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A SIMPLY–OBTAINED UPPER BOUND FOR q(n)

N. Robbins (San Francisco, CA, USA)

Dedicated to the memory of Professor M.V. Subbarao

Abstract. Using simple analytic methods, we obtain an upper bound for

q(n), the number of partitions of the natural number n into distinct parts

(or into odd parts).

1. Introduction

If n is a natural number, let p(n), q(n) denote respectively the number of
unrestricted partitions of n, the number of partitions of n into distinct parts
(or into odd parts). Using the circle method, G.H. Hardy and S. Ramanujan
[3] obtained the asymptotic formula

(1) p(n) ∼ 1
n
√

48
exp

(
π

√
2n

3

)
.

By similar methods, P. Hagis [2] obtained the following asymptotic formula for
q(n):

(2) q(n) ∼ 18
1
4 (24n + 1)−

3
4 exp

( π

12
√

48n + 2
)

.

As is mentioned in [1] (Chapter 14), using more elementary methods, van Lint
[4] obtained the following upper bound for p(n):

(3) p(n) <
π√

6(n− 1)
exp

(
π

√
2n

3

)
.
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The purpose of this note is to obtain, in similar fashion, an upper bound for
q(n), namely

(4) q(n) <
π√

12(n− 1)
exp

(
π2

12
+ π

√
n− 1
3

)
.

2. The main result

Theorem.

q(n) <
π√

12(n− 1)
exp

(
π2

12
+ π

√
n− 1
3

)
.

Proof. We begin with the generating function

∑

n≥0

q(n)xn = F (x) =
∏

n≥1

(1− x2n−1)−1,

where x is a real variable and 0 < x < 1. Taking logarithms, we have

log F (x) = −
∑

n≥1

log(1− x2n−1) =
∑

n≥1

∑

m≥1

(x2n−1)m

m
=

∑

m≥1

1
m

∑

n≥1

(x2n−1)m =
∑

m≥1

1
m

(
xm

1− x2m

)
=

∑

m≥1

1
m

(
xm

1− xm

)(
1

1 + xm

)
.

Recall from the proof of (3) that for 0 < x < 1, we have

1
m

(
xm

1− xm

)
<

1
m2

(
x

1− x

)
.

Therefore we have

log F (x) <
∑

m≥1

1
m2

(
x

1− x

)(
1

1 + xm

)
<

∑

m≥1

1
m2

(
x

1− x

)(
1

1 + x

)
,
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that is

log F (x) <
∑

m≥1

1
m2

(
x

1− x2

)
=

x

1− x2

∑

m≥1

1
m2

=
π2

6

(
x

1− x2

)
.

Also, we have

q(n)
∞∑

k=n

xk ≤
∞∑

m=n

q(m)xm < F (x),

so that

q(n)
(

xn

1− x

)
< F (x).

This implies

log q(n) < log(1− x) + n log
1
x

+
π2

6

(
x

1− x2

)
.

Let x = (1 + t)−1, so that 1 − x = xt and 1
x = 1 + t, where 0 ≤ t < ∞. Then

we have

log q(n) < log t + log x + n log(1 + t) +
π2

6

(
t + 1

(t + 1)2 − 1

)
,

that is

log q(n) < log t + (n− 1) log(1 + t) +
π2

6

(
t + 1

(t + 1)2 − 1

)
,

which implies

log q(n) < log t + (n− 1)t +
π2

6

(
t + 1

(t + 1)2 − 1

)
.

Let v = (t + 1)2 − 1, so that t + 1 =
√

1 + v, where 0 ≤ v < ∞. Now

(1 + v)
1
2 < 1 +

v

2
,

so we have

log q(n) < log
v

2
+ (n− 1)

v

2
+

π2

6

(
1 + v

2

v

)
.
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Let

g(v) = log
v

2
+ (n− 1)

v

2
+

π2

6

(
1 + v

2

v

)
.

Then

g′(v) =
1
v

+
n− 1

2
− π2

6v2
=

3(n− 1)v2 + 6v − π2

6v2
.

Note that g′(v) = 0 when

v = v0 =
−6 +

√
36 + 12(n− 1)π2

6(n− 1)
.

Furthermore, g′(v) < 0 for v < v0 and g′(v) > 0 for v > v0. Therefore g(v)
must have a minimum value when at v = v0. Let

v1 =
π

3
√

n− 1
.

Then

log q(n) < g(v1) = log
π√

12(n− 1)
+

n− 1
2

(
π

3
√

n− 1
+

π2

6

)
.

The conclusion now follows.
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