Annales Univ. Sci. Budapest., Sect. Comp. 26 (2006) 159-170

BITTORRENT FILE SHARING
IN MOBILE AD-HOC NETWORKS

G. Balazsfalvi and J. Sztrik
(Debrecen, Hungary)

4

Abstract. This paper presents an application of the Group-based Service
Discovery Protocol (GSD) to implement the BitTorrent file sharing protocol
on dynamically variable mobile ad-hoc network (MANET) environments.
We used a so-called 'trackerless’ extension of the BitTorrent to make our
system more efficient on mobile P2P networks. Also we have implemented a
discrete event simulator in Java language, to inquire into detail our protocol.
Our simulation results show that proposed GSD with BitTorrent protocol
results in shorter download times than the standard file transfer methods.

1. Introduction

A mobile ad-hoc network (MANET) [14] comes into existence when mobile
devices (e.g. telephones or PDAs) contact each other via a wireless connection,
for example Bluetooth. These networks are close to wired P2P networks in
the sense that the peers do not have any structure in the layout and each
peer can suddenly disconnect from the others. MANETSs can be established
for example in an office or in a conference room when one wants to share data
with others. In [2] Chakraborty et al. proposed a method called Group-based
Service Discovery for presenting and discovering services in MANETSs. That
protocol is able to speed up the discovery of a shared file, but does not speed
up the downloading process of a large file. In [10] Sai Ho Kwok showed that

The research is partially supported by the Hungarian National Foundation
for Scientific Research under grant OTKA K60698/2005 and the Hungarian
Academy of Sciences - Korean Science and Engineering Foundation (KOSEF)
F01-2006-000-10014-0.



160 G. Baldzsfalvi and J. Sztrik

the large video and audio files have been transferred among P2P users, and the
mobile devices which are able to play video data and have Bluetooth connection
have become popular. The users in wired P2P network environments share
their data mainly by the BitTorrent protocol [4, 8]. This protocol is applied
because it speeds up the large-scale file sharing, as Bharambe et al. have
analyzed in [1]. We used the GSD service discovery protocol to introduce a so-
called ’trackerless’ implementation of the BitTorrent protocol in mobile ad-hoc
networks. A simulator has been developed to find out whether the proposed
method is better than the standard one with respect to the downloading time.

The remainder of this article is organized as follows. In Section 2 a review
of the GSD and the BitTorrent protocols is given. In Section 3 we propose
a protocol of ad-hoc sharing. In Section 4 simulation results illustrate the
comparisons versus simple data download approach. The paper ends with a
summary and conclusions.

2. Recent works

2.1. The Group-based Service Discovery protocol

In [2, 3] Chakraborty et al. have presented the GSD protocol which is a
service discovery protocol for ad-hoc networks, based on three concepts:

1. Bounded advertising of services in the vinicity;
2. Peer-to-Peer dynamic caching of service advertisements;
3. Service group-based selective forwarding of discovery requests.

The first one means that peers are continually advertising the services
they provide, such as sharing a file. Bounded advertising means that there is
a hop-limit on each advertisement. Every peer that forwards an advertisement
decreases the hop-counter, and when it becomes negative the advertisement
passes away. The second concept means that the arrived advertisements
get cached at peers. Aside from advertising their own services the peers
also advertise the so-called groups of services they have seen. GSD uses a
hierarchical grouping of services [6]. This is one of the many semantic based
service discovery approaches. Others are described in [11, 7]. We chose this
because the data sharing services are well grouped in many ways, e.g. by
content. The GSD protocol, when the services are well grouped, is very efficient
comparing to other approaches. It is shown to be fast and does not load the
clients too much.



BitTorrent file sharing in mobile ad-hoc networks 161

Roughly speaking it works as follows. Every node in the MANET
periodically sends a list of its own services within the radio range. This
advertisement contains information about the services of the sender and their
groups. Also it contains a field of containing groups which were seen by the
sender. The redundancy of advertisements is avoided by a broadcast ID that
is monotonically increased with every broadcast message, and a hop-count
value, that has to be decremented after sending an advertisement farther. If
the advertisement a node received was not redundant, before forwarding the
receiver extracts it and stores information in a service cache. It decreases
the hop-count, and in the case latter is greater than zero, forwards the
advertisement. The package also has the lifetime of each service advertised.
They only should be cached until this expires. When a node needs a service, it
first checks its own cache. If in the advertisement range there is such a service
advertised, in an ideal case, the cache should contain an entry about it. If not,
it sends a broadcast message to nodes in the vinicity, with the name and group
of the service and a maximal hop-count value. If the node receiving this query
has already seen that group, it forwards selectively the message. Otherwise, it
sends to every node in the radio range the message. Before forwarding the hop-
count must be decreased. If a node founds the service, it answers the query.
Otherwise, the service is not provided in the hop-count range.

2.2. The BitTorrent file sharing protocol

In [4] Cohen has presented a P2P file sharing protocol called BitTorrent
which is based on the up-link capacity of the down-loaders. There must be
a server somewhere at a well known place which is used to coordinate the
others. This server is called tracker. From the data to be shared has to be
split into several pieces and a torrent file must be created and uploaded to the
tracker. The torrent file contains hash and size information about the pieces,
their length, name of the original files and the URL of a tracker. When another
peer wants to get the shared data, it has to contact the tracker for a list of
peers downloading or uploading the same data and having the same torrent
file. Peers that have the full data and are only uploading are called seeders,
while the peers that are downloading as well are called leeches. The health
or visibility of a torrent shows if the file was fully reachable or not. It is the
number of full copies of the data in the system. Every seeder counts one in
this number. A leech having e.g. 30% of the data which no other leech has
counts 0.3 in the health value. So, when this value is below one, the data is not
available. If there are seeders in the system, then the health is at least equal
to their number and the data can be downloaded. The peer tries to connect to
all of the peers present in the list it got from the tracker, namely its neighbors.
Each peer reports to all of its neighbors what pieces it has and also tries to



162 G. Balazsfalvi and J. Sztrik

download from its neighbors pieces that it does not have. Except for the very
first and the last pieces, a peer selects the piece for downloading that is the
rarest one among its neighbors. The first one is selected randomly, and the
last ones are selected by the fastest connection. This is the case because at the
beginning that peer needs a whole piece of the data as quickly as possible to be
able to upload. The leeches give the upload bandwidth in a tit-for-tat manner.
The more they get from one peer the more they give. Leeches periodically
disallow the downloading from some connections. This is called choking that
peer. Peers are then unchoked in the order of the upload bandwidth, except
for one, that is randomly chosen to be able to detect faster connections. This
is called optimistic unchoke. Because seeders usually leave the system after a
share ratio of one - that is after they uploaded as much as they downloaded -
they prefer peers with a better connection. These are able to share the data
as fast as possible. Measurements have shown that the BitTorrent scales well
and it is efficient [5, 15].

Recently there are some clients that use an extension of this standard
system. They use a distributed hash table to store the torrents instead of a
fixed tracker. Although there is no standard implementation, some clients are
using the Kademlia [12] system. The distributed hash table is based on the
followings. Every participating node gets a unique random integer value of
the same size representing a key from a so-called key space. By these keys
the nodes form an overlay network. A typical arrangement of them can be a
binary tree allowing logarithmic time search among the keys. The nodes have
a common method for calculating a so-called distance between two keys. When
a node creates a torrent, it makes a hash value of that. Every node has to use
the same hashing method, e.g. SHA1. This method gives an integer having the
same size as the IDs. Next the creator looks for the node having the closest key
to the hash value. When a node wants to find that torrent it has to compute
the hash value of it and look for the node having the closest key. That node
has information regarding the peers using the same torrent. This information
has to be updated with the address of the new peer as well.

3. Service discovery based BitTorent

QOur file sharing solution in MANETSs is based on group based service
discovery and distributed hash table based BitTorrent. The idea is to introduce
groups for different kinds of data to be shared, for example movies, music or
picture. All of them are grouped together into one main group, e.g. the 'Share’
group, henceforth denoted by ’S’. This is the only group we have modeled



BitTorrent file sharing in mobile ad-hoc networks 163

actually for the sharing services, and a concrete file to be shared uses the
service [S : ” file”]. We use another group of services to assign the nodes
participating in the distributed hash table system. We assume that every peer
taking part in the hash table provides a service in group 'D’. There may be
several other kinds of distributed hash tables, but only one of them is for data
sharing, namely [D : S]. When a peer has data to share, it has to create the
torrent and put its own address into it. Next with the help of GSD service
query it looks for a provider of [D : S]. After it knows at least one node from
the hash table, can easily look for right place for the torrent data by hashing
the torrent file. When another peer needs the data, first it uses the GSD system
to find a peer seeding or leeching the same data. For this the searcher does
not have to know the exact name of the torrent, because the GSD system can
answer the query with every related torrent. The searcher selects a torrent,
creates the hash of it, and by looking in the hash table it can find all the peers
sharing the same data. The searcher has also to register itself into the hash
table. For this it uses again the GSD system to search for a node joining in
the distributed hash table. Next we present the algorithm for data sharing.

Algorithm 3.1: SHARE(A,” file”)

# Preparing “file” (o shave. "A"is an owner and it provides [S 7 file” ],
T «— GSD_look_for([D:S});
if empty(T)
then end with fail;
h « hash(torrent(” file”));
N « find_DTH node(T, h),
put_into DHT(N, h,torrent(” file”));

Here T is a set of nodes, all providing [D : 5], the distributed hash table for
data sharing. ’A’ has to create the hash value of the ”file”’s torrent and store
it in h. Next it uses 7" and A to find N, the node that is responsible for data
with key h. Finally, ’A’ stores the created torrent in the hash table.

The next algorithm describes the needs for downloading "file”. It is
important that a node, looking for the data, is not able to create the torrent
file, because, for example, it does not know the number of pieces. First 'A’ gets
a set .S of nodes having the data ”file” from the GSD system. It could also be



164 G. Baldzsfalvi and J. Sztrik

a group of data, 'conference video’ for example. Next ’A’ selects the torrent ¢
it wants to use for downloading. Although, this torrent might have a list of

Algorithm 3.2: SEARCH(A,” file”)

£ Looking jor shared "Hle"0 CAT s o opeer.
S «— GSD_look_for([S:"file”]);
if (S)

then end with fail;
t « select_torrent(S);
T «— GSD_look_for([D:S]);
if empty(T)

then end with fail;
h — hash(t);
N « find_DT H node(T, h);
R «— get_from _DHT(N, h);
R+~ RU{A};
register(t, R);
put_into. DHT (N, h,t);

# Start downioad wsing B as o bsi of peers

some peers already, this list might not be complete. After that *A’ looks for a
node in the hash table and if does not find any, it has to finish. Otherwise, it
creates the hash value of the selected torrent and stores it in h. Next A’ finds
the node N storing the list R of all peers concerning the torrent ¢, adds itself
into this list, registers in the torrent, and refreshes the torrent at the node N.
Finally, it can use the BitTorrent algorithm to download the data.

4. Experimental results

4.1. The discrete event simulator

This section presents an event oriented discrete event simulator developed



BitTorrent file sharing in mobile ad-hoc networks 165

to model the proposed protocol. We have built in an event and process oriented
discrete event simulator 1 using the Java language, mainly as described by Jain
in [9]. The main component of it is a scheduler which is capable of scheduling

Y

BitTorrent related .
Peer, seeder, leech vents Mobile
DHT implementation no_des

BitTorrent related wrt.h
. services

P2P related )
even | . —1 Service
= related
------- events

- 1
" Event Process |« Ad-hoc
Scheduler iw related
y events
Event hea \'
well defin edp Event heap Process heap
badly defined
|general discrete event simulatorl
] general P2P simulator
] BitTorrent simulator
ISDBitTorrent simulato

Figure 1. Simulator components

events at a specific time, events after a specific time, and processes having
the finishing time varying dynamically. For these it uses three heaps ensuring
in logarithmic time the pick up of the event or the process having the turn.
The Ewvent class is the ancestor of every event in our system. It has a run()
method, in which it does its work as described later. It can be scheduled at
a specific time (well-defined schedule-time) or sometimes after a specific time.
The latter is called badly-defined schedule-time event, because its schedule
time is determined by other events dynamically. We can only say that the
event does not fire before a given time, but it fires before the next well-defined



166 G. Baldzsfalvi and J. Sztrik

schedule-time event having a latter schedule-time. The other kind of items that
can be scheduled in our system are processes. The ancestor of every process
is the Process class. This class has a finishTime() method that is invoked
at every related event’s fire-time and every related process final time with an
actual parameter of the current time. After that these processes can do their
own work which has to be done between the last call and now. They must
prognosticate their final time with the actual conditions. These conditions can
change only by other processes and by events, so the correct finishing time
cannot be missed.

To model a peer to peer system we need node objects and events, to create
these nodes (BornFEwvent) and also to destroy them (DeathEvent). Also we
have to model an abstract connection between peers.

For the BitTorrent system to be modeled we have to derive the peers
from the more general nodes. Also we have to let a peer be a seeder or a
leech. These nodes are also responsible for the distributed hash table. We
modeled roughly the Kademlia system as described in [12]. After a peer is
born a GetPeerListEvent object responsible for the neighbors of one peer is
scheduled. It can schedule another GetPeerListEvent at a later time, because
the peer may need to renew its neighbors, for example when a neighbor becomes
seeder. It also schedules a SelectPiece Event object. This object implements the
different kinds of piece selection policy (the rarest first one for example). If
piece is available for download, then it schedules a SelectPieceEvent after the
next event’s time. Otherwise, it schedules an UpdateLinksEvent object. This
creates and refreshes the download processes. When every piece is downloaded,
a BecomeSeederEvent runs and the peer is turned into a seeder. In the recent
system the only process class is the downloading of a piece. Its finish time
depends on the actual bandwidth, for which it uses a Link class. For the ad-hoc
network environment we needed mobile nodes being able to have and advertise
services. We added coordinates for the nodes representing the physical place
in the MANET of that. A node can only contact other nodes in a given circle,
as normally in MANETSs. Certainly, it can download from a remote node if
there is a chain of nodes between them. We implemented roughly the Ad-hoc
On-Demand Distance Vector (AODV) routing protocol described in [13]. Its
main advantage is that it builds the links between two nodes just in time, and
also is able to select a good way for the data which is sent. When a node’A’
needs a connection to another node, ‘B’ for example, it broadcasts a message
for the need of this connection. If 'B’ is in the radio range, it answers back. If
it is not, "B’ will be found by other AODV nodes, by forwarding the original
message. If one tells about B’ with a chain (firstly 'B’ does this with only
itself in the chain),it appends itself to the beginning of this chain and answers
the message. Of course message loops are avoided. A service is described by a
subclass of the Service class. It has name and group fields and preReq() method



BitTorrent file sharing in mobile ad-hoc networks 167

for determining the peers that can use the service. When a peer starts using
the service the system calls the useService() method. When a service discovery
request is unsuccessful, the onFail() method is invoked. Every node is able
to discover other nodes. This is handled by the DiscoveryEvent class. Nodes
discover services by the ServiceDiscoveryEvent class.

We implemented the algorithms described in the previous section in our
system with the combination of the two protocols described above. We used
two subclasses of Service class, one for the distributed hash table and one for
the file-sharing service. The provider of a file-sharing service can be a seeder
or a leech. The simulation can be displayed graphically with the Java’s swing
components.

4.2. Results versus plain download

Download time

1150.0 - 1T
Il N
Mo
I
950.0 1
=)
c
Q
o
(]
L 750.0 4
Q
£
=
550.0
350.0 T T T T —
5 55 105 185 205 255
number of peers
---Measured values plain download ------ Theoretical values plain download —— Measured values SDBitTorrentl

Figure 2. SDBitTorrent vs. plain downloaded

We have run several scenarios with our system. The results of these
simulations can be seen in Figure 2. We set up typical file size and bandwidth



168 G. Balazsfalvi and J. Sztrik

values. The size of the file to be shared was set to 4 Megabytes, which is typical
size of a mp3 music file. Both the uploading and the downloading bandwidths
were set to 32 Kilobytes/sec. With these properties a simple download of the
file takes 128 seconds. There is only 1 initial owner of that file. In this figure
we can see one continuous line showing our results given by our algorithm.
From the two dotted lines one shows the theoretical values of the optimal
plain download. This can be easily computed by the following reasoning. Let
us start with just 1 downloader. It needs 128 seconds to finish its download.
Then two other peers can download the file simultaneously and it takes another
128 seconds, so they finish by the 256-th second. If these 3 peers wanted to
download earlier, at the 0-th second, the download time would be 128 %3 = 384
seconds, so the previous was optimal. Continuing this reasoning we find that
if we had K — 1 peers which wanted that file and only 1 peer which owned it,
we would need 128 * ([log,(K)]). E.g. for 66 peers and 1 owner the K was
67 and the time needed is 128 * 7 = 896. The peers have to find each other,
which certainly also takes time, and the probability that every peer connects to
the system at the exact time is very small. The worst case is when every peer
wants to download the file at the same time, e.g. at the 0-th second. Then it
takes 128 x 66 = 8448 seconds plus the time to find the owner by GSD. The
optimal case of the simple download can be modeled by a BitTorrent system
with the following parameters. The number of the pieces of the file is only 1.
The maximum number of simultaneous down-links and up-links per node are
both 1. We run the scenario with these parameters while the number of all
peers was varying between 5 and 260. The second dotted line shows the results
of this scenario.

The continuous line belongs to the average of 100 independent simulation
scenarios. We have run scenarios for this situation with the following additional
parameters. The number of pieces of the file was 100. The maximum number
of one’s neighbors was set to 20, and the maximum number of simultaneous
down-links per node was 10. The maximum number of simultaneous up-links
per node was 5. The lifetime of an advertisement was 100 seconds. E.g. when
the number of peers was 67 the average sharing time was 565 seconds, which is
much less than the optimal 896 seconds of the normal download process. The
more peers we have, the better are the results.

5. Conclusions

We presented a method that can be used by mobil devices in a mobile
ad-hoc network, to share data using the BitTorrent protocol. For this we used



BitTorrent file sharing in mobile ad-hoc networks 169

the Group based Service Discovery protocol and the Kademlia distributed hash
table system. Java-based software simulator was developed for simulating the
details of the underlying ad-hoc network and the proposed algorithms. By
running several experiments we showed that our protocol scales well with the
number of peers. The package was able to simulate not just our protocol, but
the optimal plain download process, too. We illustrated that our new protocol
containing these setups is much better with respect to the downloading time
than the old-style protocol for download.

References

(1] Bharambe A.R., Herley C. and Padmanabhan V.N., Analyzing
and improving bittorrent performance, Technical report MSR-TR-2005-03,
Microsoft Research, 2005.

[2] Chakraborty D., Joshi A., Finin T. and Yesha Y., GSD: a novel
group-based service discovery protocol for MANETSs, Proc. jth IEFE
Conf. on Mobile and Wireless Communications Networks MWCN’02,
Stockholm, Sweden, 2002, 140-144.

[3] Chakraborty D., Joshi A. and Yesha Y., Integrating service discov-
ery with routing and session management for ad-hoc networks, Ad Hoc
Networks, 4 (2006), 204-224.

(4] Cohen B., Incentives build robustness in bittorrent, Workshop on Eco-
nomics of Peer-to-Peer Systems IPTPS’-05, Berkeley, CA, USA, 2008,
251-260.

(5] Epema D.J.H., Pouwelse J.A., Garbacki P. and Sips H.J., The
bittorrent P2P file sharing system: Measurements and analysis, Proc.
of 4th Int. Workshop on Peer-to-Peer Systems IPTPS’05, Ithaca, USA,
2005, 205-216.

[6] Gao Z., Wang L., Yang M. and Yang X., CNPGSDP: An efficient
group-based service discovery protocol for MANETS, Computer Networks,
50 (2006), 3165-3182.

[7] Heckel R., Cherchago A. and Lohmann M., A formal approach
to service specification and matching based on graph transformation,
Electronic Notes in Theoretical Computer Science, 105 (2004), 37-49.

[8] Izal M., Urvoy-Keller G., Biersack E.W., Felber P., Al Hamra A.
and Garc’es-Erice L., Dissecting bittorrent: Five months in a torrent’s
lifetime, Proc. 5th Passive and Active Measurement Workshop, 2004, 1-11.



170

G. Baldzsfalvi and J. Sztrik

[9]
(10}

(11]

{12}

(13]

(4]

(15]

Jain R., The art of computer systems performance analysis, John Wiley
& Sons, New York, 1991.

Kwok S.H., P2P searching trends: 2002-2004, Information Processing
and Management, 42 (2006), 237-247.

Ludwig S.A. and Reyhani S.M.S., Introduction of semantic match-
making to grid computing, J. Parallel and Distributed Computing, 65
(2005), 1533-1541.

Maymounkov P. and Maziéres D., Kademlia: A peer-to-peer infor-
mation system based on the XOR metric, IPTS’01: Revised Papers from
the First Int. Workshop on Peer-to-Peer Systems, Springer Verlag, 2002,
53-65.

Perkins C., Royer E. and Das S., Ad hoc on-demand distance vector
(AODV) routing, Request for Comments (RFC) 8561, 2003. (ftp://ftp.rfc-
editor.org/in-notes/rfc3561.txt)

Zambonellia F., Gleizes M.-P., Mameia M. and Tolksdorf R.,
Spray computers: Explorations in self-organization, Pervasive and Mobile
Computing, 1 (2005), 1-20.

Zihui G., Figueiredo D.R., Jaiswal S., Kurose J. and Towsley
D., Modeling peer-to-peer file sharing systems, Proc. Infocom’03, 2003,
2188-2198.

(Received September 28, 2006)

G. Balazsfalvi and J. Sztrik
Institute of Informatics
University of Debrecen

H-4010 Debrecen, P.O.B. 12
Hungary
gabor.balazsfalvi@gmail.com
jsztrik@inf.unideb.hu





