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SOME REMARKS ON SETS OF UNIQUENESS
FOR

ADDITIVE AND MULTIPLICATIVE FUNCTIONS

J. Fehér (Pécs, Hungary)
I. Kátai (Budapest, Hungary)

Dedicated to the memory of Professor M.V. Subbarao

Abstract. The multiplicative group generated by {ϕ(n) | n ∈ N} is

investigated, where ϕ is a quadratic polynomial.

1. This paper is a continuation of our paper [1]. Let Qx be the
multiplicative group of positive rationals. If A is a subset in Qx, then let
〈A〉 be the smallest subgroup of Qx which contains the elements of A, i.e. 〈A〉
is the set of the elements α = aε1

1 . . . aεr
r , where aj run over the elements of A,

and ε1, ε2, . . . εr ∈ {−1, 1}.
Let B be a set of positive integers, let us write its elements bi in growing

order: b1 < b2 < . . .. Let P(B) be the set of the prime divisors of B, i.e. a
prime p belongs to P(B) if p|bj holds for at least one j.

The following assertion is clear: 〈B〉 is a subgroup in 〈P(B)〉.
Let B be the whole set of the primes. For some p ∈ P(B) let ν(p) be the

smallest k for which p | bk.

Lemma 1. Assume that bν(p) < p2 holds for every p ∈ P(B), p ≥ Y .
Then every r ∈ 〈P(B)〉 can be written in the form r = ρ ·η, where η ∈ 〈B〉, and
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all the prime factors of the nominator and denominator of ρ are less than Y
(and they clearly belong to P(B)).

The assertion is quite obvious, it is used several places (see Elliott [2], or
[1]).

Let

(1.1) ϕ(x) = ax2 + bx + c ∈ Z[x], a > 0.

We can write

4aϕ(x) = (2ax + b)2 −D, D = b2 − 4ac.

Assume that D 6= 0. Let

(1.2) Φ := {ϕ(n) | n ∈ N} \ {0},

(1.3) E1 :=
{

p | p ∈ P,

(D
p

)
= 1

}
, E2 = {p | p ∈ P, p | D}.

Let K = max{2, a, |D|}.
Theorem 1. Let a = 1, 2, 3, 4. Then 〈Φ〉 is a subgroup in 〈E2〉 ⊗ 〈ρ2〉 and

the factor group 〈E1〉 ⊗ 〈E2〉 | 〈Φ〉 is finite.

Proof. Let p > K,
(
D
p

)
= 1. Then the congruence y2 ≡ D (mod p) is

solvable, for its smallest positive solution y0 we have: 0 < y0 ≤ p− 1
2

, y0 ≥
≥

√
|D|. Among the numbers yt = y0 + tp (t = −a, . . . , a − 1) there exists

such one for which yt ≡ b (mod 2a), furthermore

−ap +
√
|D| ≤ yt ≤ (a− 1)p +

p− 1
2

.

Let n0 be defined as n0 =
yt − b

2a
. Let us observe that

(1.4) 4apH := 4aϕ(n0) = y2
t −D

(H is an integer defined by (1.4)). Then

(0 <) 4apH ≤ (ap−
√
|D|)2 −D = a2p2 − 2a

√
|D|p + (|D| − D).
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Since 4aϕ(n0) is a multiple of p (> 2|D|), therefore

(1.5) 4apH ≤ a2p2 − 2a
√
|D|p + (|D| − D).

Hence 0 < H < p follows, if D > 0, a = 1, 2, 3, 4. Let D = |D|. From (1.5) we
get

(1.6) H ≤ ap

4
−
√D
2

+
2D
4ap

.

The right hand side of (1.6) is less that p. This is clear, if a ≤ 3. In the

case a = 4 we use the assumption p > K, whence
2D
4ap

−
√D
2

< 0 follows. Now

the theorem directly follows from Lemma 1.

2. We hope that Theorem 1 remains valid for a ≥ 5 as well. We can prove
the following partial result.

Theorem 2. Let Φ = {ϕ(n) := 5n2 + 1, n ∈ N}. Then P(Φ) = set of 2

and all those odd primes q for which
(
−5
q

)
= 1. Furthermore, every r ∈ 〈P(Φ)〉

can be written as

(2.1) r = ρη,

where η ∈ 〈Φ〉 and ρ = 1 or 2. Finally, 2 6∈ 〈Φ〉.
Proof. First we prove that 2 6∈ 〈Φ〉. Let us assume indirectly that

ϕ(n1) . . . ϕ(ns) = 2ϕ(m1) . . . ϕ(mh). Since ϕ(mj), ϕ(ne) are ≡ 1 (mod 5), this
is obvious.

We have ϕ(1) = 6, ϕ(2) = 3 · 7, ϕ(8) = 3 · 107, ϕ(12) = 7 · 107, we have

ϕ(2)
ϕ(8)
ϕ(12)

= 32 ∈ 〈Φ〉, ϕ(1)2

32
= 22 ∈ 〈Φ〉.

Let p ∈ P(Φ), p > 6, and assume that every prime q ∈ P(Φ), q < p can
be written as ρη, where ρ = 1 or 2, η ∈ 〈Φ〉.

We have to prove that the same is true for p as well.
Let np be the smallest positive integer for which 5n2

p+1 ≡ 0 (mod p). Then

np ≤ p− 1
2

. Let 5n2
p +1 = Ap ·p. If Ap is not prime, then all its prime divisors

are less than p, consequently we can use the inductional hypothesis. We may
assume that Ap = prime = Q ≥ p. In this case 6 | np. Let us consider ϕ(p−np).
Since (p− np, 6) = 1, therefore 6 | ϕ(p− np) = 6Rp. Then 6Rp ≤ 5p2, and so
R < p, the prime factors of R can be written in the form (2.1), consequently
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p can be written in the form (2.1) as well. Hence our theorem immediately
follows.

3. We have

3.1. Theorem 3. Let Φ = {ϕ(n) = 4n2 + 1, n ∈ N}. Then

P(Φ) = {p ∈ P | p ≡ 1 (mod 4)} and 〈P(Φ)〉 = 〈Φ〉.

Proof. It is well-known that p ∈ P(Φ) if and only if p 6= 2 and
(
−1
p

)
= 1,

i.e. if p ≡ 1 (mod 4). We have ϕ(1) = 5 ∈ 〈Φ〉. Let p ≡ 1 (mod 4), p > 5,
and assume that every q ∈ P, q ≡ 1 (mod 4), q < p belongs to 〈Φ〉. Let y0

be the smallest positive solution of y2 + 1 ≡ 0 (mod p). Then y0 ∈
[
1,

p− 1
2

]
,

which is either even, or odd, and in the last case p− y0 is even. Let 2n = y0 or
p− y0. Then 1 ≤ 2n ≤ p− 1, pH = ϕ(n) ≤ p2 − 2p + 2, whence H < p, and so

H ∈ 〈Φ〉, i.e. p =
ϕ(n)
H

∈ 〈Φ〉. By using induction the proof is completed.

3.2. Theorem 4. Let Φ = {ϕ(n) = 3n2 + 1, n ∈ N}. Then P(Φ) =
= {2} ∪ P1, where P1 = {p | p ≡ 1 (mod 3)}. Then 2 6∈ 〈Φ〉, and

〈Φ〉 = 〈{22} ∪ P1〉.

Proof. If 2 | ϕ(n), then 22‖ϕ(n). If γ ∈ Qx and

γ =
ϕ(n1) . . . ϕ(nk)
ϕ(r1) . . . ϕ(rs)

,

then 2µ‖γ implies that µ is even, and so 2 6∈ 〈Φ〉. Furthermore, ϕ(1) = 22 ∈ 〈Φ〉.
Since ϕ(2) = 13, ϕ(3) = 28, ϕ(4) = 49, ϕ(5) = 4 ·19, we obtain that 7, 13, 19 ∈
∈ 〈Φ〉. Let p ≡ 1 (mod 3), p > 20, and assume that q ∈ 〈Φ〉 if q < p, q ∈ P, q ≡
≡ 1 (mod 3).

Let κ(y) := y2 + 3. Then 3ϕ(n) = (3n)2 + 3 = κ(3n). Let y0 be the
smallest positive integer for which κ(y) ≡ 0 (mod p) holds. We define n0 as
follows.

If 3|y0, then n0 :=
y0

3
. If y0 ≡ 1 (mod 3), then let n0 =

p− y0

3
, if y0 ≡

≡ −1 (mod 3), then n0 =
y0 + p

3
. In the first and second case 3n0 ∈ [1, p−1], in

the last case 3n0 ∈
[
1,

3
2
p− 1

2

]
. Thus 1 ≤ 3ϕ(n0) = κ(3n0) <

(
3
2
p− 1

2

)2

+3.

Let us write ϕ(n0) as pH. Then
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H =
3ϕ(n0)

3p
<

1
3p

{
9
4
p2 − 3

2
p +

13
4

}
,

and the right hand side is less than p if p > 20. Arguing as earlier, the theorem
follows.

4. We have
Lemma 2. Let ϕ(n) := n2 + A, A ∈ N, R ∈ N, β(n) := Rϕ(n). Let

Φ := {ϕ(n) | n ∈ N}, B := {β(n) | n ∈ N}. Then R ∈ 〈B〉, consequently
γ ∈ 〈B〉 if and only if γ = Rνσ, ν ∈ Z and σ ∈ 〈Φ〉.

Proof. This is clear. Since ϕ(n + ϕ(n)) = ϕ(n)ϕ(n + 1), therefore

R =
β(n)β(n + 1)
β(n + ϕ(n))

∈ 〈B〉.

The further part of the assertion is straightforward.
By using Lemma 2 and our result in [1] we can count 〈2n2 + 2a | n ∈ N〉

from 〈n2 + a | n ∈ N〉.
5. Our next assertion is quite obvious. Let a > 0, 0 < b, (a, b) = 1,

fb(x) = ax + b, Sb := 〈fb(n) | n ∈ N0. Since (aν + 1)fb(n0) ≡ b (mod a) for
every ν = 0, 1, 2, . . . , therefore aν = 1 ∈ Sb, and so S1 ⊆ Sb. Furthermore,
b ∈ Sb, and so bj ∈ Sb. Let ν0 be the smallest positive integer for which
bν0 ≡ (mod a).

Theorem 5. We have

S1 = {r ∈ Qx | r ≡ 1 (mod a)},(5.1)

Sb = 〈1, b, . . . , bν0−1〉 ⊗ S1.(5.2)

Proof. Let r ∈ S1. Then r =
k∏

j=1

f1(nj)εj , whence from f1(nj) ≡

≡ 1 (mod a) we obtain that r ≡ 1 (mod a). Other hand, let r =
A

B
≡ 1 (mod a),

i.e. A,B ∈ N and A ≡ B (mod a). Let B = A + ha. Then the
diophantine equation A[an1 + 1] = B[an2 + 1] is solvable, since it is equivalent
to An1 −Bn2 = h. Thus (5.1) is true.

To prove (5.2) we observe that 〈1, k, . . . , bν0−1〉 ⊗ S1 ⊆ Sb. Other hand, if
ρ ∈ Sb, then ρ = fb(m1)ε1 . . . fb(mt)εt , and so

(γ :=)(fb(m1)b−1)ε1 . . . (fb(mt)b−1)εt = b−(ε1+...+εt)ρ.
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Since fb(mj)b−1 ≡ 1 (mod a), therefore γ ≡ 1 (mod a), γ ∈ S1, ρ =
= b(ε1...+εt)γ, γ ∈ S1. The proof is completed.

Remark. We proved that every r ∈ Qx, r ≡ 1 (mod a) can be written in

the form r =
f1(n1)
f1(n2)

with suitable chosen n1, n2 ∈ N0.

6. Let α > 0 irrational,

f(n) = [nα] (n ∈ N).

Assertion: 〈{f(n) | n ∈ N〉 = Qx.

Proof. Let m ∈ N. Let Θn = {nα}, so nα = f(n) + Θn is everywhere
dense in [0, 1), therefore there exists an n for which 0 < Θn < 1/m. For such
an n we have nα·m = m·f(n)+mΘn, 0 < mΘn < 1, and so [nmα] = f(mn) =

= m · f(n), i.e. m =
f(mn)
f(n)

. Thus m ∈ 〈{f(n) | n ∈ N}〉, and so the assertion

is true.

Theorem 6. Let α > 0 be an irrational number, P2 be the set of those
natural numbers which are either primes or products of two primes, i.e. P2 =
= {n = p or n = pq, p, q ∈ P}.

Let H := {f(n) | n ∈ P2}. Then 〈H〉 = Qx.

Proof. Since {pα} (p ∈ P) is dense in [0, 1), therefore there exists such a
p for which 0 < Θp < 1/q. Here Θn = {nα}.

We have pα = f(p) + Θp, pqα = qf(p) + qΘp, 0 < qΘp < 1, therefore
[pqα] = f(pq) = qf(p), and so q ∈ 〈H〉. Since q ∈ P is arbitrary, therefore the
thorem is true.

Conjecture 1. If α is a positive irrational number, then

〈{[pα] | p ∈ P}〉 = Qx.

7. Final remarks.

1. Let f(n) := [αnk], where α > 0 is an irrational number, k > 0 is an
integer.
Then a) P({f(n) | n ∈ N}) = P and b) P({f(p) | p ∈ P}) = P.

These assertions are clear from the known theorems that sequences
f(n) (n ∈ N), as well as f(p) (p ∈ P) are mod 1 uniformly distributed.

2. Let q1 < q2 < . . . be a sequence of primes for which
∞∑

j=1

1/qj < ∞. Let

R := {q1 < q2 < . . .}, and B be the whole set of positive integers m for
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which (m, qj) = 1 (j = 1, 2, . . .). Then the asymptotic density of B is

positive, namely
∞∏

j=1

(1− 1/qj).

3. What can we assume for D (⊆ N) to satisfy P(D) = N? Remark 2 shows
the condition that D has positive density is not sufficient, while there exist
sets satisfying P(D) = N which are relatively rare (Remark 1).

Conjecture 2. Let α > 0 be an irrational number. Then

〈[αn2], n ∈ N = Qx,

and
〈[αp2], p ∈ P〉 = Qx.
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