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DISTRIBUTION OF q–ADDITIVE FUNCTIONS
ON THE SET OF INTEGERS
HAVING k PRIME FACTORS
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(Budapest, Hungary)

Dedicated to the memory of Professor M.V. Subbarao

1. Notations. q ≥ 2 is an integer, Aq = {0, 1, . . . , q − 1}; n =

=
∞∑

j=0

εj(n)qj , εj(n) ∈ Aq is the q-ary expansion of n.

We say, that f : N0 → R is q-additive, if f(0) = 0, and f(n) =

=
∞∑

j=0

f(εj(n)qj) holds for every n ∈ N. The set of q-additive functions is

denoted by Aq.
P = set of primes, p with or without suffixes denote primes, ω(n) =

number of distinct prime factors of n, Ω(n) = number of prime factors of n
counted them with multiplicity. Let P (n) be the largest prime factor of n. Let
Pk = {n | ω(n) = k}, Nk = {n | Ω(n) = k}. Let π(x) =

∑
p≤x

1, πk(x) = #{n ≤
≤ x, n ∈ Pk}, Nk(x) = #{n ≤ x, n ∈ Nk}. Let x1 = log x, x2 = log x1, . . ..
Φ(x) = Gaussian normal law.

The letters c, c1, c2, . . . denote suitable positive constants not the same at
every occurence. Let furthermore {y} = fractional part of y, ‖y‖ = min({y}, 1−
−{y}), e(y) := e2πiy.

In this paper we shall formulate some generalizations of earlier results of
the second named author.
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For f ∈ Aq define

(1.1) mj =
1
q

q−1∑

b=0

f(bqj), σ2
j =

1
q

q−1∑

b=0

(f(bqj)−mj)2,

(1.2) M(N) =
N−1∑

l=0

mj , D2(N) =
N−1∑

l=0

σ2
l .

Let ξj be independent random variables, P (ξj = f(bqj)) = 1/q (b ∈
∈ Aq), ηN = ξ0 + . . . + ξN−1, and so E(ξj) (=mean value of ξj)=mj , EηN =
= M(n), E(ηN −M(N))2 = D2(N), and so

(1.3) q−N

qN−1∑
n=0

(f(n)−M(n))2 = D2(N).

In [1] it was proved, that

(1.4)
1

π(qN )

∑

p<qN

(f(p)− (N))2 < cD2(N).

This inequality had been deduced from a nontrivial estimate for

#{p < qN | εj1(p) = b1, εj2(p) = b2},
where 0 ≤ j1, j2 < N, j1 6= j2, b1, b2 ∈ Aq. The proof depends on the
Siegel-Walfisz theorem for primes in arithmetical progressions, on sieve results
for the upper estimation of primes in short intervals, and on two theorems for
trigonometric sums with prime variables which will be refered now to as Lemma
1 and 2.

Lemma 1. (I.M. Vinogradov) Let H = e0,5
√

x1 , α =
a

Q
+

θ

Q2
, (a,Q) =

= 1, |θ| ≤ 1, 1 < Q ≤ x,

(1.5) S(x | α) :=
∑
p<x
p∈P

e(αp).
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Let R =
1
H

+

√
1
Q

+
Q

x
. Then

(1.6) |S(x | α)| ≤ cx · x3
1R

(see in [2], Chapter 10, §2).

Lemma 2. Let ε0 > 0 be a small positive constant, x ≥ Y ≥
≥ xe−ε0

√
x1 , 0 < Q ≤ eε0

√
x1 , (a,Q) = 1. Then

(1.7)

∣∣∣∣∣∣
∑

x−Y <p≤x

e

(
a

Q
p

)∣∣∣∣∣∣
≤ cY log log Q√

Q · x1

(see [2], Chapter 10, §3).
Repeating the argument without any important changes which was used

to prove (1.4) we obtain

Theorem 1. Let 1 ≤ B < x1/3, (B, q) = 1, f ∈ Aq, x > q. Then

1
π( x

B )

∑

p≤x/B

(f(Bp)−M(Nx))2 < cD2(Nx),

where c > 0 is a numerical constant, Nx is the integer, for which x ≤ qNx < qx.

In a joint paper of N.L. Bassily and I. Kátai [3] it was proved

Theorem A. Let f ∈ Aq, and sup
j∈N, b∈Aq

|f(bqj)| < c. Let P (x) be a

polynomial with integer coefficients, r = deg P (x) ≥ 1, the leading coefficient

of P be positive. Let Nx :=
[

log x
log q

]
. Assume that D(N)/N1/3 →∞ (N →∞).

Then

lim
x→∞

1
x

#
{

n < x
∣∣∣ f(P (n))−M(Nr)

D(Nr)
< y

}
= Φ(y)

and

lim
x→∞

1
π(x)

#
{

p < x
∣∣∣ f(P (p))−M(Nr)

D(Nr)
< y

}
= Φ(y).

The proof is based upon some theorems of I.M. Vinogradov and L.K. Hua
for trigonometric sums, by which the following assertion was proved.
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Theorem B. Let λ > 0 be an arbitrary constant. N = Nx =
[

log x
log q

]
. Let

h be fixed, b1, . . . , bh ∈ Aq and l1, . . . , lh be integers for which

(1.8) N−1/3 ≤ l1 < l2 < . . . < lh ≤ rN −N1/3.

Let
Σ1 := #{n ≤ x | alj (P (n)) = bj , j = 1, . . . , h}

and
Σ2 := #{p ≤ x | alj (P (p)) = bj , j = 1, . . . , h}.

Then

(1.9) qhΣ1 = x +O(x · x−λ
1 ), qhΣ2 = π(x) +O(π(x) · x−λ

1 ).

The implicit constants in the error terms on the right hand sides of the formulas
(1.9) may depend on P, h, λ.

The deduction of Theorem A from Theorem B is quite straightforward.
One consider the normalized sums

ak(x) :=
1
x

∑

n≤x

(
f(P (n))−M(rN)

D(rN)

)k

,

bk(x) :=
1

π(x)

∑

p≤x

(
f(P (p))−M(rN)

D(rN)

)k

,

ck(x) :=
1
x

∑

n≤xr

(
f(n)−M(rN)

D(rN)

)k

.

From Lemma 1 it follows almost immediately that ak(x) − ck(x) →
→ 0, bk(x)− ck(x) → 0 (x →∞), for every fixed k = 0, 1, 2 . . ..

By standard method of probability theory for sums of independent random
variables one can obtain that

lim
x→∞

ck =
∫

xkdΦ,

whence by using the Frechet-Shohat theorem (see in Galambos [4]) Theorem
A immediately follows.

By using the method of proof of Theorem B one can obtain the following
assertion which we quote as
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Lemma 3. Let N =
[

log x
log q

]
, λ > 0 be an arbitrary constant, h ∈ N. Then

sup
N1/3≤l1<...<lh≤N−N1/3

sup
b1,...,bh∈Aq

∣∣∣∣∣
qh

π(x/B)
#{Bp ≤ x | εlj (Bp) = bj ,

j = 1, . . . h} − 1

∣∣∣∣∣≤ cπ
( x

B

)
x−λ

1

uniformly as 1 ≤ B ≤ x1/3, (B, q) = 1.

Hence by using the argument which was applied getting by Theorem A
from Theorem B, we obtain

Theorem 2. Let f ∈ Aq, sup
j∈N, b∈Aq

|f(bqj)| < c. N =
[

log x
log q

]
. Assume

that D(N)/N1/3 →∞. Let 1 ≤ B < x1/3, (B, q) = 1. Then

sup
B<x1/3
(B,q)=1

sup
y∈[−∞,∞]

∣∣∣∣∣
1

π
(

x
B

)#
{

p < x/B
∣∣∣ f(Bp)−M(N)

D(N)
< y

}
− Φ(y)

∣∣∣∣∣ ≤ τ(x),

where τ(x) → 0 as x →∞.

According to a theorem of H. Delange [5] f ∈ Aq has a limit distribution,
if and only if

(1.10)
∞∑

j=0

∑

a∈Aq

f(aqj) is convergent and

(1.11)
∞∑

j=0

∑

a∈Aq

f2(aqj) < ∞.

Kátai proved that f ∈ Aq has a limit distribution on the set of primes,
if and only if (1.10) and (1.11) hold true. The sufficiency of the conditions
has been proved by J. Coquet and I. Kátai, independently, earlier. Here we
formulate now without proof

Theorem 3. Let f ∈ Aq, assume that (1.10), (1.11) hold. Let ξ0, ξ1, ξ2, . . .

be independent random variables, P (ξj = f(bqj)) = 1/q if j ≥ 1, b ∈
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∈ Aq, P (ξ0 = f(b)) = 1/ϕ(q) if b ∈ Aq, (b, q) = 1. Let θ :=
∞∑

l=0

ξl. Then

the right hand side is almost surely convergent. Let F (y) := P (θ < y). Let
1 ≤ B < x1/3, (B, q) = 1,

Fx,B(y) :=
1

π
(

x
B

)#
{

p <
x

B
: f(pB) < y

}
.

Then
max

1≤B<x1/3

(B,q)=1

sup
y
|Fx,B(y)− F (y)| ≤ δx,

δx → 0 (x →∞).

2. Let k = k(x) ∈ N be a function of x, such that 1 ≤ k ≤ δ(x)x2, where
δ(x) → 0 monotonically, as x →∞. It is known, that

(2.1) πk(x) = (1 + ox(1))
x

x1

xk−1
2

(k − 1)!
,

(2.2) Nk(x) = (1 + ox(1))
x

x1

xk−1
2

(k − 1)!

uniformly as 1 ≤ k ≤ δ(x)x2. Let jx := [1, δ(x)x2]. Furthermore, it is clear
that uniformly in k ∈ Jx

(2.3)
1

πk(x)
#{n ≤ x | n ∈ Pk, (n, q) > 1} → 0 (x →∞),

(2.4)
1

Nk(x)
#{n ≤ x | n ∈ Nk, (n, q) > 1} → 0 (x →∞).

Let us write every n ∈ Pk (and n ∈ Nk) as n = πp, where p = P (n).

Lemma 4. Assume that δ(x) → 0 (x → ∞), monotonically. Then there
exists some suitable ε(x) → 0 (x →∞) monotonically such that

(2.5)
1

πk(x)
#{n ≤ x | n ∈ Pk, π > pε(x)} → 0 (x →∞),
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and

(2.6)
1

Nk(x)
#{n ≤ x | n ∈ Nk, π > pε(x)} → 0 (x →∞),

uniformly as k ∈ Jx.

Proof of Lemma 4. The case k = 1, 2 is clear. We assume that k ≥ 3.
From (2.1), (2.2) one can deduce easily that

1
πk(x)

#{n ∈ Pk, n ≤ x, n 6= square free} → 0,

1
Nk(x)

#{n ∈ Nk, n ≤ x, n 6= square free} → 0,

as x →∞ uniformly in k ∈ Jx. Consequently it is enough to prove (2.5).

Let y ∈ [
√

x, x], p ∈ P, p < x1/4,

T = T (y, p) :=
∑
n≤y

n∈Pk−1
P (n)<p

log n.

Then

T =
∑
t∈P
t<p

(log tα)πk−2

( y

tα

)
<

cy

x1

xk−3
2

(k − 3)!

∑
t<p

tα<x1/4

(log tα)
tα

+O(yx−1/5) ≤

≤ cy

x1

xk−3
2

(k − 3)!
log p +O(yx−1/5),

whence we obtain that

(2.7) #{n ≤ y, n ∈ Pk−1, P (n) < p} ≤ cy

x2
1

xk−3
2

(k − 3)!
log p +O(yx−1/5).

Let ε > 0 be fixed. We shall estimate those n = πp ∈ Pk, for which n ≤ x,

π > pε(x). We can drop the integers (Pk 3) n up to x
x1

. If n ∈
[

x
x1

, x
]

then

x ≥ pπ > p1+ε, and so p ≤ x
1

1+ε . Let us count first those n ∈ Pk for which
p ≤ x%, where % is a small positive number. As we observed we may assume
that n = squarefree.
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From (2.7) we obtain that

#{n ≤ x, n ∈ Pk, P (n) ≤ x%, n = squarefree} ≤

≤
∑

p≤x%

#
{

m ≤ x

p
, m ∈ Pk−1, P (m) < p

}
≤

≤cx

x2
1

xk−3
2

(k − 3)!

∑
p<x%

log p

p
+O(x4/5x2) ≤

≤c%
x

x1

xk−3
2

(k − 3)!
+O(x4/5x2).

Let n = πp ∈ Pk, π > pε, p > x%. Then xε% ≤ pε < π < x1−%, and

(2.8)

#{n = πp ∈ Pk, n ≤ x, xε% < π < x1−%} ≤ cxxk−2
2

(k − 2)!

∑
π∈Pk−1

π∈[xε%,x1−%]

1
π log x

π

.

Let U0 := x1−%, Uj := 2−jU0 (j = 0, 1, . . . , j0), where j0 is the smallest integer
for which Uj0 < xε%. To estimate the sum on the right hand side of (2.8) we
subdivide it into subsums

∑
π∈[Uj+1,Uj ]

. We have

∑

π∈[Uj+1,Uj ]

1
π log x

n

≤ 1
Uj+1 log x

Uj

πk−1(Uj) ≤ c

(log Uj) log x%2j

xk−2
2

(k − 2)!
.

Since

(log Uj) log x%2j = {(1− %)x1 − j log 2}{%x1 + j log 2} =

= [x1 − (%x1 + j log 2)](%x1 + j log 2)

and
%x1 ≤ %x1 + j log 2 ≤ %x1 + j0 log 2 ≤ (1− ε%)x1 − log 2,

furthermore j0 log 2 < (1− %− ε%)x1, after some computation we obtain that

j0∑

j=0

1
[x1 − (%x1 + j log 2)][%x1 + j log 2]

≤ c log 1/%

x1
,
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whence

#{n ≤ x, n = πp ∈ Pk, xε% < π < x1−%, n = squarefree} ≤ cx log 1/%

x1

xk−2
2

(k − 2)!
.

Collecting our inequalities Lemma 4 follows. By using Lemma 4, further-
more Theorem 2 we shall obtain

Theorem 4. Let f ∈ Aq, k ∈ Jx, and sup
j=1,2,...

b∈Aq

|f(bqj)| < c. Let N = Nx =

=
[

log x
log q

]
. Assume that D(n)/N1/3 →∞. Then

sup
k∈Jx

sup
y∈R

∣∣∣∣
1

πk(x)
#{n ≤ x, n ∈ Pk

∣∣∣ f(n)−M(N)
D(N)

< y} − Φ(y)
∣∣∣∣ → 0

as x →∞, and

sup
k∈Jx

sup
y∈R

∣∣∣∣
1

Nk(x)
#{n ≤ x, n ∈ Nk

∣∣∣ f(n)−M(N)
D(N)

< y} − Φ(y)
∣∣∣∣ → 0

as x →∞.

Theorem 5. Let f ∈ Ak, and assume that (1.10), (1.11) hold. Let k ∈ Jx,

H(k)
x (y) :=

1
πk(x)

#{n < x, n ∈ Pk, f(n) < y},

G(k)
x (y) :=

1
Nk(x)

#{n < x, n ∈ Nk, f(n) < y}.

Let F(y) be defined as in Theorem 3. Then

lim
x→∞

sup
k∈Jx

|H(k)
x − F (y)| = 0,

lim
x→∞

sup
k∈Jx

|G(k)
x − F (y)| = 0

if y is a continuity point of F.
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