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1. Introduction

In this article, we will introduce a large sieve mean-value estimate for
Dirichlet polynomials, from which we deduce the Bombieri-Vinogradov theorem
and a Bombieri-type mean-value theorem for exponential sums over primes.

Estimation of sums of the form

(1.1) S(x) =
∑

n≤x

Λ(n)f(n),

where Λ(n) is the von Mangoldt function, and f(n) a certain arithmetical
function, plays an important role in number theory. Let z ≥ 1 and k ≥ 1. By
Heath-Brown’s identity [1], for any n < 2zk

(1.2) Λ(n) =
k∑

j=1

(−1)j−1

(
k

j

) ∑
· · ·

∑
n1n2···n2j=n

nj+1,...,n2j≤z

(log n1)µ(nj+1) · · ·µ(n2j).

This can be applied to estimate sums like (1.1). Suppose

(1.3) zk > x,
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so that Heath-Brown’s identity applies for n ≤ x. We then split up each range
of summation in (1.2) into intervals n ∼ N , i.e. n ∈ (N, 2N ], and find that
S(x) is a linear combination of O(log2k x) sums of the form

(1.4)
∑

· · ·
∑

n1n2···n2k≤x

nj∼Nj

(log n1)µ(nk+1) · · ·µ(n2k)f(n1n2 · · ·n2k),

where
∏

Nj < x, and 2Nj ≤ z if j > k. Note that some of the intervals (N, 2N ]
may contain only the integer 1.

2. A large sieve mean-value estimate

Usually, one takes k = 5 in Heath-Brown’s identity (1.2). The following
applications are examples in such a setting.

We estimate (1.1) via (1.4) with k = 5. To this end, let

X2/5 < Y ≤ X

and M1, ..., M10 be positive real numbers such that

(2.1) Y ≤ M1 · · ·M10 < X, and 2M6, ..., 2M10 ≤ X1/5.

For j = 1, ..., 10 define

(2.2) aj(m) =





log m if j = 1,
1 if j = 2, ..., 5,
µ(m) if j = 6, ..., 10.

For a complex variable s and a Dirichlet character χ, put

fj(s, χ) =
∑

m∼Mj

aj(m)χ(m)
ms

,

and

(2.3) F (s, χ) = f1(s, χ) · · · f10(s, χ).

The following hybrid estimate for |F | will be very important in our later
argument.
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Theorem 1. Let F (s, χ) be as in (2.3), and A ≥ 1 arbitrary. Then for
any 1 ≤ R ≤ X2A and 0 < T ¿ XA,

(2.4)
∑
r∼R
d|r

∑∗

χ mod r

T∫

−T

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt ¿

¿
(

R2

d
T +

R

d1/2
T 1/2X3/10 + X1/2

)
logc X.

Here c > 0 is an absolute constant independent of A, but the constant implied
in ¿ depends on A.

Theorem 1 with d = 1 was established in [4], and in this general form in
[2] and [7]. In the following applications, we will only need Theorem 1 with
d = 1.

Note that in Theorem 1 we have r > R ≥ 1; therefore χ mod r never takes
the principal primitive character χ0 mod 1. To access the strength of Theorem
1, we note that, by taking absolute value directly, a trivial bound for |F | is

F

(
1
2

+ it, χ

)
¿

∑

m∼M1

|a1(m)|
m1/2

· · ·
∑

m∼M10

|a10(m)|
m1/2

¿

¿ (M1 · · ·M10)1/2 log X ¿ X1/2 log X.

Consequently, a trivial bound for the left-hand side of (2.4) is

(2.5) ¿
∑
r∼R
d|r

∑

χ mod r

2T∫

T

X1/2 logc Xdt ¿ R2

d
TX1/2 logc X.

Compared with (2.5), the first term on the right-hand side of (2.4) saves in the
X aspect, the second term in all the R, T and X aspects, and the third term
in the R and T aspects.

3. The Bombieri-Vinogradov theorem

As an application of Theorem 1, we will establish the following Bombieri-
Vinogradov theorem.
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Theorem 2. (Bombieri-Vinogradov) Set

ψ(y; q, a) =
∑
n≤y

n≡a(modq)

Λ(n).

Then for any A > 0 there exists a constant B = B(A) > 0, such that

∑

q≤Q

max
y≤x

max
(a,q)=1

∣∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣∣ ¿
x

LA
,

where ϕ(q) is the Euler totient function, Q = x1/2L−B and L = log x.

Proof. Introducing the Dirichlet characters,

(3.1) ψ(y; q, a)− y

ϕ(q)
=

1
ϕ(q)

∑

χ mod q

χ̄(a)
∑

m≤y

(Λ(m)χ(m)− δχ)− y − [y]
ϕ(q)

,

where δχ = 1 or 0 according as χ is principal or not. Let

W (χ) =
∑

y/2<m≤y

(Λ(m)χ(m)− δχ);

we remark that W (χ) depends on y although this is not made explicit. Then

(3.2)

∑

q≤Q

max
y≤x

max
(a,q)=1

∣∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣∣ ¿

¿ L + L
∑

q≤Q

1
ϕ(q)

max
y≤x

∑

χ mod q

|W (χ)| ¿

¿ L + L
∑

r≤Q

∑
q≤Q
r|q

1
ϕ(q)

max
y≤x

∑

χ mod r

∗|W (χχ0)|,

where χ0 mod q is the principal character. For χ mod r and χ0 mod q in the
last line, we have

W (χχ0)−W (χ) ¿
∑

y/2<m≤y
(m,q)>1

Λ(m) ¿ (log q)(log y) ¿ L2.
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Therefore we can replace W (χχ0) by W (χ) + O(L2) in the last term of (3.2).
Now W (χ) + O(L2) is independent of q, and the last term in (3.2) can be
bounded by

¿ L
∑

r≤Q

{ ∑
q≤Q
r|q

1
ϕ(q)

}
max
y≤x

∑∗

χ mod r

{|W (χ)|+ L2} ¿

¿ QL5 + L3
∑

r≤Q

1
r

max
y≤x

∑∗

χ mod r

|W (χ)|,

where we have used the elementary estimates ϕ(rt) ≥ ϕ(r)ϕ(t) and

∑
q≤Q
r|q

1
ϕ(q)

¿ 1
ϕ(r)

∑

t≤Q/r

1
ϕ(t)

¿ L2

r
.

Therefore Theorem 2 is a consequence of the estimate

(3.3)
∑

r∼R

1
r

∑∗

χ mod r

max
y≤x

|W (χ)| ¿ xL−A

for R ≤ Q and arbitrary A > 0.
Suppose first that R ≤ LC with an arbitrary C > 0. Then, by the Siegel-

Walfisz theorem,
W (χ) ¿ x exp(−c

√
log x)

for some constant c > 0, and hence (3.3) is true in this case.
If LC < R ≤ Q, then we always have δχ = 0 for all primitive character

modulo r ∼ R, and consequently

(3.4) W (χ) =
∑

y/2<m≤y

Λ(m)χ(m).

To (3.4), we apply Heath-Brown’s identity with k = 5. In (2.1) we take

(3.5) Y = x2/5, X = x;

it is important that X and Y do not depend on y. Define aj(m), fj(s, χ) and
F (s, χ) as in §2. For

(3.6) 2x2/5 = 2Y < y ≤ X = x,
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W (χ) is a linear combination of O(L10) terms, each of which is of the form

σ(M) :=
∑

m1∼M1

· · ·
∑

m10∼M10

y/2<m1···m10≤y

a1(m1)χ(m1) · · · a10(m10)χ(m10),

where M denotes the vector (M1,M2, ..., M10) with Mj as in (2.1). Note that
some of the intervals (Mj , 2Mj ] may contain only the integer 1. By using
Perron’s summation formula with T = y, and then shifting the contour to the
left, the above σ(M) is

=
1

2πi

1+1/L+iy∫

1+1/L−iy

F (s, χ)
ys − (y/2)s

s
ds + O(L2) =

=
1

2πi





1/2−iy∫

1+1/L−iy

+

1/2+iy∫

1/2−iy

+

1+1/L+iy∫

1/2+iy





+ O(L2).

The integral on the two horizontal segments above can be easily estimated as

¿ max
1/2≤σ≤1+1/L

|F (σ ± iy, χ)|y
σ

y
¿ max

1/2≤σ≤1+1/L
x1−σL

yσ

y
¿

¿
(

x

y

)1/2

L ¿ x3/10L

on using the trivial estimate

F (σ ± iy, χ) ¿ |f1(σ ± iy, χ)| · · · |f10(σ ± iy, χ)| ¿
¿ (M1−σ

1 L)M1−σ
2 · · ·M1−σ

10 ¿ x1−σL.

Thus, for y satisfying (3.6),

σ(M) =
1
2π

y∫

−y

F

(
1
2

+ it, χ

)
y

1
2+it − (y/2)

1
2+it

1
2 + it

dt + O(L2) ¿

¿ y1/2

y∫

−y

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣
dt

|t|+ 1
+ L2.
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Recalling that F does not depend on y, we have

max
2Y <y≤x

|W (χ)| ¿ L10x1/2

x∫

−x

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣
dt

|t|+ 1
+ L12.

On the other hand, one has trivially

max
y≤2Y

|W (χ)| ¿ Y.

Now the left-hand side of (3.3) is

¿ 1
R

∑

r∼R

∑∗

χ mod r

max
2Y <y≤x

|W (χ)|+ 1
R

∑

r∼R

∑∗

χ mod r

max
y≤2Y

|W (χ)| ¿

¿ x1/2

R
L10

∑

r∼R

∑∗

χ mod r

x∫

−x

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣
dt

|t|+ 1
+ RY.

The last term is acceptable; it therefore follows that (3.3) is a consequence of
the estimate that, for 0 < T ≤ x,

(3.7)
∑

r∼R

∑∗

χ mod r

2T∫

T

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt ¿ Rx1/2(T + 1)L−A.

By Theorem 1, the left-hand side of (3.7) is now

¿ (R2T + RT 1/2x3/10 + x1/2)Lc ¿
¿ Rx1/2(T + 1)Lc(Rx−1/2 + x−1/5 + R−1).

The above quantity is acceptable provided that LC < R ≤ x1/2L−B with B
and C sufficiently large in terms of A. This establishes (3.7) and (3.3), and
hence the Theorem.

4. Exponential sums over primes: small q

In this section, we are concerned with the asymptotic behavior of the sum

S(x, α) =
∑

m≤x

Λ(m)e(mα),
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where α ∈ [0, 1] satisfies the rational approximation

(4.8) α =
a

q
+ λ, with (a, q) = 1, 1 ≤ a ≤ q.

The results below (Lemmas 3 and 4) are just an easy application of the Siegel-
Walfisz theorem, but here we present the argument explicitly since some of the
materials will be used in §5.

By the orthogonality of Dirichlet characters S(x, α) can be written as

S(x, α) =
∑
m≤x

(m,q)=1

Λ(m)e(mα) + O





∑
m≤x

(m,q)>1

Λ(m)





=

=
q∑

h=1
(h,q)=1

e

(
ah

q

) ∑
m≤x

m≡h( mod q)

Λ(m)e(mλ) + O{(log q)(log x)} =

=
1

ϕ(q)

∑

χ mod q

C(χ̄, a)
∑

m≤x

Λ(m)χ(m)e(mλ) + O(L2),

where

C(χ, a) =
q∑

h=1

χ(h)e
(

ah

q

)
.

Now recall C(χ0, a) = µ(q). Thus,

(4.9)

S(x, α) =
µ(q)
ϕ(q)

∑

m≤x

e(mλ)+

+
1

ϕ(q)

∑

χ mod q

C(χ̄, a)
∑

m≤x

(Λ(m)χ(m)− δχ)e(mλ) + O(L2).

To investigate the inner sum over m, we let

(4.10) W (χ, λ) =
∑

x/2<m≤x

(Λ(m)χ(m)− δχ)e(mλ);

note that W (χ, λ) also depends on x. Now suppose q ≤ LA with arbitrary
A > 0. Then by the Siegel-Walfisz theorem,

W (χ, λ) =

x∫

x/2

e(uλ)d





∑

m≤u

(Λ(m)χ(m)− δχ)



 =

x∫

x/2

e(uλ)dR(u),
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where R(u) ¿ u exp(−c
√

log u). Therefore, partial integration gives

W (χ, λ) ¿ |R(x)|+
∣∣∣∣λ

x∫

1

e(uλ)R(u)du

∣∣∣∣ ¿ (1 + |λ|x)x exp(−c
√

L),

and hence the inner sum over m in (4.9) has the same upper bound with a
smaller c. Applying the bound |C(χ̄, a)| ≤ √

q to (4.9), we conclude that

(4.11) S(x, α) =
µ(q)
ϕ(q)

∑

m≤x

e(mλ) + O{√q(1 + |λ|x)x exp(−c
√

L)}.

This may be summarized in the following.

Lemma 3. Let α be as in (4.8), with q ≤ LA and A > 0 arbitrary. Then
there exist two positive constants c1 and c2, such that for |λ| ≤ x−1 exp(c1

√
L),

(4.12) S(x, α) =
µ(q)
ϕ(q)

∑

m≤x

e(mλ) + O{x exp(−c2

√
L)}.

The following conditional result may be compared with Lemma 3.

Lemma 4. Under GRH,

(4.13) S(x, α) =
µ(q)
ϕ(q)

∑

m≤x

e(mλ) + O{√qx(1 + |λ|x)Lc}.

5. A Bombieri-type theorem for exponential sums over primes

To extend the range of q in Lemma 3 is as difficult as to do this in the
Siegel-Walfisz theorem. However, on average, the range of q can be extended
considerably, as is shown in the following theorem of Bombieri-Vinogradov’s
type.

Theorem 5. Let α be as in (4.8) and ε > 0 arbitrary. For any A > 0,
there exists a constant B = B(A) > 0, such that if Q and θ satisfy

(5.1) 1 ≤ Q ≤ x1/3L−B , θ = Q−3L−B ,
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then ∑

q≤Q

max
y≤x

max
(a,q)=1

max
|λ|≤θ

∣∣∣∣S(y, α)− µ(q)
ϕ(q)

∑

m≤y

e(mλ)
∣∣∣∣ ¿ xL−A.

Theorem 5 with

1 ≤ Q ≤ x1/4, θ = min(Q−4, L−B),

where B = B(A) > 0 was established by Wolke [8]. Theorem 5 in the present
form was proved in [6] by a different argument. Here we will derive it from
Theorem 1. A result similar to Theorem 5 for non-linear exponential sums over
primes has been established in [5].

We remark that, in the special case Q = 1, we must have a = q = 1 in
(4.8), and hence the theorem states that, for |λ| ≤ L−B ,

(5.2) S(x, λ) =
∑

m≤x

e(mλ) + O(xL−A).

On the other hand, we may take λ = 0 in (4.8), so that now the theorem
reduces to

(5.3)
∑

q≤Q

max
y≤x

max
(a,q)=1

∣∣∣∣S
(

y,
a

q

)
− µ(q)

ϕ(q)
y

∣∣∣∣ ¿ xL−A.

We note that (5.2) and (5.3) are not covered by Lemma 3.

To derive from Theorem 5 a result for almost all q, we denote by Q the
set of q ≤ Q such that

∣∣∣∣S(x, α)− µ(q)
ϕ(q)

∑

m≤x

e(mλ)
∣∣∣∣ À x2/3LB .

Then Theorem 5 gives ∑

q∈Q
x2/3LB ¿ x

LA
,

and hence
|Q| ¿ x1/3 log−A−B x.

Therefore, for all q ≤ Q except on a set Q of cardinality O(x1/3 log−A−B x),

S(x, α) =
µ(q)
ϕ(q)

∑

m≤x

e(mλ) + O(x2/3 logB x).
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Proof of Theorem 5. We begin by modifying the definition of W (χ, λ)
in (4.10) slightly, so that now it depends on y instead of x, i.e.

(5.4) W (χ, λ) =
∑

y/2<m≤y

(Λ(m)χ(m)− δχ)e(mλ).

Thus (4.9), with x replaced by y, gives

(5.5)
∑

q≤Q

max
y≤x

max
(a,q)=1

max
|λ|≤θ

∣∣∣∣S(y, α)− µ(q)
ϕ(q)

∑

m≤y

e(mλ)
∣∣∣∣ ¿

¿ QL2 + L
∑

q≤Q

1
ϕ(q)

max
y≤x

max
(a,q)=1

max
|λ|≤θ

∑

χ mod q

|C(χ̄, a)W (χ, λ)| ¿

¿ QL2 + L
∑

r≤Q

∑
q≤Q
r|q

1
ϕ(q)

max
y≤x

max
(a,q)=1

max
|λ|≤θ

∑∗

χ mod r

|C(χ̄χ0, a)W (χχ0, λ)|,

where χ0 mod q is the principal character. For χ mod r and χ0 mod q in the
last line, we have

W (χχ0, λ)−W (χ, λ) ¿
∑
m≤y

(m,q)>1

Λ(m) ¿ L2.

Therefore we can replace W (χχ0, λ) by W (χ, λ) + O(L2) in the last term of
(5.5). Since

|C(χ̄χ0, a)| ≤ r1/2,

the last term in (5.5) is bounded by

¿ L
∑

r≤Q





∑
q≤Q
r|q

r1/2

ϕ(q)





max
y≤x

max
|λ|≤θ

∑∗

χ mod r

{|W (χ, λ)|+ L2} ¿

¿ L3
∑

r≤Q

1
r1/2

max
y≤x

max
|λ|≤θ

∑∗

χ mod r

{|W (χ, λ)|+ L2} ¿

¿ Q3/2L5 + L3
∑

r≤Q

1
r1/2

max
y≤x

max
|λ|≤θ

∑∗

χ mod r

|W (χ, λ)|.

The term Q3/2L5 is acceptable if Q satisfies (5.1) with B sufficiently large in
terms of A. Therefore, the theorem is a consequence of the estimate

(5.6) J :=
∑

r∼R

1
r1/2

∑∗

χ mod r

max
y≤x

max
|λ|≤θ

|W (χ, λ)| ¿ xL−A,
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where R ≤ Q, and A > 0 is arbitrary.

We consider two cases according as R small or big. The case when R is
big is handled in Lemma 6, where it is proved that there exists some constant
C = C(A) > 0, such that (5.6) is true if LC < R ≤ Q. The proof applies,
among other things, Theorem 1 and Heath-Brown’s identity. The case when
R is small is treated in Lemma 7. It is proved, by the zero-density estimate,
that (5.6) is true for R ≤ LC and arbitrary C > 0. The desired assertion now
follows from Lemmas 6 and 7.

Lemma 6. Let J be as in (5.6). Then for arbitrary A > 0, there exists a
constant C = C(A) > 0, such that for

LC < R ≤ Q,

we have
J ¿ xL−A.

Proof. Let
Y = x2/5, X = x,

and define aj(m), fj(s, χ), and F (s, χ) as in §2. Suppose

2Y < y ≤ u ≤ X,

and to the sum

(5.7)
∑

y/2<m≤u

Λ(m)χ(m)

we apply Heath-Brown’s identity as in the last section. Thus, (5.7) is a linear
combination of O(L10) terms, each of which is of the form

σ(u;M) :=
∑

M1<m1≤2M1

· · ·
∑

M10<m10≤2M10

y/2<m1···m10≤u

a1(m1)χ(m1) · · · a10(m10)χ(m10),

where M denotes the vector (M1,M2, ..., M10) with Mj as in (2.1). We may
estimate σ(M) by an argument similar to that after (3.6) in the proof the
Bombieri-Vinogradov theorem; actually, by using Perron’s summation formula
with T = x, and then shifting the contour to the left, the above σ(u;M) is

σ(u;M) =
1
2π

x∫

−x

F

(
1
2

+ it, χ

)
u

1
2+it − (y/2)

1
2+it

1
2 + it

dt + O(L2).
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Since R > LC (so χ 6= χ0), our W (χ, λ) in (5.4) can be written as

(5.8) W (χ, λ) =
∑
m∼y

Λ(m)χ(m)e(mλ) =

y∫

y/2

e(uλ)d





∑

y/2<m≤u

Λ(m)χ(m)



 ,

and consequently W (χ, λ) is a linear combination O(L10) terms, each of which
is of the form

y∫

y/2

e(uλ)dσ(u;M) =
1
2π

x∫

−x

F

(
1
2

+ it, χ

) y∫

y/2

u−1/2+ite(uλ)dudt+

+O{(1 + |λ|x)L2}.
Changing variables in the inner integral, we deduce from the above formulae
that

(5.9)

max
2Y <y≤X

|W (χ, λ)| ¿ L10 max
M

∣∣∣∣
x∫

−x

F

(
1
2

+ it, χ

)
×

×
y∫

y/2

u−1/2e

(
t

2π
log u + λu

)
dudt

∣∣∣∣ + θxL12,

where the maximum is taken over all M = (M1,M2, ..., M10). This will be used
later in combination with the trivial bound

(5.10) max
y≤2Y

|W (χ, λ)| ¿ Y.

Now we estimate the contribution of |W (χ, λ)| to the J in (5.6). The
contribution of (5.10) is

¿ R2/3Y ¿ Q2/3x2/5 ¿ x28/45,

which is acceptable; and the contribution of the term θxL12 in (5.9) is

¿ R3/2θxL12 ¿ xL−B+12,

by the definition of θ in (5.1), which is also acceptable if B is sufficiently large.
To estimate the contribution of the first term on the right-hand side of (5.9)
we note that

d

du

(
t

2π
log u + λu

)
=

t

2πu
+ λ,

d2

du2

(
t

2π
log u + λu

)
= − t

2πu2
.
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Thus, by the first and second derivative tests, the inner integral in (5.9) can
be bounded by

(5.11)

¿y−1/2 min
{

y

(|t|+ 1)1/2
,

y

min
y/2<u≤y

|t + 2πλu|
}
¿

¿




x1/2/(|t|+ 1)1/2 if |t| ≤ T0,

x1/2/|t| if T0 < |t| ≤ T,

where

(5.12) T0 = 4πxθ.

Here the choice of T0 is to ensure that |t + 2πλu| > |t|/2 whenever |t| > T0; in
fact,

|t + 2πλu| ≥ |t| − 2π|u|θ >
|t|
2

+
T0

2
− 2πxθ ≥ |t|

2
.

It therefore follows that

J ¿x1/2L10

R1/2

∑

r∼R

∑∗

χ mod r

max
y≤x

max
|λ|≤θ

max
M





∫

|t|≤T0

∣∣∣∣F
(

1
2

+ it, χ

) ∣∣∣∣
dt√
|t|+ 1

+

+
∫

T0<|t|≤T

∣∣∣∣F
(

1
2

+ it, χ

) ∣∣∣∣
dt

|t|





+ xL−B+12.

The two maxima over y and over λ above can be deleted because the quantity
within the braces is now independent of these two variables. Also, we may as-
sume F is the function for which the maximum over M is obtained. Therefore,
Lemma 6 is a consequence of the following two estimates: if 0 < T1 ≤ T0, then

(5.13)
∑

r∼R

∑∗

χ mod r

2T1∫

T1

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt ¿ R1/2x1/2(T1 + 1)1/2L−A;

and if T0 < T2 ≤ x, then

(5.14)
∑

r∼R

∑∗

χ mod r

2T2∫

T2

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt ¿ R1/2x1/2T2L
−A.
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By Theorem 1 the left-hand side of (5.13) is now

¿ (R2T1 + RT
1/2
1 x3/10 + x1/2)Lc ¿

¿ R1/2x1/2(T1 + 1)1/2Lc{R3/2T
1/2
0 x−1/2 + R1/2x−1/5 + R−1/2}.

Since T0 ³ θx (see (5.12)), the above quantity is acceptable provided that θ
satisfies (5.1) and R > LC with sufficiently large B and C. This establishes
(5.13).

By Theorem 1 again, the left-hand side of (5.14) is

¿ (R2T2 + RT
1/2
2 x3/10 + x1/2)Lc ¿

¿ R1/2x1/2T2L
c{R3/2x−1/2 + R1/2x−1/5 + R−1/2},

which is acceptable provided that LC < R ≤ x1/3 log−B x with a sufficiently
large C. This establishes (5.14), and Lemma 6 now follows.

Now we treat the case R ≤ LC .

Lemma 7. Let A > 0 be arbitrary and C = C(A) be determined as
in Lemma 6. Let θ be as in Theorem 5, and R ≤ LC . Then there exists
B = B(A) > 0 such that

J ¿ xL−A.

Proof. We begin with W (χ, λ) defined in (5.4). Now we have

(5.15) W (χ, λ) =

y∫

y/2

e(uλ)d





∑

n≤u

(Λ(m)χ(m)− δχ)



 .

To the quantity within the braces, we apply the explicit formula

∑

m≤u

(Λ(m)χ(m)− δχ) = −
∑

|γ|≤T

uρ

ρ
+ O

{( u

T
+ 1

)
log2(qT )

}
,

where ρ = +
¯
iγ runs over non-trivial zeros of the function L(s, χ), and T ≥ 2 is

a parameter. Take T = x; then the above O-term is O(L2). Hence by partial
summation,

(5.16) W (χ, λ) = −
∑

|γ|≤x

y∫

y/2

uρ−1e(uλ)du + O{(1 + |λ|x)L2}.
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The integral in (5.16) can be estimated similarly by the first and second
derivative tests. Thus,

y∫

y/2

uρ−1e(uλ)du =

y∫

y/2

uβ−1e
( γ

2π
log u + λu

)
du ¿

¿ yβ−1 min





y

(|γ|+ 1)1/2
,

y

min
y/2<u≤y

|γ + 2πλu|



 ¿

¿




xβ/(|γ|+ 1)1/2 if |γ| ≤ T0,

xβ/|γ| if T0 < |γ| ≤ x,

where T0 = 4πxθ, the same as in (5.12). Inserting this into (5.16) and then
taking summation over χ mod r and r ∼ R ≤ LC , we have
(5.17)

J ¿
∑

r∼R

∑

χ mod r

max
y≤x

max
|λ|≤θ

|W (χ, λ)| ¿

¿
∑

r∼R

∑

χ mod r

∑

|γ|≤T0

xβ

√
|γ|+ 1

+
∑

r∼R

∑

χ mod r

∑

T0<|γ|≤x

xβ

|γ| + θxL2C+2 =:

=: J1 + J2 + θxL2C+2,

say.
By (5.1) we have θ ¿ L−B , and hence the last term is

¿ xL−B+2C+2,

which is acceptable if B is sufficiently large.
The term J2 will be bounded by Vinogradov’s zero-free region, which states

that for any χ mod r, there exists a constant c3 > 0 such that L(σ + it, χ) 6= 0
in the region

σ ≥ 1− c3

log r + log4/5(|t|+ 2)

except for the possible Siegel zero. However, since r ≤ LC , the Siegel zero
does not exist in the present situation. It follows that L(s, χ) is zero-free for
σ ≥ 1− η(T ) and |t| ≤ T , where

η(τ) =
c3

2 log4/5(τ + 2)
for τ ≥ 0.
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Consequently, the inner sum in J2 is

¿ x
∑

T0<|γ|≤x

xβ−1

|γ| ¿ x exp{−η(x) log x}
∑

T0<|γ|≤x

1
|γ| ¿ x exp

{
−c3

3
L1/5

}
.

Therefore,

J2 ¿ x exp
{
−c3

4
L1/5

}
,

which is also acceptable.
To bound J1, we write

∑

χ mod r

∑

|γ|≤T0

xβ

√
|γ|+ 1

¿ xL max
T1≤T0

(T1 + 1)−1/2
∑

χ mod r

∑

γ∼T1

xβ−1.

The last double sums can be estimated by Ingham’s zero-density theorem that

∑

χ mod r

N(σ, τ, χ) ¿ (rτ)
3−3σ
2−σ (log rτ)9,

where N(σ, τ, χ) denotes the number of zeros ρ = β + iγ of L(s, χ) with σ ≤
≤ β ≤ 1 and |γ| ≤ τ . Thus,

∑

χ mod r

∑

γ∼T1

xβ−1 ¿ −
1−η(T0)∫

1/2

xσ−1d





∑

χ mod r

N(σ, T1, χ)



 ¿

¿ log9(rT1) max
1/2≤σ≤1−η(T0)

(rT1)
3−3σ
2−σ xσ−1,

and therefore,

(5.18)

∑

χ mod r

∑

|γ|≤T0

xβ

√
|γ|+ 1

¿ xL11+C max
T1≤T0

max
1/2≤σ≤1−η(T0)

×

× exp
{
−(1− σ)L +

(
3− 3σ

2− σ
− 1

2

)
log T1

}
.

Denote by f(T1, σ) the exponential function above; we will analyze f(T1, σ) in
detail.

Suppose first 4/5 ≤ σ ≤ 1− η(T0), so that

3− 3σ

2− σ
− 1

2
≤ 0.
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From this and the zero-free region it follows that

max
T1≤T0

max
4/5≤σ≤1−η(T0)

f(T1, σ) ¿ max
4/5≤σ≤1−η(T0)

exp{(σ − 1)L} ¿

¿ exp
{
−c3

2
L1/5

}
.

Secondly we consider 3/5 ≤ σ ≤ 4/5, which implies that

3− 3σ

2− σ
− 1

2
≥ 0.

Since T1 ≤ T0 ¿ θx ¿ xL−B , we have log T1 ≤ L, and consequently

max
T1≤T0

max
3/5≤σ≤4/5

f(T1, σ) ¿ max
3/5≤σ≤4/5

exp
{
−(1− σ)L +

(
3− 3σ

2− σ
− 1

2

)
L

}
=

= max
3/5≤σ≤4/5

exp
{
−σ(σ − 1/2)

2− σ
L

}
=

= x−3/70.

Finally we deal with the case 1/2 ≤ σ ≤ 3/5. Now we have

3− 3σ

2− σ
− 1

2
≥ 6

7
,

and consequently,
max

T1≤T0
max

1/2≤σ≤3/5
f(T1, σ) ¿

¿ max
1/2≤σ≤3/5

exp
{
−(1− σ)L +

(
3− 3σ

2− σ
− 1

2

)
log x

}
×

× exp
{
−

(
3− 3σ

2− σ
− 1

2

)
log

x

T0

}
.

By T0 ¿ xL−B again, the above quantity is

¿ max
1/2≤σ≤3/5

exp
{
−σ(σ − 1/2)

2− σ
L

}
exp

{
−6

7
B log log x

}
¿

¿ L−6B/7.

Inserting these estimates into (5.18), we get

J1 ¿ xLC−6B/7+11
∑

r∼R

1 ¿ xL2C−6B/7+11,



A large sieve estimate for Dirichlet polynomials 109

which is acceptable if B is sufficiently large. Lemma 7 now follows from (5.17)
and the above estimates for J1 and J2.

6. Application of Theorem 1 in the Waring-Goldbach problem

Theorem 1 also enables one to deal with enlarged major arcs in the Waring-
Goldbach problem. It is useful to a wide circle of problems of Waring-Goldbach
type, and has been successfully applied to a number of additive problems
concerning primes. The reader is referred to [3] for a survey.
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