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1. Introduction

In this article, we will introduce a large sieve mean-value estimate for
Dirichlet polynomials, from which we deduce the Bombieri-Vinogradov theorem
and a Bombieri-type mean-value theorem for exponential sums over primes.

Estimation of sums of the form

(1.1) S(@) =Y A(n)f(n),

n<lz

where A(n) is the von Mangoldt function, and f(n) a certain arithmetical
function, plays an important role in number theory. Let z > 1 and k > 1. By
Heath-Brown’s identity [1], for any n < 2z*

k
(1.2) A<n>—2(1>“(’;) S 3 (ognung i) lnsg).

j=1 ningng;=n
L N R ng; <z

This can be applied to estimate sums like (1.1). Suppose

(1.3) 2P >,
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so that Heath-Brown’s identity applies for n < xz. We then split up each range
of summation in (1.2) into intervals n ~ N, i.e. n € (N,2N], and find that

S(z) is a linear combination of O(log?* z) sums of the form

(1.4) D> (ogm)u(nis) - p(nae) f(ming - nag),

ning-nop <z
"n,jNNj

where [[ N; <z, and 2N; < zif j > k. Note that some of the intervals (IV, 2N]
may contain only the integer 1.

2. A large sieve mean-value estimate

Usually, one takes k = 5 in Heath-Brown’s identity (1.2). The following
applications are examples in such a setting.

We estimate (1.1) via (1.4) with k = 5. To this end, let
X<y <X
and M, ..., Mo be positive real numbers such that
(2.1) Y < M;---Mpo<X, and 2Mg,...,2M;o < X/°.
For j =1,...,10 define
logm ifj=1,
(2.2) aj(m) =1 1 if j=2,..,5,

w(m) if j =6,...,10.

For a complex variable s and a Dirichlet character y, put

Filsx) = Y, AT (mﬂif(m),
me~ M;

and

(2.3) F(s,x) = fi(s,x) -~ fio(s, x)-

The following hybrid estimate for |F| will be very important in our later
argument.
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Theorem 1. Let F(s,x) be as in (2.3), and A > 1 arbitrary. Then for
any 1 < R< X?A and 0 < T < X4,

(2.4) > Z /‘ ( +ztx)’dt<<

TNRX mod r_p

< R2T+ R T1/2X3/10+X1/2 10 CX
d di/2 S :

Here ¢ > 0 is an absolute constant independent of A, but the constant implied

in < depends on A.

Theorem 1 with d = 1 was established in [4], and in this general form in
[2] and [7]. In the following applications, we will only need Theorem 1 with
d=1.

Note that in Theorem 1 we have r > R > 1; therefore x mod r never takes
the principal primitive character x° mod 1. To access the strength of Theorem
1, we note that, by taking absolute value directly, a trivial bound for |F| is

[ a1 (m)] |a10(m)]|
F<2+zt,x> < Y ayealls 3 e <

me~ My m~ Mg

< (M-~ Myg)?log X < X'/?1og X.
Consequently, a trivial bound for the left-hand side of (2.4) is

R?
(2.5) < Z > /Xl/2 log® Xdt < — —TX'?log" X.

TNR X mod 1/

Compared with (2.5), the first term on the right-hand side of (2.4) saves in the
X aspect, the second term in all the R, T and X aspects, and the third term
in the R and T aspects.

3. The Bombieri-Vinogradov theorem

As an application of Theorem 1, we will establish the following Bombieri-
Vinogradov theorem.
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Theorem 2. (Bombieri-Vinogradov) Set

Yyig,a)= Y Al

n<y
n=a(modgq)

Then for any A > 0 there exists a constant B = B(A) > 0, such that

T

Y
7 7S

?/)(y; q, a’) - @(Q)

max max
y<z (a,q)=1

<
<@

where p(q) is the Euler totient function, Q = z'/?L~F and L = logx.

Proof. Introducing the Dirichlet characters,

1 _
31 wlae) -~ == S (@) X (Amx(m) ~5) - bl

X mod ¢ m<y

where d,, = 1 or 0 according as x is principal or not. Let

W)= Y (Alm)x(m)—6y);

y/2<m<y

we remark that W(x) depends on y although this is not made explicit. Then

max max |¥(y;q,a) — y‘ <
g vse (@a)=1 e(q)

1
<L+LY» —— max W (x)| <
=5 Pla) vse

<<L+LZZ x IO,

r<@Q q<Q X mod r

x mod q

where x° mod ¢ is the principal character. For x¥ mod r and x° mod ¢ in the
last line, we have

W(xx°) — )< > A(m) < (logq)(logy) < L.

y/2<m<y
(m,q)>1
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Therefore we can replace W (xx°) by W(x) + O(L?) in the last term of (3.2).
Now W(x) + O(L?) is independent of ¢, and the last term in (3.2) can be
bounded by

<<LZ{Z<p(q }max Z W)+ L2 <«

y<z
r<@Q 11<‘Q x mod 7
rlq
< QL+ L? Z max Z
’I"<Q ~ x mod r

where we have used the elementary estimates p(rt) > ¢(r)p(t) and

1 1 1 L?
2 S w2 e S

rlq

Therefore Theorem 2 is a consequence of the estimate

(3.3) Z Z max | W (x )| < zL™4

TNR x mod r

for R < @ and arbitrary A > 0.

Suppose first that R < LY with an arbitrary C' > 0. Then, by the Siegel-
Walfisz theorem,

W(x) < xexp(—cy/log )

for some constant ¢ > 0, and hence (3.3) is true in this case.

If L¢ < R < @, then we always have 0y = 0 for all primitive character
modulo r ~ R, and consequently

(3-4) W)= Y Alm)x(m)

y/2<m<y
To (3.4), we apply Heath-Brown’s identity with k£ = 5. In (2.1) we take
(3.5) Y =225 X =u;

it is important that X and Y do not depend on y. Define a;(m), f;(s,x) and
F(s,x) as in §2. For

(3.6) 20Y° =2V <y < X =,
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W (x) is a linear combination of O(L!?) terms, each of which is of the form

o(M) := Z Z ai(ma)x(mi) - - - aio(mio)x(mio),

mq~M; mio~Mio
y/2<my--m10<y

where M denotes the vector (M7, Mo, ..., Mqg) with M; as in (2.1). Note that
some of the intervals (M;,2M;] may contain only the integer 1. By using
Perron’s summation formula with 7' = y, and then shifting the contour to the
left, the above o(M) is

14+1/L+iy )
1 s _ s
— [ e WU 4y o) =
271 s
14+1/L—iy

1/2—iy  1/2+iy  1+41/L+iy
1
- O(L?).
or=2 S BN TR B R
1+1/L—iy 1/2—iy 1/2+414y
The integral on the two horizontal segments above can be easily estimated as

y° Yy’
|F(0:|:iy,x)|? < max 'L <

max
1/2<0<1+1/L 1/2<o<1+1/L Yy

2\ /2
< () L < z3/'0f
Y

on using the trivial estimate

F(oxiy,x) < |filo £iy,x)|-- | fiolo iy, x)| <
< (M}7°L)M;~7---M{y° < 2'7°L.

Thus, for y satisfying (3.6),

Y 1, 1,
1 I y = (y/2)2 5
M)=— | F| = t dt + O(L
(M) 27r/ <2+z,x) T +O(L°) <

-y
Yy
1/2 L. dt 2
<y F 5 +itx |t|+1+L'
-y
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Recalling that F' does not depend on y, we have

dt
10,1/2 " 2
23;13});%\ )| < —i—z 5% \t|+1+

On the other hand, one has trivially

max |[W(x)| < Y.
y<2Y

Now the left-hand side of (3.3) is

1 *
<<*Z S e [W)l+ 5> max [W(x)| <

r~Rx mod r r~Rx mod r
1/2 % dt
xz
S g / it, ——— + RY.
< R Z Z + ity X TES +
r~Rx mod r_°

The last term is acceptable; it therefore follows that (3.3) is a consequence of
the estimate that, for 0 < T < x,

(3.7) /‘ ( +it, x)’dt < Rz'*(T +1)L~4.

’I“NRX mod rp

By Theorem 1, the left-hand side of (3.7) is now

< (R2T+RT1/2.T3/10+$1/2>LC <
< RzY*(T +1)L¢(Re~Y? + 2= Y5 + R7Y).

The above quantity is acceptable provided that L¢ < R < z'/2L~—F with B
and C sufficiently large in terms of A. This establishes (3.7) and (3.3), and
hence the Theorem.

4. Exponential sums over primes: small ¢

In this section, we are concerned with the asymptotic behavior of the sum

:ZA(mema

m<z
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where « € [0, 1] satisfies the rational approximation
(4.8) a:g—i-)\, with (a,q) =1, 1<a<gq.
q

The results below (Lemmas 3 and 4) are just an easy application of the Siegel-
Walfisz theorem, but here we present the argument explicitly since some of the
materials will be used in §5.

By the orthogonality of Dirichlet characters S(z,a) can be written as

Z A(m)e(ma) + O Z A(m) p =

m<ax m<x
(m,q)=1 (m,q)>1

=¥ e(ah> 3" A(m)e(mA) + Of{(log q)(log )} =

h=1 m<z
(h,q)=1 m=h( mod q)
1
=— C(x,a) Y A(m)x(m)e(mA) + O(L?)
30((]) x mod q m<z

where

Now recall C(x°, a) = u(q). Thus,

TGRS
S(x @ Z< M)+
(4.9) ]
W Z a) Y (A(m)x(m) = 8, )e(mA) + O(L?).
To investigate the inner sum over m, we let
(4.10) WOGA) = D (Am)x(m) — &y )e(mN);
z/2<m<x

note that W(x,\) also depends on z. Now suppose ¢ < L4 with arbitrary
A > 0. Then by the Siegel-Walfisz theorem,

x T

Wy A) = / e(@Nd{ S (Am)x(m) — 6,) b = / e(uN)dR(u),

z/2 msu z/2
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where R(u) < uexp(—cy/logu). Therefore, partial integration gives

x

W(x,\) < |R(z)| + ‘)\/e(u)\)R(u)du

1

< (14 |M\z)zexp(—eVL),

and hence the inner sum over m in (4.9) has the same upper bound with a
smaller c¢. Applying the bound |C(x,a)| < /g to (4.9), we conclude that

(4.11) S(z,a) = wla) Z e(mA) + O{y/q(1 + |\z)z exp(—cVL)}.
m<zx
This may be summarized in the following.

Lemma 3. Let a be as in (4.8), with ¢ < L* and A > 0 arbitrary. Then
there exist two positive constants c¢; and ca, such that for |\| < z~'exp(c; VL),

(4.12) S(z,a) = wa) Z e(mA) + O{z exp(—caVL)}.

m<zx

The following conditional result may be compared with Lemma 3.

Lemma 4. Under GRH,

’;

(9)

(4.13) S(a e

Z (mA) + O{y/gz(1 + |A|z)L°}.

/—\

5. A Bombieri-type theorem for exponential sums over primes

To extend the range of ¢ in Lemma 3 is as difficult as to do this in the
Siegel-Walfisz theorem. However, on average, the range of ¢ can be extended
considerably, as is shown in the following theorem of Bombieri-Vinogradov’s
type.

Theorem 5. Let a be as in (4.8) and € > 0 arbitrary. For any A > 0,
there exists a constant B = B(A) > 0, such that if Q and 0 satisfy

(5.1) 1<Q<z"3L7 B, 0=Q 3L ",
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then

max maxX max
y<z (a,q)=1|A|<0

S(y,a) — ZEZ; Z e(mx\)‘ < zL™4.

q<Q m<y

Theorem 5 with
1<Q <z 9=min(Q™* L),

where B = B(A) > 0 was established by Wolke [8]. Theorem 5 in the present
form was proved in [6] by a different argument. Here we will derive it from
Theorem 1. A result similar to Theorem 5 for non-linear exponential sums over
primes has been established in [5].

We remark that, in the special case Q = 1, we must have a = ¢ = 1 in
(4.8), and hence the theorem states that, for |\| < L™5,

(5.2) S(x,A) =Y e(m))+O(xL™™).

m<x

On the other hand, we may take A\ = 0 in (4.8), so that now the theorem
reduces to

(5.3) max max
4<Q y<z (a,q):l

S (y, a) — M(q)y‘ < zL™.
a) ¢
We note that (5.2) and (5.3) are not covered by Lemma 3.

To derive from Theorem 5 a result for almost all ¢, we denote by Q the
set of ¢ < @ such that

xa—M e(m 2?38
.0 B0 5 et 5 2227,

m<x

Then Theorem 5 gives

2/37B o *
> 2L <7
qeQ

and hence
19| < 22 log= 4B 1.

Therefore, for all ¢ < Q except on a set Q of cardinality O(m1/3 log—A—B z),

S(x,a) = a) Z e(m) + O(z?/31og® z).

m<x
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Proof of Theorem 5. We begin by modifying the definition of W (x, )
in (4.10) slightly, so that now it depends on y instead of z, i.e.

(5:4) WA= Y (Alm)x(m) = b )e(m).

y/2<m<y

Thus (4.9), with z replaced by y, gives

(5.5) max max Imax
y<z (a,q)=1|A[<0
9<Q

Sy, a) — ZEZ; Z e(m)\)’ <

m<y

< QL+ L ax max max Cx,a)W(x,\)| <
Q Z max max max Ot a)W ()|
q< Q x mod ¢

<QI*+LY Z ax max max Y OGN AW (A
<0 =a y<$ (a,q)=1|X|<6

x mod r
rlq

where x° mod ¢ is the principal character. For y mod r and x° mod ¢ in the
last line, we have

WO A) = W) < Y Am) < L.
m<y
(m,q)>1

Therefore we can replace W(xx°, \) by W (x,A) + O(L?) in the last term of
(5.5). Since

[C(xx’a)| < 172
the last term in (5.5) is bounded by

L W( L?
iy o (q xggm%z (WO M|+ L7} <

rlq

mod 7

3 * 2
<L Z /mx%; r{'W(X’A)' + L%} <

3/2715 3 *
< QL+ L Z—Tw glgiclril‘%xmom\W(X,)\)l.

The term Q3/?L is acceptable if Q satisfies (5.1) with B sufficiently large in
terms of A. Therefore, the theorem is a consequence of the estimate

1 *
5.6 J = — w L4
(5.6) ;rlmxmomrgggg@g (A < 2L,
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where R < @, and A > 0 is arbitrary.

We consider two cases according as R small or big. The case when R is
big is handled in Lemma 6, where it is proved that there exists some constant
C = C(A) > 0, such that (5.6) is true if L® < R < Q. The proof applies,
among other things, Theorem 1 and Heath-Brown’s identity. The case when
R is small is treated in Lemma 7. It is proved, by the zero-density estimate,
that (5.6) is true for R < LY and arbitrary C' > 0. The desired assertion now
follows from Lemmas 6 and 7.

Lemma 6. Let J be as in (5.6). Then for arbitrary A > 0, there exists a
constant C = C(A) > 0, such that for

LY <R<Q,

we have
J <zl

Proof. Let
Y = x2/5, X =z,

and define a;(m), f;(s,x), and F(s, x) as in §2. Suppose
2Y <y<u<X,
and to the sum

(5.7) > A(m)x(m)

y/2<m<u

we apply Heath-Brown’s identity as in the last section. Thus, (5.7) is a linear
combination of O(L1%) terms, each of which is of the form

o(u; M) := Z e Z a1 (ma)x(mi) - - - aro(mio)x(mio),
Mi<mi<2M; Mio<mio<2Mio
y/2<my---mio<u

where M denotes the vector (M, Ma, ..., M1o) with M; as in (2.1). We may
estimate o(M) by an argument similar to that after (3.6) in the proof the
Bombieri-Vinogradov theorem; actually, by using Perron’s summation formula
with T = z, and then shifting the contour to the left, the above o(u; M) is

11 wbtit — (y/2)3 )
M)=— [ F(=+i L?).
o(u; M) 5 / (2 +zt,x> %+z’t dt + O(L?)

—X
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Since R > LE (so x # x°), our W(x,A) in (5.4) can be written as

Y

(5:8) WA = 3 Am)x(me(m) = / e@Nd{ 3 Am)x(m)

mry y/2 y/2<m<u

and consequently W (x, A) is a linear combination O(L'?) terms, each of which
is of the form

y x y
1 1 ;
/e(uA)da(u;M) =5 /F (2 +it,x> /u*1/2+”e(u)\)dudt+
7r

y/2 -z y/2

+0{(1 + |Nz)L?}.

Changing variables in the inner integral, we deduce from the above formulae

that
9 i, X

max _|W(x, \)| < L'° max
2Y <y<X M

(5.9) Y
t
X / u % (2 logu + Au) dudt’ + 0z L2,
™
y/2

where the maximum is taken over all M = (M7, Ms, ..., M1g). This will be used
later in combination with the trivial bound

(5.10) max WA < Y.

Now we estimate the contribution of |W(x,A)| to the J in (5.6). The
contribution of (5.10) is

< R2/3Y < Q2/3x2/5 < 33‘28/457
which is acceptable; and the contribution of the term §xL? in (5.9) is
< R¥?0xL'? <« oL B+12,

by the definition of € in (5.1), which is also acceptable if B is sufficiently large.
To estimate the contribution of the first term on the right-hand side of (5.9)
we note that

d [t t d [t t
— (=1 ) =— A =1 ) = ———.
du (27r ogu + u) ora T d (27r ogut u) 27u?
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Thus, by the first and second derivative tests, the inner integral in (5.9) can
be bounded by

-1/2 Y Y
<y mm{(|t| T2 min i+ 2mu|} <
y/2<uly

(5.11)

22/t + DY if |t < T,

<

x/2 /|t| if Tp < [t| < T,
where
(5.12) Ty = 4nzh.

Here the choice of Tj is to ensure that |t + 27 A\u| > |¢|/2 whenever [t| > Tp; in
fact,

t T t
It + 2mhu| > [t] — 2wl > % + 5 2mah > %

It therefore follows that

21210 x 1 dt
J <<7/ E max max max / ‘F ( + it, X> ’—i—
1/2 N4 L1
R r~Rx mod r ysz [Al<0 M [t1< T 2 |t‘ +1
+ / ‘F( + it, x> ‘“ + L~ B2,
To<|t|I<T

The two maxima over y and over A above can be deleted because the quantity
within the braces is now independent of these two variables. Also, we may as-
sume F' is the function for which the maximum over M is obtained. Therefore,
Lemma 6 is a consequence of the following two estimates: if 0 < T} < Ty, then

(5.13) / ‘ ( +it, x) ‘ dt < RY22Y2(1y + 1)Y2 L4,

rNRX mod 7

and if Ty < Ty < z, then

2T,

(5.14) > Z /

r~R x mod T,

< + it X> ’ dt < RV L=,
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By Theorem 1 the left-hand side of (5.13) is now

< (R*Ty + RT3/ 4 212 ¢ «
< R1/2:1:1/2(T1 + 1)1/2LC{R3/2T01/295—1/2 + RY2,-1/5 +R*1/2}.
Since Tp =< 0z (see (5.12)), the above quantity is acceptable provided that 6

satisfies (5.1) and R > L© with sufficiently large B and C. This establishes
(5.13).

By Theorem 1 again, the left-hand side of (5.14) is

< (R*Ty + RT3/ 4 212 [° «
< R1/2x1/2T2LC{R3/2$—1/2 +R1/2$_1/5+R_1/2},

which is acceptable provided that L¢ < R < 2'/3log™? 2 with a sufficiently

large C. This establishes (5.14), and Lemma 6 now follows.
Now we treat the case R < LC.

Lemma 7. Let A > 0 be arbitrary and C = C(A) be determined as
i Lemma 6. Let 6 be as in Theorem 5, and R < LC. Then there exists
B = B(A) > 0 such that

J < LA,

Proof. We begin with W (x, A) defined in (5.4). Now we have

(5.15) WA = / e(wN)d S (Am)x(m) — by)
y/2 nsu

To the quantity within the braces, we apply the explicit formula

S (Amixtm) ) = = 3 U0 (%+1) 10821}

m<u izt P

where p = +iv runs over non-trivial zeros of the function L(s, x), and T > 2 is
a parameter. Take T' = x; then the above O-term is O(L?). Hence by partial
summation,

(5.16) W) == > [ we(wN)du+ O{(1+|\z)L*}.
"‘/|S$y/2
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The integral in (5.16) can be estimated similarly by the first and second
derivative tests. Thus,

y y

/upfle(u/\)du: /uﬁfle (%logqu)\u) du <
v

/2 /2

Yy Yy

Y Y
(3 D7 —in_ Ty + 2]
y/2<u<

< ¥~ min <

/(v + DY iy < T07

<
2 /|| if Ty < |y] < =,

where Ty = 4mz6, the same as in (5.12). Inserting this into (5.16) and then
taking summation over xy mod r and r ~ R < LY, we have
(5.17)

J < max max |W(y, )| <

oy ZW DD DT

r~Rx mod r |y|<T, r~Rx mod r T0<|fy|<m

= J1+ Jo+ 9$L2C+2,

say.
By (5.1) we have § < L~5, and hence the last term is

< g~ BF2C+2

which is acceptable if B is sufficiently large.

The term J; will be bounded by Vinogradov’s zero-free region, which states
that for any y mod r, there exists a constant ¢z > 0 such that L(o +it,x) # 0
in the region
€3

c>1-—
log r 4 log*/®(|t| + 2)

except for the possible Siegel zero. However, since r < L¢, the Siegel zero
does not exist in the present situation. It follows that L(s, x) is zero-free for
oc>1—n(T) and [t| < T, where

C3

= ——r for 7>0.
2log*® (1 + 2)
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Consequently, the inner sum in J is

2B-1 1 c
<Lz Z ‘ | < zexp{—n(z)logz} Z ﬁ<<IeXp{f§3L1/5}_
To<|v|<z To<|v|<a Y
Therefore,

Jo K :cexp{f%sLl/s},

which is also acceptable.
To bound J;, we write

>Y mem <almax ()T 3 Y o
x mod 7 |v|<Ty h/‘ +1 TisTo x mod ry~Ty

The last double sums can be estimated by Ingham’s zero-density theorem that

Z N(o,1,x) <€ (rT)%(log r7)?,

x mod r

where N (o, 7, x) denotes the number of zeros p = 3 + iy of L(s,x) with o <
< B <1and |y| <7. Thus,

1—n(To)
> Yt [ aad Y Nemop<
x mod r~y~T, 1/2 x mod r

log®(rT Ty) e 27!
< log™(r 1)1/%2%”%)@ )77 a’,

and therefore,

114C
E E <Lzl max max X
X mod | |<Tp / |'y| +1 T1<Ty 1/2<0<1—n(Tp)

— 1
X exp{(l —o)L + (32 _300 - 2) long}.

Denote by f(T1,0) the exponential function above; we will analyze f(T},0) in
detail.

Suppose first 4/5 < o <1 —n(Tp), so that

(5.18)

3—30c 1
_ <.
2—0 270
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From this and the zero-free region it follows that

T L
B, a5t gy T T O) <o Ty P ~ DI <

< exp {—%LI/S} .

Secondly we consider 3/5 < o < 4/5, which implies that

Since Ty < Ty < Oz < 2L~ B, we have log T} < L, and consequently

3—30c 1
T —(1-0)L — )L} =
T<Th 3/5?3§4/5f( o) < 8/5%024/5 eXp{ (=o)L + ( 2-0 2) }

—  max exp{_"““l/%} _

3/5<0<4/5 2—0
— p3/70.

Finally we deal with the case 1/2 < ¢ < 3/5. Now we have

and consequently,

max max f(T},0) <
T1<Ty 1/2<0<3/5

3—-3 1
< max exp{—(l—a)L—i—( U—)logm}x

1/2<0<3/5 2—0 2

X e — 3_30—1 lo L
*P 2—0 2) %7,

By Ty < xL~ P again, the above quantity is

o(c —1/2)

6
< max exp{— L}exp{—Bloglogm}<<
2—o0 7

1/2<0<3/5
< L_GB/7.

Inserting these estimates into (5.18), we get

J < xLC76B/7+11 Z 1< $L2C76B/7+11’
r~R
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which is acceptable if B is sufficiently large. Lemma 7 now follows from (5.17)
and the above estimates for .J; and Js.

6. Application of Theorem 1 in the Waring-Goldbach problem

Theorem 1 also enables one to deal with enlarged major arcs in the Waring-

Goldbach problem. It is useful to a wide circle of problems of Waring-Goldbach
type, and has been successfully applied to a number of additive problems
concerning primes. The reader is referred to [3] for a survey.
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