ψ-quadratic function if f = g ψ h, where g and h are ψ-
multiplicative functions. In case ψ is the Dirichlet convolution, a ψ-quadratic
function is a quadratic function. If ψ is a regular Narkiewicz convolution A,
the notion of ψ-quadratic function reduces to that of A-specially multiplicative
function introduced by P.J. McCarthy (cf. [9], p.174).

Following Vaidyanathaswamy [25], we say that a multiplicative function
admits ψ-analogue of Busche-Ramanujan identity if we can find a multiplicative
function H such that for all (m, n) ∈ T

(5.5) f(ψ(m,n)) =
∑

ψ(x,z)=m
ψ(y,z)=n

f(x)f(y)H(z).
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On lines similar to that of P.J. McCarthy (cf. [9], Theorem 1.12, p.19), we can
prove

Theorem 5.1. The following statements are equivalent:
(a) f is a ψ-quadratic function;
(b) f admits ψ-analogue of the Busche-Ramanujan identity (see (5.5));
(c) there is a ψ-multiplicative function B such that

f(m)f(n) =
∑

ψ(a,d)=m
ψ(b,d)=n

f(ψ(a, b))B(d)

for all (m, n) ∈ T ;
(d) for any positive integer α, with Sp(α) = {0 = a0 < a1 < . . . < as <

< as+1 = α} and rp(α) ≥ 2,

f(pas+1) = f(pa1)f(pas) + f(pas−1)B(pa1),

where B(pa1) = f(pa2)− f2(pa1);
(e)

f(ψ(m,n)) =
∑

ψ(x,z)=m
ψ(y,z)=n

f(x)f(y)µψ(z)B(z)

for all (m, n) ∈ T .

When ψ is a regular Narkiewicz convolution, the results in Theorem 5.1
reduce to the results obtained by P.J. McCarthy (cf. [9], pp.174 and 175). As
pointed out by P. Haukkanen (cf. [5], p.42), while stating the A-analogues of
(b) and (c) of Theorem 5.1, McCarthy [9] requires that m, n ∈ A(r) for some
positive integer r. But this is not enough. One must assume that m,n ∈ A(mn)
or simply m or n ∈ A(mn).
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