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MACMAHON’S ANALYSIS AND
A NEW PARTITION IDENTITY

A.K. Agarwal and S. Anand

(Chandigarh, India)

Dedicated to the memory of Professor M.V. Subbarao

Abstract. We prove a new 3-way partition identity analytically as well

as combinatorially. In the analytical proof we use MacMahon’s partition

analysis. The main result is further extended by using n-reflected lattice

paths.

1. Introduction, definitions and the main result

Partition identities play an important role in many areas like number
theory, combinatorics, Lie theory, particle physics and statistical mechanics.
The first partition identity which states ”the number of partitions of a positive
integer into odd parts equals the number of its partitions into distinct parts” is
due to Euler [6, Theorem 344]. Other famous partition identities are Rogers-
Ramanujan-MacMahon identities [6, Theorems 364-365], Schur’s identity [8],
Göllnitz-Gordon identities [4,5] and Agarwal-Andrews identities [2]. In Section
2 we shall prove analytically as well as combinatorially a 3-way partition
identity and extend our main result in Section 3 by using n-reflected lattice
paths defined by Agarwal and Andrews in [1]. First we recall the following
definitions which will be used in the sequel.
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Definition 1. A partition of a positive integer n is a representation of n
as a sum of positive integers, called parts (or summands) of the partition. The
order of parts is irrelevant.

Definition 2. In a graphical representation (called the Ferrers graph) a
partition is represented by horizontal rows of dots (aligned to the left). The
number of dots in each row indicates the part size. For example the graph
6 + 4 + 2 is

o o o o o o
o o o o
o o

The largest square of nodes contained in the graph is called the Durfee
Square. The partition obtained by reading a Ferrers graph by columns is called
the conjugate (of the given partition); the conjugate of 6 + 4 + 2 is 3 + 3 + 2 +
+2+1+1. A partition is called self-conjugate if it is identical with its conjugate.
Thus, the lone self-conjugate partition of 6 is 3 + 2 + 1.

Definition 3. Ordered partitions are called compositions.

For example there are five partitions, viz: 4, 3+1, 2+2, 2+1+1, 1+1+1+1
and eight compositions, viz: 4, 3+1, 1+3, 2+2, 2+1+1, 1+2+1, 1+1+2,
1+1+1+1 of 4.

In our next section we shall prove the following

Theorem 1. For 2 ≤ k ≤ n let Ak(n) denote the number of partitions of
the form a1 + a2 + . . . + ak + . . . + at such that a1 > a2 > . . . > ak > . . . > at,
a1 = n, a1, a2, . . . , ak are consecutive integers and ak − ak+1 ≥ 2 if k 6= n. Let
Bk denote the number of compositions of n of the form bs + bs−1 + . . . + b1,
where b1 = b2 = . . . = bk−1 = 1, bk 6= 1 if k 6= n. Let Ck(n) denote the number
of self-conjugate partitions with largest part n and least part k. Then

(1.1) Ak(n) = Bk(n) = Ck(n) for all 2 ≤ k ≤ n.

Example. For n = 4 and k = 2 we have

A2(4) = 2, the relevant partitions are 4+3+1, 4+3.

B2(4) = 2, the relevant compositions are 1+2+1, 3+1.

C2(4) = 2, the relevant self-conjugate partitions are 4+4+3+2, 4+4+2+2.

2. First proof of Theorem 1 (analytical)

Obviously,
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(2.1) An(n) = Bn(n) = Cn(n) = 1,

since the lone partition enumerated by An(n) is n + (n− 1) + . . . + 2 + 1, the
lone composition enumerated by Bn(n) is 1 + 1 + 1 + . . . + 1 (n times) and
the only self-conjugate partition enumerated by Cn(n) is the partition whose
Ferrers graph is Durfee Square of size n.

We shall prove the theorem for 2 ≤ k < n. Let Am
k (n) denote the number

of partitions enumerated by Ak(n) into m parts and let Am
k (n, ν) denote the

number of partitions of ν enumerated by Am
k (n). Then by using MacMahon’s

partition analysis we have

(2.2)
∑
n,ν

Am
k (n, ν)znqν =

= Ω≥
∑

n1,n2,...,nm−k+1≥0

zn1qkn1− k(k−1)
2 +n2+...+nm−k+1λ

n1−n2−(k+1)
1 ·

·λn2−n3−1
2 . . . λ

nm−k−nn−k+1−1
m−k λ

nm−k+1−1
m−k+1 ,

where the variables λ1, λ2, . . . , λm−k+1 handle the inequalities satisfied by nj

while the nj themselves become free. The linear operator Ω≥ when applied to
the Laurent series in λ1, λ2, . . . , λm−k+1 annihilates terms with any negative
exponents and in the remaining terms sets λi = 1.

(2.2) can be written as
∑
n,ν

Am
k (n, ν)znqν =

= q−(k
2)Ω≥

∑

n1,n2,...,nm−k+1≥0

(zqkλ1)n1

(
q
λ2

λ1

)n2

. . .

(
q

λm−k

λm−k−1

)nm−k

·

·
(

q
λm−k+1

λm−k

)nm−k+1

λ
−(k+1)
1 λ−1

2 . . . λ−1
m−kλ−1

m−k+1 =

= q−(k
2)Ω≥

λ
−(k+1)
1 λ−1

2 λ−1
3 . . . λ−1

m−kλ−1
m−k+1

(1− zqkλ1)
(
1− q λ2

λ1

)
. . .

(
1− q

λm−k

λm−k−1

)(
1− q

λm−k+1
λm−k

) .

Now applying Lemma 11.2.3 [3, p.559], which states (for nonnegative α)

Ω≥
λ−α

(1− λx)
(
1− y

λ

) =
xα

(1− x)(1− xy)
,
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to each λ1, λ2, . . . , λm−k+1, we obtain

(2.3)
∑
n,ν

Am
k (n, ν)znqν =

zm+1q(
m+1

2 )+k

(1− zqk)(1− zqk+1) . . . (1− zqm)
.

Setting q = 1 in (2.3) we get

(2.4)
∑

n

Am
k (n)zn =

zm+1

(1− z)m−k+1
.

Next, let Bm
k (n) denote the number of compositions enumerated by Bk(n) into

m parts. Following Riordan [7, p.125] we see that

∑
n

Bm
k (n)zn = zk−1(z + z2 + . . .)m−k+1 − zk(z + z2 + . . .)m−k =

(2.5) =
zm+1

(1− z)m−k+1
.

Finally, let Cm
k (n) denote the number of self-conjugate partitions enumerated

by Ck(n) with Durfee Square of size m and let Cm
k (n,N) denote the number

of self-conjugate partitions of N enumerated by Cm
k (n). Then, following the

standard technique of partition theory, we see that

(2.6)
∑

n,N

Cm
k (n,N)znqN =

zm+1qm2+2k

(1− zq2k)(1− zq2k+2) . . . (1− zq2m)
.

Setting q = 1 in (2.6), we obtain

(2.7)
∑

n

Cm
k (n)zn =

zm+1

(1− z)m−k+1
.

A comparison of (2.4), (2.5) and (2.7) leads to the identity

(2.8) Am
k (n) = Bm

k (n) = Cm
k (n).

Summing over m, (2.8) leads to (1.1). This completes the analytical proof of
Theorem 1.
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Remark. For k 6= n (2.4), (2.5) and (2.7) give the explicit formula

(2.9) Am
k (n) = Bm

k (n) = Cm
k (n) =

(
n− k − 1
n−m− 1

)
,

and the generating function
(2.10)

∑
n

Ak(n)qn =
∑

n

Bk(n)qn =
∑

n

Ck(n)qn =
∑

m≥k

zm+1

(1− z)m−k+1
=

zk+1

1− 2z
.

(2.10) gives the explicit formula

(2.11) Ak(n) = Bk(n) = Ck(n) = 2n−k−1.

Second proof of (1.1) (combinatorial). Let Am denote the collection
of partitions enumerated by Am

k (n) and Bm denote the collection of composi-
tions enumerated by Bm

k (n). We first establish a bijection between Am and
Bm. The mapping φ : Am → Bm is

(2.12) φ(π) = am + (am−1 − am) + . . . + (ak−1 − ak) + . . . + (a1 − a2),

where π = a1 + a2 + . . . + am ∈ Am.
The inverse mapping φ−1 : Bm → Am is easily seen to be

(2.13) φ−1(µ) = (b1+b2+ . . .+bm)+(b1+b2+ . . .+bm−1)+ . . .+(b1+b2)+b1,

where µ = b1 + b2 + . . . + bm ∈ Bm.

Remark. The mapping φ holds good between A = ∪
m
Am and B = ∪

m
Bm,

too.

Example. For n = 4, k = 2 we see that
φ(4 + 3 + 1) = 1 + 2 + 1, φ−1(1 + 2 + 1) = 4 + 3 + 1,

φ(4 + 3) = 3 + 1, φ−1(3 + 1) = 4 + 3.

Next, we shall establish a bijection between A and C, where C is the
collection of all self-conjugate partitions enumerated by Ck(n). We first define
a k-bend.

Definition. We call a right bend

. . . . .

.

.

.

.
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a k-bend if the number of dots in the first row and first column are both equal
to k. Thus by 1-bend we mean a single dot . , by 2-bend

. .

.

by a 3-bend
. . .
.
.

etc. Now we define the mapping ψ : A → C by

(2.14) ψ(π) = ν,

where π = a1 + a2 + . . . + at ∈ A and ν ∈ C such that the graph of ν consists
of a1-bend, a2-bend,..., at-bend.

Clearly, the inverse mapping ψ−1 : C → A is given by

(2.15) ψ−1(ν) = b1 + b2 + . . . + bs,

where ν ∈ C such that the graph of ν consists of b1-bend, b2-bend,..., bs-bend.
To illustrate the bijection ψ we consider the case when n = 4, k = 2, we

see that

4 + 3 + 1
ψ
⇀↽

ψ−1

. . . .

. . . .

. . .

. .
(4 +4 +3 +2)

4 + 3
ψ
⇀↽

ψ−1

. . . .

. . . .

. .

. .
(4 +4 +2 +2)

The mapping ψ.φ−1 is clearly a bijection between B and C.

3. n-reflected lattice paths and an extension of Theorem 1

Agarwal and Andrews [1] called a lattice path from (0, 0) to (n, n) n-
reflected if for each (x, y) on the path (n − y, n − x) is also on the path. For
example there are four 2-reflected lattice path, viz.,
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(0, 0), (1, 0), (2, 0), (2, 1), (2, 2);
(0, 0), (1, 0), (1, 1), (2, 1), (2, 2);
(0, 0), (0, 1), (1, 1), (1, 2), (2, 2);
(0, 0), (0, 1), (0, 2), (1, 2), (2, 2).

Here we denote by Dk(n) the number of n-reflected lattice paths such that
(i) the points (n− i, n), 1 ≤ i ≤ n do not lie on the path and (ii) if (k, y) and
(k, y− r) (for some suitable y and r) lie on the path, but (k, y− r−1) does not
lie on the path, then the points (k − j, y − r), 1 ≤ j ≤ k also lie on the path
(but (k + 1, y − r) does not lie on the path).

Example. The two 4-reflected lattice paths enumerated by D2(4) are
(0,0), (1,0), (2,0), (2,1), (3,1), (3,2), (4,2), (4,3), (4,4) (here y = 1, r = 1),
(0,0), (1,0), (2,0), (2,1), (2,2), (3,2), (4,2), (4,3), (4,4) (here y = 2, r = 2).

It was observed in [1] that the n-reflected lattice paths are in one-to-one
correspondence with the self-conjugate partitions with largest part ≤ n. In
this correspondence it is easy to see that the conditions satisfied by the n-
reflected lattice paths enumerated by Dk(n) ⇔ the conditions satisfied by the
self-conjugate partitions enumerated by Ck(n), that is the largest part is n and
the smallest part is k. This leads to the following 4-way extension of Theorem
1:

Theorem 2. For 2 ≤ k ≤ n we have

(3.1) Ak(n) = Bk(n) = Ck(n) = Dk(n).

We note that the lone n-reflected lattice path enumerated by Dn(n) is
(0, 0), (1, 0), (2, 0), ..., (n, 0), (n, 1), (n, 2), ..., (n, n), which corresponds to a self-
conjugate partition whose graph is a Durfee Square of size n.

4. Conclusion

We see that for n > k, if any subset of {1, 2, . . . , n− k − 1} is adjoined to
the set {n− k +1, . . . , n− 1, n}, we get a partition enumerated by Ak(n). This
shows that Ak(n) equals the number of subsets of {1, 2, . . . , n− k− 1} which is
2n−k−1. We conclude by noting that our discussion of the preceding sections
was a natural way to look at the following

Theorem 3. For n ≥ 2

An(n) = Bn(n) = Cn(n) = Dn(n) = 1,
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and for 2 ≤ k < n

Ak(n) = Bk(n) = Ck(n) = Dk(n) = Ek(n) = 2n−k−1,

where Ek(n) denotes the number of subsets of {1, 2, . . . , n− k − 1}.
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