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SOME UNCOUNTABLE HIERARCHIES
OF FORMAL LANGUAGES

G. Lischke (Jena, Germany)

Abstract. We consider several types of similarity relationships between

languages, and for an arbitrary language class we define appropriate simi-

larity classes. We show that for any of the classes of regular, linear, context-

free, context-sensitive, recursive and recursively enumerable languages the

appropriate similarity classes form an uncountable hierarchy of order type

ω + λ + 2. We also show that there exist linear languages which are not

δ-similar to any regular language for any δ < 1
2 and we discuss this problem

for δ ≥ 1
2 .

1. Introduction and main result

Starting with the concept of partial words, which was introduced by Berstel
and Boasson [1] and was motivated by molecular biology of nucleic acids in
[7], we introduced punctured languages and studied their restorations. We
saw that the restoration classes of language classes coincide with similarity
classes corresponding to several similarity types. Ignoring the relationship with
restoration classes and their motivation here we restrict ourselves to similarity
classes and their hierarchies. If L is a class of languages over some fixed
nontrivial alphabet X, k is a natural number, and δ is a real number between
0 and 1, we define the similarity classes Lk and Lδ. Further we have the class
Llength. Let now L be one of the following classes: the class REG of all regular
languages, the class LIN of all linear languages, the class CF of all context-free
languages, the class CS of all context-sensitive languages, the class REC of all
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recursive or decidable languages, or the class RE of all recursively enumerable
languages (all over the alphabet X). Then for the natural numbers k and k′

and for the real numbers δ and δ′, such that 0 < k < k′ and 0 < δ < δ′ ≤ 1
2 ,

L = L0 ⊂ Lk ⊂ Lk′ ⊂ Lδ ⊂ Lδ′ ⊂ Llength

holds. Thus each of the language classes REG, LIN , CF , CS, REC and RE
creates a hierarchy of order type ω + λ + 2. Because in each case Llength is
strictly contained in the class P(X∗) of all languages, we actually have the
order type ω + λ + 3.

We shall give in Section 2 our basic definitions and explain what we mean
by ind-similarity for some index ind. In Section 3 we prove some lemmata from
which we can conclude our main result, it is given in Section 4. Some further
related results and problems are discussed in Section 5.

2. Preliminaries and definitions

Even though the following is standard in the literature (see, e.g. the
textbooks [4, 5]) we briefly recall the most important notions. For the whole of
our paper let X be a fixed finite nonempty alphabet. Furthermore, we assume
that X is a nontrivial alphabet, which means that it has at least two symbols
(in the other case all of our results become trivial or meaningless).

N = {0, 1, 2, 3, . . .} denotes the set of all natural numbers. X∗ is the free
monoid generated by X or the set of all words over X. The empty word we
denote by e, and X+ =Df X∗ \ {e}. A (formal) language (over X) is a subset
L of X∗, L ⊆ X∗. The symbol ⊂ between sets denotes strict inclusion. P(M)
is the set of all subsets of a set M , and |M | denotes the cardinality of M .

For a word w ∈ X∗, |w| denotes the length of w, and for 1 ≤ i ≤ |w|, w[i]
is the letter at the i-th position of w. For x ∈ X, |w|x =Df |{i : w[i] = x}| is
the number of occurences of the letter x in the word w.

For k ∈ N, wk denotes the concatenation of k copies of the word w. w∗

denotes the set {wk : k ∈ N}, and w∗q the set {wkq : k ∈ N}.
Let L be a class of languages (over our fixed alphabet X). For some index

ind we define Lind =Df {L : ∃L′(L′ ∈ L ∧ L ∼
ind
L′)}.

The index-similarity ∼
ind

for languages is defined in the following way based

on the index-similarity between words

L ∼
ind

L′ =Df ∀u∃v(u ∈ L → v ∈ L′ ∧u ∼
ind

v)∧∀v∃u(v ∈ L′ → u ∈ L∧u ∼
ind

v).
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The index ind may be a natural number k, a real number δ between 0
and 1, or the word length. Finally, ∼

ind
between words is defined based on the

Hamming distance h known from coding theory [3]: for two words u and v of
the same length let

h(u, v) =Df |{i : 1 ≤ i ≤ |u| ∧ u[i] 6= v[i]}|.

For k ∈ N, two words u and v are called k-similar, denoted by u∼
k

v, if |u| = |v|
and h(u, v) ≤ k. For a nonnegative real number δ < 1, words u and v are called
δ-similar, denoted by u∼

δ
v, if |u| = |v| and h(u, v) ≤ δ · |u|. u and v are called

length-similar or length-equivalent, denoted by u ∼
length

v, if |u| = |v|.

Finally we repeat, that by REG, LIN , CF , CS, REC and RE we will
denote the classes of all regular, linear, context-free, context-sensitive, recursive
and recursively enumerable languages (over X), respectively.

3. Some lemmata

Lemma 1. For an arbitrary language class L and for natural numbers k
and k′ such that 0 ≤ k ≤ k′, L = L0 ⊆ Lk ⊆ Lk′ ⊆ Llength holds.

The proof is trivial by the definitions.

Lemma 2. For an arbitrary language class L and for real numbers δ and
δ′ such that 0 ≤ δ ≤ δ′ < 1, L = L0 ⊆ Lδ ⊆ Lδ′ ⊆ Llength holds.

The proof is trivial by the definitions.

Lemma 3. For ind ∈ {k, δ, length}, where k is a natural number and δ
is a real number between 0 and 1, REGind ⊆ LINind ⊆ CFind ⊂ CSind ⊂
⊂ RECind ⊂ REind holds.

This trivially follows from the corresponding relationships between REG,
LIN , CF , CS, REC and RE (see, e.g. [4, 5]). For ind = length,
REGind = LINind = CFind holds since all context-free languages over a one-
letter alphabet are regular. For ind ∈ {k, δ} and 0 ≤ δ < 1

2 , REGind ⊂ LINind,
because of Lemma 4 and Theorem 2 below. For δ ≥ 1

2 see Section 5.

Lemma 4. If L is a language class which is closed under union with
finite sets and under difference with finite sets, then for any fixed δ, 0 < δ < 1:
∞⋃

k=0

Lk ⊆ Lδ.
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Proof. Let L ∈ Lk for some fixed k ∈ N, n0 ∈ N such that n0 ≥ k
δ ,

and define L1 =Df {p : p ∈ L ∧ |p| ≤ n0}, L2 =Df L \ L1. Then L∼
k

L′

for some L′ ∈ L and L2∼
k

L′2 for L′2 = L′ \ {p : |p| ≤ n0} ∈ L. For each

w ∈ L2 there exists w′ ∈ L′2 (and vice versa) such that w∼
k

w′ and therefore

h(w,w′)
|w| < k

n0
≤ δ. This means L2∼

δ
L′2 and, therefore, L = L1 ∪ L2∼

δ
L1 ∪ L′2

and thus L ∈ Lδ because L1 ∪ L′2 ∈ L.

Lemma 5. Let k and k′ be natural numbers such that 0 ≤ k < k′. Then
there exists L ∈ REGk′ \REk.

Proof. Let T be an undecidable subset of a∗ and define the following set:
L =Df {pa2k′ : p ∈ T} ∪ {pb2k′ : p ∈ a∗ \ T}. Then L∼

k′
a∗ak′bk′ and therefore

L ∈ REGk′ because of a∗ak′bk′ ∈ REG. Assume L ∈ REk. Then L∼
k

S for

some S ∈ RE, and each w ∈ S must be k-similar to some word from L and,
therefore, it has the form pu, where |u| = 2k′ and either |u|a > k′ (if a|p| ∈ T )
or |u|a < k′ (if a|p| /∈ T ). Also, for each n ∈ N there exists such a word pu ∈ S
of length n + 2k′. Then the enumerability of S implies the decidability of T
because T = {a|p| : ∃u(|u| = 2k′ ∧ pu ∈ S ∧ |u|a > k′)}, contradicting the
assumption.

It follows from the Lemmas 1, 3 and 5, that for each of the classes REG,
LIN , CF , CS, REC, and RE, the k-similarity classes form a countable
hierarchy.

Corollary 1. For L ∈ {REG, LIN,CF,CS, REC, RE}

L = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln ⊂ Ln+1 ⊂ · · ·
holds.

By Lemma 4 the whole hierarchy is contained in Lδ for arbitrary real δ,
0 < δ < 1, because each of our classes L is closed under union with finite sets
and under difference with finite sets.

Lemma 6. Let δ and δ′ be real numbers such that 0 ≤ δ < δ′ < 1 and
δ < 1

2 . Then there exists L ∈ REGδ′ \REδ.

Proof. Because of Lemma 2 it is enough to assume that δ′ ≤ 1
2 is a

rational number, and therefore let δ′ = r
s for natural numbers r, s 6= 0, where

r ≤ s− r. Let T be the same set as in the proof of Lemma 5 and define

L =Df {(as−rbr)n : an ∈ T} ∪ {(bras−r)n : an /∈ T}.
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Then L∼
δ′
{as·n : n ∈ N} and therefore L ∈ REGδ′ . Assume L∼

δ
S for some S ∈

∈ RE. Then for each n ∈ N there is a word of length ns in S, and for each w ∈ S
with length ns, either h(w, (as−rbr)n) < rn (if an ∈ T ) or h(w, (bras−r)n) < rn
(if an /∈ T ). Both at a time are impossible because of h((as−rbr)n, (bras−r)n) =
= 2rn. Then the set T would be decidable because

T = {an : ∃w(w ∈ S ∧ |w| = ns ∧ h(w, (as−rbr)n) < rn)}.

This contradicts the assumption.

It follows from the Lemmas 2, 3 and 6 that for each of the classes REG,
LIN , CF , CS, REC and RE the δ-similarity classes form an uncountable
hierarchy.

Corollary 2. For L ∈ {REG, LIN, CF, CS, REC, RE} and real numbers
δ, δ′ such that 0 ≤ δ < δ′ < 1 and δ < 1

2 , Lδ ⊂ Lδ′ holds.

Lemma 7. Let δ be a real number such that 0 ≤ δ < 1. Then there exists
L ∈ REGlength \REδ.

Proof. Let L1, L2, L3, . . . be an enumeration of all recursively enumerable
languages over X such that for each n ≥ 1 there is a word of length n in Ln.
For each n ≥ 1 let wn be a fixed word of length n in Ln (for instance, the
lexicographically first word of this length in Ln). Let wn be the word arising
from wn by changing each letter in wn, and define L =Df {wn : n ≥ 1}. Then
L ∼

length
X+ and therefore L ∈ REGlength. Assume L∼

δ
S for some S ∈ RE.

Then S = Li for some suitable i, and wi ∈ S, but there does not exist any
u ∈ L with wi∼

δ
u (only wi ∈ L has the same length as wi, |wi| = |wi| = i, but

h(wi, wi) = i > δ · |wi|), contradicting L∼
δ

S.

It follows from Lemmas 2, 3 and 7:

Corollary 3. For L ∈ {REG, LIN, CF, CS, REC, RE} and a real
number δ such that 0 ≤ δ < 1, Lδ ⊂ Llength holds.

4. The hierarchies

In set theory (see, e.g. [6]) an order-type is an equivalence class of
isomorphic ordered sets. The most familiar ordered infinite sets in everyday
life are the set N of natural numbers and the set R of real numbers with the
usual order ≤. It is common to denote the order type of [N,≤] by ω and the
order type of [R,≤] by λ.
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Further, let (0, 1
2 ) =Df {δ : δ ∈ R ∧ 0 < δ < 1

2} and (0, 1
2 ] =Df {δ : δ ∈

∈ R ∧ 0 < δ ≤ 1
2}. [(0, 1

2 ),≤] is isomorphic to [R,≤] and has the order type
λ. [(0, 1

2 ],≤] has the order type λ + 1. By Corollary 2, [{Lδ : δ ∈ (0, 1
2 ]},⊆]

is isomorphic to [(0, 1
2 ],≤] and therefore has also the order type λ + 1, where

L ∈ {REG,LIN, CF, CS, REC, RE}. By combining Corollary 3, Corollary 1
and Lemma 4 we get our main result.

Theorem 1. For L ∈ {REG,LIN, CF, CS,REC,RE}, natural numbers
k, k′, and real numbers δ, δ′ such that 0 < k < k′ and 0 < δ < δ′ ≤ 1

2 ,

L = L0 ⊂ Lk ⊂ Lk′ ⊂ Lδ ⊂ Lδ′ ⊂ Llength holds.

These are hierarchies of order type ω + λ + 2.

Taking into consideration the fact that in each case Llength ⊂ P(X∗) holds,
we have the order type ω+λ+3 (for instance, if T is a nonenumerable subset of
a∗ then we have T ∈ P(X∗) \RElength). Let us further remark that all classes
but L0 in these hierarchies have the cardinality of the continuum, and that
there are continuum-many languages witnessing each of the strict inclusions.
This follows from our proofs because there are continuum-many nonenumerable
subsets T of a∗. In the proof of Lemma 7 we can start with such an enumeration
in which for infinitely many n ≥ 1, Ln contains at least two words of length n,
and thus we can create continuum-many appropriate sets L.

5. Further results and problems

Our main result, Theorem 1, as well as Corollary 2 and Lemma 6 hold for
δ < 1

2 . We do not know whether they are true for δ ≥ 1
2 . We conjecture that

this is not the case.

Conjecture 1. REGδ ⊆ RE 1
2

holds for δ > 1
2 .

The following result describes a similar situation.

Theorem 2. LIN 6⊆ ⋃
0≤δ< 1

2

REGδ.

Proof. We consider L′ =Df {anbn : n ∈ N} ∈ LIN and assume L′∼
δ

L for

some fixed δ with 0 ≤ δ < 1
2 and for some L ∈ REG. By the Pumping Lemma

for regular sets, every sufficiently long w ∈ L has the form w = w1w2w3, where
w2 6= e and w1w

i
2w3 ∈ L for each i ∈ N. Let us define zi =Df w1w

i
2w3. Since

L′ ∼
length

L, w2 has an even length l ≥ 2 and zi∼
δ

z′i for a uniquely determined



Some uncountable hierarchies of formal languages 177

ni and z′i = anibni ∈ L′, where ni is growing for growing i. Choose i so that
ni > |w1| and ni > |w3|. This means the centre of the word zi is within wi

2.
Then for each j ∈ N, the centre of zi+2j is by j · l = j · |w2| positions to the
right from the centre of zi. The word left from the centre of zi+2j must be
similar to ani+jl, and the word right from this centre must be similar to bni+jl.
Therefore,

h(zi+2j , z
′
i+2j) = h(zi, z

′
i)+ j·|w2|b + j·|w2|a = h(zi, z

′
i) + j·|w2| = h(zi, z

′
i) + jl.

We have |zi+2j | = 2ni + 2jl, and therefore

lim
j→∞

h(zi+2j , z
′
i+2j)

|zi+2j | =
1
2

> δ.

This contradicts L′∼
δ

L.

We do not know whether we can extend the boundary for δ in Theorem 2.
Especially, we do not know whether LIN 6⊆ REGδ is true for δ ≥ 1

2 . Again,
we conjecture that this is not the case.

Conjecture 2. LIN ⊆ REGδ for 1
2 ≤ δ < 1.

To prove this conjecture for the alphabet X = {a, b}, it would be sufficient
to show that for an arbitrary linear language L the following language L′ is
regular, because L 1̃

2

L′:

L′ =Df {a|w| : w ∈ L ∧ |w|a ≥ |w|b} ∪ {b|w| : w ∈ L ∧ |w|b ≥ |w|a}.

By the forthcoming Theorem 3 this would be fulfilled if both sets

La =Df {w : w ∈ L ∧ |w|a ≥ |w|b} and Lb =Df {w : w ∈ L ∧ |w|b ≥ |w|a}

were context-free. But, in general, the latter is not true as it can be seen from
the following example.

The set L =Df {anb2nak : n, k ∈ N ∧ n ≥ 1} is linear, but La = {anb2nak :
1 ≤ n ≤ k} is not context-free. Nevertheless, L 1̃

2

{an : n ≥ 4} ∪ {bn : n ≥ 3}
and therefore L ∈ REG 1

2
.

For an arbitrary alphabet X, L ⊆ X∗ and x ∈ X we define

Lx =Df {w : w ∈ L ∧ ∀y(y ∈ X → |w|x ≥ |w|y)}.

We call the sets Lx the majority-sets of L.
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Theorem 3. If L ⊆ X∗ is a language such that all majority-sets of L are
context-free, then L ∈ REG1− 1

k
, where k is the cardinality of X.

Proof. Let L′x =Df {x|w| : w ∈ Lx} for x ∈ X. It is a well-known fact,
that every context-free language over a one-letter alphabet is regular (see, e.g.
[4, 5]), and therefore, if all majority-sets of L are context-free, then L′x is regular
for each x ∈ X. Then the set L′ =Df

⋃
x∈X

L′x is regular, too. Let k = |X|.
Then Lx ∼

1− 1
k

L′x for each x ∈ X and therefore L =
⋃

x∈X

Lx ∈ REG1− 1
k
.

The same result L ∈ REG1− 1
k

is true if L is a slender linear language [7],
which means that there is only a constantly bounded number of words of each
fixed length in L. For a two-letter alphabet X it remains to show that every
linear language L ⊆ X∗ is 1

2 -similar to a regular language, where not both
majority-sets of L are context-free and L is non-slender. We assume that this
problem has a similar difficulty as the long-standing open problem whether the
set of all primitive words over some nontrivial alphabet X is context-free or
not [2].
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